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SWIRLING FLOWS OF LIQUID GALLIUM

M.Bourgoin1, R. Volk1, P. Frick2,
S.Khripchenko2, Ph.Odier1, J.-F. Pinton1

1 Laboratoire de Physique, ENS, 46 allée d’Italie, F-69007, Lyon, France
2 Institute of Continuous Media Mechanics, Korolyov 1, 614061 Perm, Russia

Using in situ magnetic field measurements, we study the induction mechanisms in a
swirling flow of liquid Gallium generated inside a cylinder, in the gap between two coaxial
rotating discs. The Von Kármán flow generated in this manner has both helicity and
differential rotation. Magnetic Reynolds numbers Rm up to 7 (based on the disc rim
speed) are generated. We study the magnetic induction when an external field is applied
successively along the axis, in the azimuthal direction or tranverse to the axis of rotation.
In the first two cases, both the flow and the magnetic field are axisymmetric, and an
effective mechanism of conversion from poloidal to toroidal field exists but, in agreement
with Cowling’s theorem, no reciprocal mechanism can be identified. When the applied
magnetic field is transverse to the flow, the axial symmetry is broken and several non-
axysimmetric mechanisms can generate an axial field from the applied transverse one: a
linear (in Rm) induction by the radial gradients of the poloidal flow; a quadratic (in Rm),
Parker-like, induction by the flow helicity and an effect entirely due to the discontinuity
of electrical conductivity at the boundary of the flow. In all of our observations, the
mean induction can be explained using the topology of the von Kármán mean flow, i.e.
without having to invoke the effects of turbulent fluctuations.

1. Introduction. A complex flow of an electrically conducting fluid
can under some conditions generate a large-scale magnetic field [1–3]. This phe-
nomenon is called the magnetohydrodynamic (MHD) dynamo. The MHD dynamo
is thought to be responsible for the initiation and maintenance of magnetic fields
in space bodies, e.g., the Sun and the Earth [1, 4]. Following the current under-
standing, the dynamo process in space bodies is based on the interactions between
poloidal and toroidal modes of the magnetic field. For a planet, having a dipolar
magnetic field with an axis parallel to its axis of rotation, a typical dynamo cycle
should include two main mechanisms: the first one must generate a toroidal mag-
netic field from a given poloidal one and the second one should be responsible for
the generation of a poloidal field from a given toroidal field. The first process is
easily achieved by differential rotation, which usually takes place in astrophysical
flows (the lines of poloidal magnetic field are spooled around the axis of rotation).
The second element of the dynamo cycle is more subtle: it cannot be achieved
by a laminar axisymmetric flow (Cowling’s theorem), but it can exist if the ax-
ial symmetry is broken at smaller scales, particularly, if the subscale motion is
helical. This process is at the heart of the Roberts dynamo [5], which underlies
the Karlsruhe experiment [6]. Self-generation of a non-stationary dynamo mag-
netic field is also possible from a single helical flow, as analytically proposed by
Ponomarenko [7] and experimentally demonstrated in the Riga experiment [8].

We consider here the class of von Kármán flows, generated inside a cylinder
by the rotation of one or two coaxial discs. Laminar flows of this kind have been
shown to be able to generate a dynamo [9], in particular, when driven by two
counter-rotating discs [10]. They are actively studied by several groups around
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Fig. 1. Experimental setup: sketch of the experiment with magnetic coils and probe
position. The upper figure is the top view of the experiment.

the world [11]. The main property of these flows is that their velocity field has
both differential rotation and helicity. The aim of this paper is to describe in
details the induction mechanisms in this geometry, as can be observed by the
response to an externally applied magnetic field. The magnetic Reynolds number
Rm, which can be achieved in our experiments, is less than ten, so that dynamo
action cannot be directly observed. We consider the case of applied fields BA

that can either have the axisymmetry of the von Kármán mean flows (when BA

is axial or azimuthal) or brake it, as when BA is perpendicular to the axis of
the cylinder. The generation by differential rotation of a toroidal field from an
applied axial field has been previously reported [12], and will be discussed in greater
details in section 4 of this paper, where we also report the global measurements
of the potential difference across the length of the cylinder. In this geometry, if
one searches for a dipolar dynamo with a magnetic dipole parallel to the axis of
rotation, one needs a mechanism to generate an axial field from an applied toroidal
one. Because of Cowling’s theorem, this possibility relies entirely on the turbulent
fluctuations in the flow, through eventual small scale α or β effects [14, 15]. We
study in detail the flow response to an applied azimuthal field in section 5, and
conclude that we do not observe any evidence of such effects up to the limited
values of the magnetic Reynolds number achieved here. Finally, we consider in
section 6 the case of an applied field perpendicular to the axis of the cylinder.
In this case, the axisymmetry of the induction is broken. An axial magnetic
field is induced from the transverse applied field, which is not axisymmetric and
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which has very different contributions according the location. When the helical
flow is produced by the rotation of one disc, an axial component linear in Rm is
generated at points located on the meridional plane parallel to the applied field (by
the differential axial pumping of the flow). In the perpendicular plane, the axial
induced field is quadratic in Rm (it is the macroscopic α or Parker effect [16, 17]).
When both discs are counter-rotating at the same speed, we show that the main
contribution to the induction in the mid-plane is linear in Rm and it is due to the
boundary conditions at the lateral walls of the flow. This effect, though resulting
from simple electromagnetism arguments, has not been reported previously or even
considered in the analysis of induction in this flow geometry. The paper ends with
a discussion of the relevance of our observations with regards to the induction and
dynamo self-generation in von Kármán flows.

