Chromatic Number and Twin-Width

Romain Bourneuf
Supervised by Stéphan Thomassé
École Normale Supérieure de Lyon

Joint work with Édouard Bonnet, Julien Duron, Colin Geniet and Nicolas Trotignon

July 10, 2023

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Chromatic Number

Definition (Chromatic Number)

The chromatic number of a graph G is the minimum number of colors we need to color the vertices of G so that two adjacent vertices always get different colors.
We denote it by $\chi(G)$.

Twinning \& Gluing

Twinning, Gluing \& Chromatic Number

Proposition

If H can be built from G by repeatedly creating twins, then $\chi(H)=\chi(G)$.

Twinning, Gluing \& Chromatic Number

Proposition

If H can be built from G by repeatedly creating twins, then $\chi(H)=\chi(G)$.

Proposition (Chudnovsky, Penev, Scott, Trotignon '13)

Let \mathcal{C} be a class of k-colorable graphs.
If H can be built from \mathcal{C} by iterated 2-gluings, then $\chi(H) \leq k+3$.

Twinning, Gluing \& Chromatic Number

Proposition

If H can be built from G by repeatedly creating twins, then $\chi(H)=\chi(G)$.

Proposition (Chudnovsky, Penev, Scott, Trotignon '13)

Let \mathcal{C} be a class of k-colorable graphs.
If H can be built from \mathcal{C} by iterated 2-gluings, then $\chi(H) \leq k+3$.

Question (Chudnovsky, Penev, Scott, Trotignon '13)

Let \mathcal{C} be a class of k-colorable graphs.
Can we build graphs of arbitrary chromatic number from \mathcal{C} using only twinning and 2-gluings?

Twincut graphs

Theorem (Bonnet, B., Duron, Geniet, Thomassé, Trotignon)

Let $\mathcal{C}=\left\{K_{1}, K_{2}, \overline{K_{2}}\right\}$.
Starting from \mathcal{C}, we can build graphs of arbitrary chromatic number using only twinning and 2-gluings.

Twincut graphs

Theorem (Bonnet, B., Duron, Geniet, Thomassé, Trotignon)

Let $\mathcal{C}=\left\{K_{1}, K_{2}, \overline{K_{2}}\right\}$.
Starting from \mathcal{C}, we can build graphs of arbitrary chromatic number using only twinning and 2-gluings.

Twincut graphs

Theorem (Bonnet, B., Duron, Geniet, Thomassé, Trotignon)

Let $\mathcal{C}=\left\{K_{1}, K_{2}, \overline{K_{2}}\right\}$.
Starting from \mathcal{C}, we can build graphs of arbitrary chromatic number using only twinning and 2-gluings.

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Contraction sequence

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

Classes of bounded twin-width are tractable with respect to:

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

Classes of bounded twin-width are tractable with respect to:

- Computational Complexity (FO model checking is linear)

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

Classes of bounded twin-width are tractable with respect to:

- Computational Complexity (FO model checking is linear)
- Model Theory (closed under FO transductions)

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

Classes of bounded twin-width are tractable with respect to:

- Computational Complexity (FO model checking is linear)
- Model Theory (closed under FO transductions)
- Enumerative Combinatorics (exponential growth vs. factorial growth)

Twin-Width

Definition (Twin-Width (Bonnet, Kim, Thomassé, Watrigant '20))

The twin-width of G is the minimum possible error value of a contraction sequence of G.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

Classes of bounded twin-width are tractable with respect to:

- Computational Complexity (FO model checking is linear)
- Model Theory (closed under FO transductions)
- Enumerative Combinatorics (exponential growth vs. factorial growth)
- Structural Graph Theory (generalize bounded treewidth, cliquewidth)

Twin-Width \& Chromatic Number

Theorem [Bonnet, B., Duron, Geniet, Thomassé, Trotignon]
The k-th twincut graph has chromatic number $k+1$ and twin-width k.

Twin-Width \& Chromatic Number

Theorem [Bonnet, B., Duron, Geniet, Thomassé, Trotignon]
The k-th twincut graph has chromatic number $k+1$ and twin-width k.
Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

- If G is triangle-free and $\chi(G)=k+1$ then $\operatorname{tww}(G) \geq k-1$.

Twin-Width \& Chromatic Number

Theorem [Bonnet, B., Duron, Geniet, Thomassé, Trotignon]

The k-th twincut graph has chromatic number $k+1$ and twin-width k.
Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

- If G is triangle-free and $\chi(G)=k+1$ then $\operatorname{tww}(G) \geq k-1$.
- If G has twin-width t and has no clique of size k, then $\chi(G) \leq(t+2)^{k-2}$.

χ-Boundedness

Definition (χ-boundedness (Gyárfás '87))

A class of graphs \mathcal{C} is χ-bounded if there is a function f such that for every $G \in \mathcal{C}$, we have $\chi(G) \leq f(\omega(G))$.

χ-Boundedness

Definition (χ-boundedness (Gyárfás '87))

A class of graphs \mathcal{C} is χ-bounded if there is a function f such that for every $G \in \mathcal{C}$, we have $\chi(G) \leq f(\omega(G))$.

- If f is a polynomial, \mathcal{C} is polynomially χ-bounded.

χ-Boundedness

Definition (χ-boundedness (Gyárfás '87))

A class of graphs \mathcal{C} is χ-bounded if there is a function f such that for every $G \in \mathcal{C}$, we have $\chi(G) \leq f(\omega(G))$.

- If f is a polynomial, \mathcal{C} is polynomially χ-bounded.
- The class of perfect graphs is the class of graphs with $\chi(G)=\omega(G)$.

χ-Boundedness \& Twin-Width

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]
The class of graphs of twin-width at most t is χ-bounded with function $(t+2)^{\omega-1}$.

χ-Boundedness \& Twin-Width

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]
The class of graphs of twin-width at most t is χ-bounded with function $(t+2)^{\omega-1}$.

- Is this class polynomially χ-bounded?

χ-Boundedness \& Twin-Width

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

The class of graphs of twin-width at most t is χ-bounded with function $(t+2)^{\omega-1}$.

- Is this class polynomially χ-bounded?

Theorem [Mi. Pilipczuk, Sokołowski '22]

The class of graphs of twin-width at most t is quasi-polynomially χ-bounded (i.e. with function $2^{\log ^{\alpha}(\omega)}$).

χ-Boundedness \& Twin-Width

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

The class of graphs of twin-width at most t is χ-bounded with function $(t+2)^{\omega-1}$.

- Is this class polynomially χ-bounded?

Theorem [Mi. Pilipczuk, Sokołowski '22]

The class of graphs of twin-width at most t is quasi-polynomially χ-bounded (i.e. with function $2^{\log ^{\alpha}(\omega)}$).

Theorem [B., Thomassé]

The class of graphs of twin-width at most t is polynomially χ-bounded.

Thank you for your attention :)

Questions?

