A tamed family of triangle-free graphs with unbounded chromatic number

Romain Bourneuf LaBRI

Joint work with Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé and Nicolas Trotignon¹

September 6, 2024

 1 Source of inspiration for this presentation.

Definition (Chromatic Number, Clique Number)

• $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

- $\chi(G)$ = minimum number of colors we need to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Trivial lower bound : $\chi(G) \geq \omega(G)$.

Trivial lower bound : $\chi(G) \geq \omega(G)$.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G.

Trivial lower bound : $\chi(G) \geq \omega(G)$.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. C is hereditary if for every $G \in \mathcal{C}$ and H induced subgraph of G then $H \in \mathcal{C}$.

Trivial lower bound : $\chi(G) > \omega(G)$.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. C is hereditary if for every $G \in \mathcal{C}$ and H induced subgraph of G then $H \in \mathcal{C}$.

Definition (χ -boundedness)

C - hereditary, is χ -bounded if there exists f such that $\chi(G) \leq f(\omega(G))$ for every $G \in \mathcal{C}$.

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Theorem

• There exist triangle-free graphs with arbitrarily large χ .

Triangle-free graphs with large χ

Is the class of all graphs χ -bounded?

Theorem

- There exist triangle-free graphs with arbitrarily large χ .
- The class of all graphs is not χ -bounded.

Is the class of all graphs χ -bounded?

Theorem

 \bullet \ldots

- There exist triangle-free graphs with arbitrarily large χ .
- The class of all graphs is not χ -bounded.
- Zykov (1952)
- Blanche Descartes (1954)
- Mycielski (1955)
- Erdős (1959)
- Burling (1965)

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow Z(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

• If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow Z(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow Z(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow Z(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow Z(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) > k+1.$

Zykov sequence: $Z_1 = K_1, Z_{k+1} = Z(Z_1, \ldots, Z_k)$.

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow \mathcal{T}(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow \mathcal{T}(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

Properties of the Twincut operator

 $G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)$

Properties of the Twincut operator

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

• If G_1, \ldots, G_k are triangle-free then $T(G_1, \ldots, G_k)$ too.

Properties of the Twincut operator

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
T_1 = K_1, T_{k+1} = T(T_1, ..., T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

 T_1 :

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

T_3 :

$$
T_1 = K_1, T_{k+1} = T(T_1, ..., T_k).
$$

$$
T_1 = K_1, T_{k+1} = T(T_1, ..., T_k).
$$

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. G is Berge if both G and \overline{G} have no induced odd hole.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. G is Berge if both G and \overline{G} have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. G is Berge if both G and G have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations.

G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. G is Berge if both G and G have no induced odd hole.

Theorem [Chudnovsky, Robertson, Seymour, Thomas '06]

G is perfect \Leftrightarrow G is Berge.

Proof strategy: every Berge graph can be constructed from some basic graphs using some set of operations.

- K_5 -minor-free graphs
- Pattern-avoiding permutations
- Totally unimodular matrices

If G_1, G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

• Disjoint union

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- Join

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- \bullet \bullet \bullet
- Gluing on cliques

If G_1 , G_2 are perfect and G is obtained from G_1 and G_2 by one of the following operations then G is perfect.

- Disjoint union
- \bullet \bullet \bullet
- Gluing on cliques

Remark

Also true for (polynomially) χ -bounded.

• Gluing on sets of size $\leq k$

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_k$

• Gluing on sets of size $\leq k$: $C \longrightarrow C_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is C_k .

• Gluing on sets of size $\leq k: \mathcal{C} \longrightarrow \mathcal{C}_{k}$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is \mathcal{C}_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

• If C is hereditary and polynomially χ -bounded then so is \mathcal{C}_k .

• Gluing on sets of size $\leq k$: $C \longrightarrow C_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is \mathcal{C}_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is \mathcal{C}_k .
- If $\chi(G) \leq k$ for every $G \in \mathcal{C}$ then $\chi(H) \leq k+3$ for every $H \in \mathcal{C}_2$.

• Gluing on sets of size $\leq k$: $C \longrightarrow C_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is \mathcal{C}_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is \mathcal{C}_k .
- If $\chi(G) \leq k$ for every $G \in \mathcal{C}$ then $\chi(H) \leq k+3$ for every $H \in \mathcal{C}_2$.
- Substitutions

• Gluing on sets of size $\leq k$: $C \longrightarrow C_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is \mathcal{C}_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is \mathcal{C}_k .
- If $\chi(G) \leq k$ for every $G \in \mathcal{C}$ then $\chi(H) \leq k+3$ for every $H \in \mathcal{C}_2$.
- Substitutions: $C \longrightarrow C^*$

• Gluing on sets of size $\leq k$: $C \longrightarrow C_k$

Theorem [Alon, Kleitman, Saks, Seymour and Thomassen '87]

If C is hereditary and χ -bounded then so is \mathcal{C}_k .