2. Experimental setup.
2.1. Flow. Our experiments are carried out in the setup sketched in Fig. 1.

The flow is driven by the rotation of one or two discs inside a stainless steel
cylindrical vessel filled with liquid Gallium. The cylinder radius R is 97 mm
and its length is 323 mm. The discs have a diameter equal to 165 mm and are
fitted a set of 8 blades with height 10 mm. They are separated by a distance
H = 203 mm. The discs are driven by two 11 kW AC-motors, which provide a
constant rotation rate in the interval 0.5–25 Hz with a stability of about 0.1%. The
system is cooled by a set of coils located behind the driving discs; the experiments
are made with the flow kept at a temperature in an interval between 42◦C and
48◦C. The fluid is liquid Gallium (density ρ = 6.09 × 103 kgm−3), chosen for its
high electrical conductivity (σ = 3.68 × 106 ohm−1m−1). Its kinematic viscosity
is ν = 3.1× 10−7 m2s−1. The integral kinematic and magnetic Reynolds numbers
of the flow are defined as Re = 2πR2Ω/ν and Rm = 2πµ0σR2Ω. Here values of
Rm up to 7 are achieved, with corresponding Re in excess of 106. Note that, as in
all liquid metals, the magnetic Prandtl number Pm = µ0σν is very small (of the
order of 10−6). Thus, the flow is strongly turbulent even at the moderate values
of Rm reached in this experiment.

This setup allows us to study the so-called von Kármán flow between two
discs rotating with angular velocities fixed at Ω1 and Ω2 (in Hz, i.e. revolutions
per second) – conventional positive directions of rotation are indicated in Fig. 1.
For the given vessel, the discs and liquid, supposing the variations of temperature,
are not essential, these two velocities completely define the flow in the cylinder.
When only one disc rotates, the flow velocity is involves a toroidal component and
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Fig. 2. (a), (b) Sketch of the mean flow geometry; (c) parameter plan.
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a single poloidal cell due to the pumping action of the disc – Fig. 2a. When the
two discs counter-rotate, two such cells develop in each half of the flow vessel, as
shown in Fig. 2b. Note that in what follows, the expression ‘counter-rotating discs’
implies Ω1 = Ω2, unless otherwise stated. The control parameters of the flow can
be alternatively specified by the set (∆, Σ), where ∆ = Ω2−Ω1 and Σ = Ω1 +Ω2 –
see Fig. 2c. The first one, ∆, defines the contribution of each disc: ∆ = 0 implies
that two discs counter-rotate at the same velocity; ∆ = ±Σ corresponds to one
rotating disc. The second one, Σ, describes the intensity of the shear flow and
directly defines the mean differential rotation. In our experiments |∆| ≤ |Σ|, i.e.,
we do not consider the case of co-rotating discs.

2.2. Induction measurements. An external magnetic field is applied to the
flow and the induced field is measured inside the flow volume using a local Hall
probe. Axial and transverse magnetic fields are generated using a set of induction
coils located on either side of the cylindrical vessel – Fig. 1. This configuration is
close, but not strictly equal to the Helmholtz geometry, so that the applied field is
not completely uniform over the flow volume. Characterizing the inhomogeneity
as the ratio of the magnetic field spatial variation (rms value) to the mean value,
leads to values of about 18% for both axial or transverse applied fields. A toroidal
field can also be applied. In this case, a strong DC current (of the order of 1000 A)
is run from one flat end to the other in the flow vessel. The current is input by
two pairs of copper electrodes located behind the driving discs, in the xOz plane
– Fig. 1. If one assumes that the electrical current, flowing along the axis, has a
uniform density in a cross-section, the applied azimuthal field increases linearly
with the distance to the axis of the cylinder. A current of 1000 A generates an
applied field of about 20 G at r = R/2, where most measurements are made.
Note that with the currents of this order of magnitude one will not be able to
neglect the field generated around the cables that connect the flow vessel to the
DC power supply. In all experiments the applied field is less than 100 G, so that
the interaction parameter, N = σB2

0L/ρU = σB2
02R/ρ2πRΩ ∼ 10−3, is quite

small. We neglect the back-reaction of the magnetic field on the velocity field.
Magnetic measurements are performed inside the vessel using directional and

temperature compensated Hall probes with a FW-Bell 9953 gaussmeter; the spatial
resolution is 3 mm, with a frequency range from DC to 400 Hz. In order to study
isotropy effects, we have chosen to measure B at two different points in the median
plane of the cylinder; the points are located at right angles, at a distance r ≈ R/2
to the axis of the cylinder: point 1 is on the x-axis (at φ = π), while point 2
is on the y-axis (at φ = π/2). The signal from the Hall probe is registered for
time intervals between 30 seconds and 2 minutes, using a National Instrument
PXI-4472 digitizer at a rate of 1000 Hz and with a resolution of 23 bits. The
mean magnetic field discussed in this article is computed as the time average over
the entire time interval of the measurement. In the case of an axial applied field,
we also measured the potentiel difference along the axis of the cylinder, using
the same copper electrodes, which input the DC current in the case of a toroidal
applied field. The mean value only is measured, using a Schlumberger 7061 micro-
voltmeter.

