A tamed family of triangle-free graphs with unbounded chromatic number

Romain Bourneuf LaBRI

Joint work with Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé and Nicolas Trotignon¹

September 6, 2024

¹Source of inspiration for this presentation.

Definition (Chromatic Number, Clique Number)

 χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

- χ(G) = minimum number of colors we need to color the vertices of G
 so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*.

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *C* is *hereditary* if for every $G \in C$ and *H* induced subgraph of *G* then $H \in C$.

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *C* is *hereditary* if for every $G \in C$ and *H* induced subgraph of *G* then $H \in C$.

Definition (χ -boundedness)

C - hereditary, is χ -bounded if there exists f such that $\chi(G) \leq f(\omega(G))$ for every $G \in C$.

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Theorem

• There exist triangle-free graphs with arbitrarily large χ .

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Theorem

- There exist triangle-free graphs with arbitrarily large χ .
- The class of all graphs is not χ-bounded.

Is the class of all graphs χ -bounded?

Theorem

- There exist triangle-free graphs with arbitrarily large χ .
- The class of all graphs is not χ -bounded.
- Zykov (1952)
- Blanche Descartes (1954)
- Mycielski (1955)
- Erdős (1959)
- Burling (1965)

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

• If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1$.

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

Zykov sequence: $Z_1 = K_1$, $Z_{k+1} = Z(Z_1, ..., Z_k)$.

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

Properties of the Twincut operator

 $G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$

Properties of the Twincut operator

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

 If G₁,..., G_k are triangle-free then T(G₁,..., G_k) too.

Properties of the Twincut operator

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

 T_1 :

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

A tamed family of triangle-free graphs with unbounded chromatic number

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

T_3 :

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

 T_4 :

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*.

Perfect graphs

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *G* is *Berge* if both *G* and \overline{G} have no induced odd hole. *G* is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *G* is *Berge* if both *G* and \overline{G} have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *G* is *Berge* if both *G* and \overline{G} have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations.

G is *perfect* if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*. *G* is *Berge* if both *G* and \overline{G} have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations.

- *K*₅-minor-free graphs
- Pattern-avoiding permutations
- Totally unimodular matrices

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

• Disjoint union

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- Join

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- Join
- Gluing on cliques

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- Join
- Gluing on cliques

Remark

Also true for (polynomially) χ -bounded.

• Gluing on sets of size $\leq k$

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

• If C is hereditary and polynomially χ -bounded then so is C_k .

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ-bounded then so is C_k.
- If $\chi(G) \leq k$ for every $G \in C$ then $\chi(H) \leq k+3$ for every $H \in C_2$.

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is C_k .
- If $\chi(G) \leq k$ for every $G \in C$ then $\chi(H) \leq k+3$ for every $H \in C_2$.
- Substitutions

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ-bounded then so is C_k.
- If $\chi(G) \leq k$ for every $G \in C$ then $\chi(H) \leq k+3$ for every $H \in C_2$.
- Substitutions: $\mathcal{C} \longrightarrow \mathcal{C}^*$

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is C_k .
- If $\chi(G) \leq k$ for every $G \in C$ then $\chi(H) \leq k+3$ for every $H \in C_2$.
- Substitutions: $\mathcal{C} \longrightarrow \mathcal{C}^*$

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is hereditary and (polynomially) χ -bounded then so is C^* .

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) \coloneqq f(\omega)f(\omega-1)\dots f(2)$.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) \coloneqq f(\omega)f(\omega-1)\dots f(2)$. Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2)$. Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2)$. Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic. Color every monochromatic induced subgraph with $g(\omega(G) - 1)$ colors.
$\chi_c \coloneqq$ minimum number of colors in a coloring with no monochromatic maximal clique.

Step 1: If C is χ -bounded with f then C^* is χ_c -bounded with f. Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \le \chi(G) \le f(\omega(G))$. Otherwise, $\chi_c(G) \le \max(\chi_c(G_1), \chi_c(G_2)) \le \max(f(\omega(G_1)), f(\omega(G_2))) \le f(\omega(G))$.

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2)$. Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic. Color every monochromatic induced subgraph with $g(\omega(G) - 1)$ colors. Use the product of the colorings.

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

 If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.

- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.
- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and substitution is χ-bounded.

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.
- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and substitution is χ-bounded.

 What about the closure under gluing on sets of size < k and substitution?

- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.
- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and substitution is χ-bounded.

- What about the closure under gluing on sets of size < k and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by $\overline{K_2}$?

- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.
- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and substitution is χ-bounded.

- What about the closure under gluing on sets of size < k and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by $\overline{K_2}$?
- What if $C = \{K_1, K_2, \overline{K_2}\}$?

- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and gluing on sets of size ≤ k is χ-bounded.
- If C is hereditary and χ-bounded then the closure of C under gluing on cliques and substitution is χ-bounded.

- What about the closure under gluing on sets of size < k and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by $\overline{K_2}$?
- What if $C = \{K_1, K_2, \overline{K_2}\}$?
- NO: Twincut sequence!

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Proof: Induction on k.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Proof: Induction on k.

Proposition

There is a polytime algorithm recognizing twincut graphs.

Proposition

There is a polytime algorithm recognizing twincut graphs.

Theorem [Marin, Thomassé, Trotignon, Watrigant '24]

Recognizing Zykov graphs is $\operatorname{NP}\text{-complete.}$

Proposition

There is a polytime algorithm recognizing twincut graphs.

Theorem [Marin, Thomassé, Trotignon, Watrigant '24]

Recognizing Zykov graphs is NP-complete.

Proposition

- Deciding whether a twincut graph is 3-colorable is NP-complete.
- The maximum stable set problem is NP-hard on twincut graphs.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

• Every twincut graph is an induced subgraph of a Zykov graph.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

- Every twincut graph is an induced subgraph of a Zykov graph.
- Every twincut graph is a subgraph of a Burling graph.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most k - 1.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most k - 1.

Proposition

The twin-width of T_k is at most k - 1.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most k - 1.

Proposition

The twin-width of T_k is at most k - 1.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '21]

Every triangle-free graph of chromatic number k has twin-width at least k - 2.

• Zykov-Twincut operator.

- Zykov-Twincut operator.
- Mycielski-Twincut operator.

- Zykov-Twincut operator.
- Mycielski-Twincut operator.
- Arbitrary large odd girth.

• Is there a proper subclass of twincut graphs which is not χ -bounded?

- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ-bounded graph class?

- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ -bounded graph class?
- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)

- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ -bounded graph class?
- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)

Thank you! Questions?