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and polynomially χ -bounded then so is \mathcal{C}_k .
- If $\chi(G) \leq k$ for every $G \in \mathcal{C}$ then $\chi(H) \leq k+3$ for every $H \in \mathcal{C}_2$.
- Substitutions: $C \longrightarrow C^*$

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

If C is hereditary and (polynomially) χ -bounded then so is \mathcal{C}^* .

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$.

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2).$

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2).$ Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$.

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2).$ Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic.

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2).$ Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic. Color every monochromatic induced subgraph with $g(\omega(G) - 1)$ colors.
$\chi_{\bm c} \coloneqq \mathsf{minimum}$ number of colors in a coloring with no monochromatic maximal clique.

Step 1: If $\mathcal C$ is χ -bounded with f then $\mathcal C^*$ is χ_c -bounded with $f.$ Proof: Induction on the number of substitutions. If no substitution then $\chi_c(G) \leq \chi(G) \leq f(\omega(G))$. Otherwise, $\chi_c(G) \leq \max(\chi_c(G_1), \chi_c(G_2)) \leq \max(f(\omega(G_1)), f(\omega(G_2))) \leq f(\omega(G)).$

Step 2: If C is χ_c -bounded with f, then C is χ -bounded with $g(\omega) := f(\omega)f(\omega - 1) \dots f(2).$ Proof: Induction on $\omega(G)$. If $\omega(G) = 1$ then $\chi(G) = 1 = g(1)$. If not, color with $\chi_c(G)$ colors so that no maximal clique is monochromatic. Color every monochromatic induced subgraph with $g(\omega(G) - 1)$ colors. Use the product of the colorings.

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

• If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.

- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.
- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and substitution is χ -bounded.

Theorem [Chudnovsky, Penev, Scott, Trotignon '13]

- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.
- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and substitution is χ -bounded.

• What about the closure under gluing on sets of size $\leq k$ and substitution?

- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.
- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and substitution is χ -bounded.

- What about the closure under gluing on sets of size $\leq k$ and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by K_2 ?

- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.
- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and substitution is χ -bounded.

- What about the closure under gluing on sets of size $\leq k$ and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by $\overline{K_2}$?
- What if $C = \{K_1, K_2, \overline{K_2}\}$?

- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and gluing on sets of size $\leq k$ is χ -bounded.
- If C is hereditary and χ -bounded then the closure of C under gluing on cliques and substitution is χ -bounded.

- What about the closure under gluing on sets of size $\leq k$ and substitution?
- What about the closure under gluing on sets of size ≤ 2 and substitution by $\overline{K_2}$?
- What if $C = \{K_1, K_2, \overline{K_2}\}$?
- NO: Twincut sequence!

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Proof: Induction on k.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Proof: Induction on k.

Proposition

There is a polytime algorithm recognizing twincut graphs.

Proposition

There is a polytime algorithm recognizing twincut graphs.

Theorem [Marin, Thomassé, Trotignon, Watrigant '24]

Recognizing Zykov graphs is NP-complete.

Proposition

There is a polytime algorithm recognizing twincut graphs.

Theorem [Marin, Thomassé, Trotignon, Watrigant '24]

Recognizing Zykov graphs is NP-complete.

Proposition

- Deciding whether a twincut graph is 3-colorable is NP-complete.
- The maximum stable set problem is NP-hard on twincut graphs.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

• Every twincut graph is an induced subgraph of a Zykov graph.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

- Every twincut graph is an induced subgraph of a Zykov graph.
- Every twincut graph is a subgraph of a Burling graph.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most $k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most $k - 1$.

Proposition

The twin-width of T_k is at most $k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The rank-width of T_k is at most $k - 1$.

Proposition

The twin-width of T_k is at most $k - 1$.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '21]

Every triangle-free graph of chromatic number k has twin-width at least $k - 2$.

• Zykov-Twincut operator.

- Zykov-Twincut operator.
- Mycielski-Twincut operator.
- Zykov-Twincut operator.
- Mycielski-Twincut operator.
- Arbitrary large odd girth.

• Is there a proper subclass of twincut graphs which is not χ -bounded?

- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ -bounded graph class?
- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ -bounded graph class?
- What is the maximum chromatic number of triangle-free graphs of twin-width k ? (either $k + 1$ or $k + 2$)
- Is there a proper subclass of twincut graphs which is not χ -bounded?
- Is there a minimal not χ -bounded graph class?
- What is the maximum chromatic number of triangle-free graphs of twin-width k ? (either $k + 1$ or $k + 2$)

Thank you! Questions?