3. Equations and induction mechanisms in von Kármán flows.
3.1. Induction equation. The evolution of the magnetic field in a flow of

conducting fluid with a permittivity µ0 and an electric conductivity σ is governed
by the induction equation:

∂tB = ∇× (v × B) +
1

µ0σ
∆B, ∇ ·B = 0 . (1)
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It states that the magnetic field dynamics results from the competitive action of
induction and Joule diffusion (η = 1/σµ0 is the magnetic diffusivity). The ratio
of these two effects is measured by the integral magnetic Reynolds number Rm.
In our case, Rm is moderate, typically less than 10, which is certainly below the
threshold for dynamo action in this flow [18, 19]. The magnetic field equation must
in principle be coupled with the fluid’s dynamical equation, which incorporates
the Lorentz force term. However, even in the presence of an applied field, the
induced magnetic field remains small, with an amplitude less than that of the
applied field, so that the interaction parameter also remains small, less than 0.001,
and the velocity field can be considered as fixed. The magnetic field in the flow
is split into applied, external (earth field, cables, ...) and induced components:
B = BA + BE + BI, and our aim is to describe BI, when the applied field BA is
axial, toroidal or transverse, for the von Kármán velocity fields v generated by the
rotation of one or two discs. The permanent magnetic field BE (between 0.5 and
1 G) is essentially smaller than the applied field BA (in the range 10 to 100 G) but
as we shall show in section 5, it cannot always be neglected in the interpretation
of the measurements.

Equation (1) must be supplemented with boundary conditions. In our case,
the vesse,l containing the flow, is made of stainless steel, whose conductivity
(σsteel = 1.4 · 106 Ω−1m−1) is three times smaller than that of Gallium; outside is
air. The boundary condition is thus non-conducting at the flow wall. In this case,
the boundary conditions for the magnetic field are that it should be continuous
across the outer wall, where ∇×B has a zero normal component. In fact, the main
condition is that of no outgoing current (j ·n = 0). We remark here that although
the induction equation (1) is written for the magnetic field alone (v being given),
the understanding of the full physical problem with real boundaries requires that
one takes into account the complete set of equations. In particular, the electric
potential Φ and the current j, related through the Ohm’s law j = σ(−∇Φ+v×B)
must be understood to interpret correctly the induction effects. This observation
has lead to discovery of the ‘BC-effect’ described in section 6.

3.2. Induction mechanisms. We now discuss briefly how equation (1) can
be used to predict and interpret the induction mechanisms in von Kármán flows.

In equation (1), the first r.h.s term represents the magnetic field produced
by the currents that are generated by the induction electromotive force (e.m.f.)
E = v×B. Let us consider, for example, the induction due to differential rotation
in the case of an axial applied field. This situation is that of counter-rotating
discs and, as shown in Fig. 3a, the e.m.f’s E induced near each disc are radial
with opposite sign. The resulting currents take the shape of a solenoidal torus,
Fig. 3b, so that the induced field is toroidal. This process is widely known as the
ω-effect [1].

Another convenient way to understand the magnetic induction is to consider
the deformation of magnetic field lines, initially imposed by the external field.
Indeed, as the fluid is incompressible, the induction term can be rewritten as
∇× (v × B) = −(v · ∇)B + (B · ∇)v . The induction equation becomes

∂tB + (v · ∇)B = (B · ∇)v + η∆B , (2)

which, save the diffusion term, has the form of the equation for a material fluid
element. This analogy leads to the result that, in the limit of vanishing magnetic
diffusivity, the magnetic lines are frozen in the fluid.

In equation (2), we note also that one easily recovers the two basic laws of
induction used in classical electromagnetism of circuits: the (v · ∇)B term repre-
sents the induction in a circuit with a fixed shape being moved in a inhomogeneous
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Fig. 3. Sketch of the omega effect produced by differential rotation, considered in (a)
from the point of view of induction e.m.f. and induction currents, and in (b) from the
point of view of magnetic field lines distorsion by the velocity gradients.

magnetic field, while the (B ·∇)v term is the induction generated by changing the
shape of a circuit immersed in a homogeneous magnetic field.

By turning to fluid motion, we note that the ω-effect discussed above corre-
sponds to the twisting of axial magnetic field lines by the differential rotation of
the flow – a Bz∂zvφ term, see Fig. 3b. Another example is the well-known “stretch
and twist” mechanism for a flow that is in strong helical motion. Consider in this
case that a field is applied perpendicularly to the axis of the helical motion. The
transverse gradients of the axial flow will ‘stretch’ the field lines along the axis of
rotation, a “(B · ∇)v ” action – see Fig. 4a. This field loop, being inhomogeneous
in the azimuthal direction, is then ’twisted’ by the azimuthal flow, a “(v · ∇)B ”
action – see Fig. 4b, c. The resulting induced magnetic field has an axial compo-
nent. We call the Parker effect this two-steps mechanism, converting a transverse
magnetic field to axial, as it has been identified in Parker’s original paper [16].
This effect will be discussed in section 6. The same mechanism is at the basis of
the alpha effect that can develop in the flows containing scale separation [14].

We finally return to the fact that the experimental flow under consideration is
strongly turbulent, because of the very low value of the magnetic Prandtl number
of Gallium: Pm = ν/η = Rm/Re, so Rm of order one are associated with Re
exceeding 106. The total magnetic field should be written B = BA +BE +BI +b,
where the induced magnetic field is split into its mean (BI(r)) and fluctuating
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Fig. 4. Sketch of the ‘alpha’ or Parker effect produced by helical motion.

18



(b(r, t)) components. If in the same manner the flow velocity field is split into
its mean and fluctuating parts, v(r, t) = U(r) + u(r, t), the induction equation,
governing the mean field,

∂tB′ = ∇× (U × B′) + ∇× ε + η∆B′ = 0, B′ = BA + BE + BI (3)

has an additional term, which comes from the effective electromotive force ε gen-
erated by the turbulent fluctuations

ε = 〈u× b〉 , (4)

where the brackets denote a time-averaging. The contribution of such a term is
essential in geometries, where scale separation is at work [14]. However, in the von
Kármán flows the scale separation is not clear and the question of the influence of
the turbulent velocity fluctuations regarding the mean induction effects is open.
Knowing the rms amplitude u of the velocity fluctuation, of the order of 35%
of the mean U , one can estimate the relative importance of the local turbulent
induction compared to the mean one as[

u× b
U × B

]
∼ u

U

b

BA
∼

( u

U

)2 �

L
Rm , (5)

where � is a scale characteristic of the turbulent fluctuations being felt by the
magnetic field. For a turbulent decomposition of the kind discussed here, � should
be at least an order of magnitude smaller than L, so that one finds ε < 10−2E . This
is quite small, although cooperative effects cannot be ruled out in the averaging
ε = 〈u × b〉. We will discuss a possible contribution of the small scales as we
analyze our measurements in the following sections.

3.3. Symmetry arguments. The von Kármán geometry has many sym-
metries and it proves to be worthwhile to take some of them into account when
analyze induction measurements. Let us note B{P, Ω1, Ω2,B0} as the magnetic
field induced at point P when motor 1 rotates at an angular velocity Ω1, motor 2
rotates at an angular velocity Ω2 and an external field B0 is applied. If a trans-
formation T is applied to the setup (reflexion, rotation or else), the induced field
and the flow parameters are related by

T (B{P, Ω1, Ω2,B0}) = B{T (P, Ω1, Ω2,B0)}. (6)

We give below three examples of general results that can be drawn using this rela-
tionship. These examples will help us to analyze some properties of the measured
induced field.

As a first example, let us consider the case when the flow is generated by the
counter-rotation at equal speeds, a transverse field is applied along the x-axis, and
the induced field is measured in the mid-plane on the x-axis (as at point 1). In
this case, we show that two components of the induced field are necessarily null.
Indeed, let T be a rotation of angle π around the x-axis and P a measurement
point on that axis. Under this transformation, one has:

T (Bx) = Bx, T (By) = −By, T (Bz) = −Bz , (7)

for the induced field, while the flow parameters are changed into:

T (P, Ω1, Ω2,B0) = (P, Ω2, Ω1,B0) . (8)

As a result, −By{P, Ω1, Ω2,B0} = By{P, Ω2, Ω1,B0}, so that By = 0 at point
P ∈ Ox when Ω1 = Ω2, and Bz = 0 in the same manner.
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Now let us consider the case of a transverse field still applied along the x-axis,
with the measurement made at a point P located on the y-axis (as point 2). We
will show that the induced component of the magnetic field in the axial direction
must then be even when the rotation speeds of disc 1 and disc 2 are interchanged.
To wit, we use T as a rotation of angle π around the y-axis. In this case:

T (Bz) = −Bz and T (P, Ω1, Ω2,B0) = (P, Ω2, Ω1,−B0) . (9)

Using the fact that the induction equation is linear in the applied magnetic field,
one finds

Bz{P, Ω1, Ω2,B0} = Bz{P, Ω2, Ω1,B0}, P ∈ Oy . (10)

Finally, for the same applied field, we consider the induction at a point P
located in the median xOy plan. We will show that the induced field must be odd
under the reversal of discs rotation, if point P is located on the Oy-axis. Indeed,
let transformation T be a reflexion with respect to the xOy plane. Remembering
that the magnetic field is a pseudo-vector and that under this transformation the
coordinate system is reversed, one finds:

T (Bz) = Bz and T (P, Ω1, Ω2,B0) = (P,−Ω2,−Ω1,−B0) . (11)

Using again the linearity of the induction equation, one gets

Bz{P, Ω1, Ω2,B0)} = −Bz{P,−Ω2,−Ω1,B0}, P ∈ xOy , (12)

which, together with relationship (10), shows that the axial component of the
induced magnetic field transforms as

Bz{P, Ω2, Ω1,B0} = −Bz{P,−Ω2,−Ω1,B0}, P ∈ Oy . (13)

Our measurements are in agreement with these very general symmetry considera-
tions, which do not depend upon a particular ‘induction mechanism’.

4. Poloidal (axial) field. We consider here the magnetic response of the
flow to an external field applied parallel to the axis of rotation of the driving discs.
The external poloidal field is induced by two coils placed at each end of the flow
cylinder, (see Fig. 1), so that BA = (0, 0, BA

0 ) with BA
0 =24G.

4.1. Azimuthal induction. We first study the azimuthal component of the
induced field, which is mainly produced by differential rotation; indeed the az-
imuthal projection of the induction equation (2) yields to leading order and as-
suming stationarity

η(∆BI)φ ≈ BA
0 ∂zvφ . (14)

We show in Fig. 5a the induced toroidal field measured at point 2 for counter-
rotating discs. The behaviour is similar at point 1, as expected from the ax-
isymmetry of the experiment. From Eq. (14), one expects that the induced field
scales linearly with the velocity gradient, and thus with Ω, as indeed observed.
For Ω = 24 Hz, the amplitude of induced azimuthal magnetic field reaches about
30% of the applied axial field. The ratio of the magnitude of the induced field
to the applied one, BI

φ/BA, actually defines a local measurement of an intrinsic
magnetic Reynolds number; in this case Rmi ∼ 0.3 is in agreement with previous
observations [12]. Fig. 5b shows the induced azimuthal field, when the rotation
rate difference ∆ = Ω2−Ω1 is varied, with the sum Ω1+Ω2 kept constant at 24 Hz.
One observes that the induction effect rapidly decreases when |∆| increases. This
effect is subtle; the induced azimuthal magnetic field is concentrated in the shear
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Fig. 5. Induction measurement for an axial applied field: (a) azimuthal component of BI

for counter-rotating discs with equal rotation rates Ω, (b) azimuthal component of BI for
counter-rotating discs as a function of rotation rates difference ∆, for Σ = 12 Hz (dashed
line) and Σ = −12 Hz (solid line), (c) axial potential difference, (d) axial component of
BI for counter-rotating discs with equal rotation rates Ω, measured at points 1 (filled
symbols) and 2 (open symbols) and at two distances from the axis: 3 cm (triangles),
7 cm (circles).

layer, where the differential rotation is localized. Although the axial extension
of this layer is about half of the distance between the discs, its position is quite
unstable under small deviations of ∆ from zero [20]. As a result, the measured in-
duced field decreases sharply when the discs are no longer rotating at equal speeds.
The generation of the toroidal magnetic field corresponds to the production of an
electrical current along the cylinder’s z-axis, which closes up through the cylinders
walls and boundary layers. Thus, a difference of potential should arise between the
flat ends of the cylinder and could form an integral characteristic of the toroidal
field generation. The total potential difference across the cylinder, measured for
the applied axial magnetic field B0 = 24G as a function of Ω is shown in Fig. 5c.
Two remarks can be made. First, the dependence ∆Φ(Ω) is not as linear as the
curve for Bφ(Ω) in Fig. 5a. This can be explained by the integral character of
potential measurements, which is affected by the general expulsion of the applied
field from the flow core, as Ω increases. The measured value of the potential
difference for given Ω can be compared to an estimation using simple electrody-
namic considerations. The induced current can be estimated from the value of
the measured induced field at Ω = 10 Hz, using the Ampère’s law. The potentiel
difference is then estimated, assuming that this current flows through the electrical
resistance of the fluid inside the vessel. This estimation yields ∆Φ � 500 µV. The
measured value for Ω = 10 Hz is 90 µV. This low value can be explained by the
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Fig. 6. Induced axial magnetic field when a 1000 A axial current passes through the
vessel. Measurements are made at point 1 (upper row) and point 2 (lower row) for the
flow driven by the rotation of disc 1 alone (left panels), disc 2 alone (right panels), or
both counter-rotating discs (center).

fact that the region, where the toroidal field is induced, is essentially smaller than
the distance between the electrodes (the shear layer thickness is roughly one third
of the distance between the electrodes).

4.2. Axial induction. Another interesting feature in this configuration is
the axial induction due to the axial stretching near the stagnation point, separating
the poloidal vortices produced by the counter-rotating discs, as shown in Fig. 2b.
The corresponding source term in the induction equation (2) is BA∂zvz. Fig. 5d
shows the axial induced field as a function of Ω, respectively measured on the x-
axis (at φ = π, filled symbols), and on the y-axis (at φ = π/2, open symbols). This
effect has a linear contribution, which dominates at low Rm. In addition, since it
is created by the axial flow, it does not depend on the direction of rotation of the
disc, as observed in Fig. 5d. It is also concentrated in the neighbourhood of the
stagnation point and thus strongly depends on the distance of the measurement
point to the axis of the flow. To wit, two different radial locations of the probe
have been studied: 3 cm from the axis (triangles) and 7 cm from the axis (circles).
One can see that the axial induction near the axis is strong and independent of
φ and that it is much smaller when measured far from the axis. In this last case,
the effect is very sensitive to the precise location of the probe, whose depth is set
with a 5 mm precision (it may explain the difference between measurements made
at different angles φ (circles in Fig. 5d)).

5. Toroidal field In this section we study the transformation of an exter-
nally applied toroidal magnetic field generated by a strong axial electrical current
through the fluid. Note that the toroidal field generated in this manner is uniform
along the axis of the cylinder. It is somewhat different from the azimuthal field
induced by differential rotation which is localized in the shear layer, as described
in previous section.

Fig. 6 a,b,c show the axial induced field at point 1, respectively, for disc 1
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rotating, counter-rotation and disc 2 rotating. Fig. 6d,e,f show corresponding
measurements at point 2. The value of the toroidal magnetic field induced by the
axial current I0 = 1000 A at the points, where the probe is located, is BA

φ = 20 G.
The external magnetic field was BE ≈ (−0.1, 0.5, 0.6) G (in cylindrical coordinates
(Br, Bφ, Bz)) at point 1 and BE ≈ (0.5, 0.1, 0.6) G at point 2 (BE comes from the
earth magnetic field and the magnetic field of the cables connectig the flat ends
of the vessel to the DC power supply). Comparison of upper (point 1) and lower
(point 2) rows in Fig. 6 clearly shows that the induced field behaviour strongly
depends on the location of the measurement point. Moreover, the curves display
the absence of similarity when some evident symmetries could be expected: the
induced field at point 1, with disc 1 rotating, disappears when disc 2 is rotated,
(Fig. 6 a,c), and at point 2 the induced field shows no symmetry with respect to
the direction of rotation of the discs (Fig. 6 d,f).

In order to analyze these observations, we return to the induction equation.
Taking into account the axisymmetry of the mean flow (all φ derivatives vanish),
the axial projection of equation (1) yields in the stationary case and for the mean
fields

η(∆B)z = r−1∂r (r (Bzvr − Brvz)) . (15)

If the applied field is purely toroidal (neglecting BE), it can be seen in equation
(15) that it cannot contribute to the induced axial field, unless it also induces a
radial field. The radial projection of equation (1) for the mean fields yields

η(∆B)r = ∂z (Brvz − Bzvr) . (16)

It can be shown [1] that the coupled set of equations (15) and (16) leads to Br =
Bz = 0. No poloidal field can be sustained from the toroidal field. Note that this
result is no more than an expression, in our specific case, of a more general result
stating that no axisymmetric magnetic field can be generated by an axisymmetric
velocity field (Cowling’s theorem).

Therefore, in the case of a completely toroidal applied field, only the turbulent
term ∇× 〈u × b〉, which was not taken into account in equations (15) and (16),
could contribute to the induced poloidal field. This term is mainly related to the
small scale helicity of the flow. We make an asumption that this small scale helicity
has the same symmetry properties as a large scale helicity of the flow. The helicity
created by one disc or the other is of the same sign: the transformation disc 1 →
disc 2 changes the sign of the centrifugal pumping and the sign of the azimuthal
flow at the same time. Therefore, this helicity also exists, even with a stronger
contribution, when discs are counter-rotating. From these features we can derive
the expected symmetries of the turbulent term. It is odd in Ω → −Ω and even with
respect to a change of disc: the sign of induced BI

z should depend on the sign of Ω
only. Furthermore, BI

z(Ω) dependence should be similar for one and two rotating
discs and the magnitude of this term should be the same at both measuring points,
with small scale turbulence being homogeneous. No trace of a contribution with
these properties is visible in our observational data: at point 2 BI

z(Ω) changes the
sign with disc exchange in one-disc data (Fig. 6 d,f) and is absent in two-disc data
(Fig. 6e). At point 1 (Fig. 6 a,b,c), the behavior is different from that at point 2
but does not either correspond to the expected symmetries. We must, therefore,
conclude that no evidence is found in our experimental data on a contribution of
turbulent fluctuations in the conversion from a toroidal field to a poloidal field. The
induced axial field that is seen on the data has to originate from the external field
BE , that has been neglected until now. This field is mainly transverse (orthogonal
to the axis of the cylinder) but is probably far from homogeneous in the axial
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Fig. 7. Induced axial magnetic field for a transverse applied field along the x-axis.
Measurements are made at point 1 (upper row) and point 2 (lower row), for the flow
induced by the rotation of disc 1 alone (left panels), disc 2 alone (right panels), or both
counter-rotating discs (center). In the lower row (point 2), the measurements are split
into their odd (solid line) and even parts (dashed line).

direction. The interpretation of Fig. 6 based on mechanisms, where the induced
field is generated from BE, is thus not easy. In the next section, we study in
detail the response of the flow to an applied magnetic field, whose orientation is
perpendicular to the axis of rotation. At the end of this section, we will come back
to some features of the data in Fig. 6.

6. Transverse field. Now, we apply a field BA
x =43 G, perpendicular to

the axis of rotation, in order to investigate the flow response when the axisymmetry
is broken. Such a field is generated by two induction coils set on each side of the
flow vessel – Fig. 1 – aligned with the x-axis. This is an interesting ase to be
studied, because numerical simulation of the kinematic dynamo problem in this
geometry has shown that the magnetic field induced by dynamo action has a strong
component in this transverse direction [10]. Although the dynamo cycle in this
geometry is not known, it must involve the generation of an axial field component
from a transverse applied field.

Fig. 7 a,b,c show the axial induced field at point 1, respectively, for disc 1
rotating, counter-rotation and disc 2 rotating. Fig. 7d,e,f show corresponding
measurements at point 2. One can first notice that the behaviour is clearly different
at the two measurement points. This is to be expected since the applied transverse
field breaks the axisymmetry of the experiment. For measurements with only one
disc rotating, the axial induced field at point 1 is linear in Ω and even with respect
to a reversal of the direction of rotation of the disc; it is odd with respect to disc
exchange (disc 2 rotates instead of disc 1). On the other hand, at point 2 it is
non-linear in Ω and odd with respect to a reversal of the direction of rotation of
the disc, while it is even with respect to disc exchange. In the case of counter-
rotating discs, the behaviour is again different. Some of these properties are direct
consequences of the symmetry arguments given in section 3.3 , independent of the
induction mechanisms.
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6.1. Linear bulk effects. In order to analyze our experimental results, let
us consider the axial projection of the induction equation (2)

∂tBz = (v · ∇)Bz + (B · ∇)vz + η∆Bz (17)

The applied field BA has no axial component, so all source terms, involving Bz, will
not contribute to induce the field to lowest order. Thus, only two terms remain in
the source terms of equation (17). Using a cylindrical decomposition of (B · ∇)vz ,
these two terms can be written : Bφ∂φvz and Br∂rvz . The first one vanishes
because of the flow axisymmetry. In the second one, the tranverse applied field
(aligned with the x-direction) acts through its radial component BA

r = B0 cosφ.
The cosine factor generates the difference between the measurements at points 1
and 2.

At point 1 (φ = π, cf. Fig. 1), an induced field is expected from the Br∂rvz

source term. In the case of one rotating disc, it is linear with Ω because it is
proportional to the velocity gradient and it is even with respect to reversal of the
rotation rate because it is related to the axial flow, which does not depend on
the sign of Ω. For both figures 7a and c and for each direction of rotation, the
slope

∣∣∂BI
z/∂Ω

∣∣, measured in the interval [−10 Hz, 10 Hz], has the same value
(0.38 G/Hz) within 3%. For larger values of Ω, a saturation effect is observed. It
can be explained by the expulsion of the applied transverse field by the toroidal
velocity [13]. In addition, the induced field should be odd with respect to a change
of disc (reversal of the pumping flow), which is the case in the experimental data.

Turning to the counter-rotating discs case, the first symmetry argument pre-
sented in section 3.3 states that no axial induced field should be measured. This
is indeed what is shown in Fig. 7b, within experimental errors. It can also be
explained by regarding the counter-rotation flow as a sum of two cells, each one
equivalent to a one disc flow field. As the induced field in the one disc case is odd
with respect to disc exchange, the contribution of each half of the flow have op-
posite sign and cancel in the median plane, where the probe is located. Actually,
the null mean value of the axially induced field is a result of time averaging. To
wit, we show in Fig. 8a the time signal Bz(t) for Ω = 12 Hz (corresponding to
one point of Fig. 7b). One obtains a time averaged value close to zero, when the
measurement is averaged over a long enough time interval, as described in section
2. On shorter time scales (of few seconds), the average is not zero anymore, cor-
responding probably to a non-stationary symmetry-breaking of the flow, as the
shear layer located on average on the mid-plane oscillates irregularly about the
mid-plane. This behaviour of the shear layer has been observed in a water proto-
type of this experiment [20]. As mentioned in section 4.1, if one disc rotates a little
faster than the other, the shear layer moves away from the mid-plane. Therefore,
it is interesting to compare Fig. 8a with the time signal of the induced axial field
in the case, where ∆ = Ω2 − Ω1 
= 0. In Fig. 8b, the upper curve corresponds
to the case with Ω1=13 Hz and Ω2=11 Hz, and the lower one corresponds to the
opposite case, Ω1=11 Hz and Ω2=13 Hz. One observes a non zero induced field,
due to the displacement of the shear layer, thus breaking the symmetry of the
flow. Therefore, symmetry arguments no longer apply and the induced field from
the dominant half of the cylinder can be measured in the mid-plane. By compar-
ing Fig. 8a and b, one can observe that in the case of counter-rotation, the non
stationnary induced field reaches values close to the mean value measured with
|∆| = 2 Hz. Thus, the amplitude of the oscillation of the shear layer at ∆ = 0
is of the same order of magnitude as the displacement of this layer obtained with
|∆| = 2 Hz.
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Fig. 8. Time variation of the induced axial magnetic field for a transverse applied field
along the x-axis; measurement at point 1, for Σ = 24 Hz. In (a) the discs rotate at equal
speeds (∆ = 0); in (b) they are counter-rotating at slightly different speeds (∆ = ±2 Hz).

6.2. Non-linear bulk effect. At point 2, with the radial component of BA

being zero (φ = π/2), no linear contribution is expected. But if there is some
induced radial field in a first step, one can expect an induced axial field from the
source term BI

r∂rvz . The analysis of the possible source terms for an induced
radial field is presented in Table 1 for each term we indicate, if it can contribute
and why.Thus, the only contributing term for the induced axial field at point 2
is of type BI

r∂rvz � vφB0 sin φ ∂rvz . This term, involving at the same time the
toroidal velocity and the axial pumping, acting on an initial transverse field, is the
Parker effect described in section 3.

In the case of one rotating disc, this effect has been observed in another ex-
periment of the same type using liquid sodium [17] at a higher magnetic Reynolds
number (Rm up to 25). It is also clearly visible in Fig. 7d,f . It has the same
symmetries as the helicity of the flow: odd with Ω and even with respect to disc
exchange. Indeed, the third symmetry argument mentioned in section 3.3 (equa-
tion (13)) shows that at this point only odd contribution with Ω can exist. As a
result, the effect is identified more clearly when the measurements are split into
even and odd parts (feven(Ω) = (f(Ω)+ f(−Ω))/2, dashed lines in Fig. 7d,e,f and
fodd(Ω) = (f(Ω) − f(−Ω))/2, solid lines). We can then observe that the induc-
tion curves in the case of one rotating disc (Fig. 7d,f) consist of a dominant odd
part, even with respect to disc exchange, as expected (and in agreement with the
symmetry property shown in equation (10)), and of a minor

even part, behaving as at point 1. This contribution is due to the fact that
in these particular measurements and for technical reasons the real location of the

Table 1. Source terms for a radial induced field at point 2 when a transverse field is
applied along the x-axis.

vφ∂φBA
r yes ∂φBA

r = B0 sin φ maximum at point 2
vr∂rB

A
r no BA

r does not depend on r

vz∂zB
A
r no BA

r does not depend on z

BA
φ ∂φvr no axisymmetry of the flow

BA
r ∂rvr no BA

r vanishes at point 2
BA

z ∂zvr no BA
z = 0
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probe at point 2 is not exactly at φ = π/2 (there is a shift by 19◦), therefore, a
small contribution of the linear induced field remains.

The main characteristic of the odd part is that, being the result of a two-steps
induction process, it should vary quadratically with the rotation rate of the discs.
This is illustrated in Fig. 9, where the odd contribution is plotted versus Ω2. When
Rm increases, a saturation effect can be seen, corresponding to the expulsion of the
applied field by the toroidal vortex, as was the case for the linear effect observed
at point 1. This saturation has also been observed in various experiments, where
the alpha/Parker mechanism is involved [3, 17].

6.3. Linear boundary condition effect. When the flow is driven by the
counter-rotation of two discs, one expects a Parker effect generated by the swirling
motion on either side of the median plane. Since the magnetic diffusive length is
large, the effect should thus be measurable in the median plane – the effects add up
since the helicity has the same sign in each swirling shell. However, it can be seen
in Fig. 7e that the odd part of the induced field in the case of counter-rotation is
linear with Ω, and not quadratic as in the Parker effect. In this case, the induced
axial field is produced via another mechanism, associated with the discontinuity of
the electrical conductivity at the flow vessel, in a manner similar to the situation
reported in [21]. In the following, we describe it in detail for our genometry.

The process is sketched in Fig. 10. It is best explained when looking at the
currents, resulting from the magnetic induction in the bulk. On either sides of the
mid-plane an induced radial field is generated from the transverse applied field,
of the form vφ∂φBA

r = vφB0 sin φ (see Table 1 and Fig. 10a). Because of the sine
factor, this field is mainly presented on the y-axis, parallel to it. The orientation
of this induced field is reversed in each side of the median plane because of the
vφ factor (see BI

y in Fig. 10b). A sheet of the induced electric current in the
mid-plane is associated with this field, parallel to the x-axis (see jI

x in Fig. 10c).
Now, the insulating boundary conditions at point 2 generate a discontinuity of the
tangential current, so that an axial field must be created in the vicinity of this
point (BI

z in Fig. 10d). It corresponds to the measured axial field in Fig. 7e. As
it is related to the current, which increases linearly with Ω, it should also be of a
first order effect, linear in Ω. This effect is absent at point 1, where the electric
current is normal to the boundary.

The sketch in Fig. 10d illustrates how the induced axial field varies with the
z-coordinate. This field has one direction in the central part of the cylinder and the
opposite one near each flat-end. This is due to the fact that the electrical current
sheet, present in the mid-plane, loops back at each end of the cylinder, creating
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Fig. 10. Sketch of the BC-effect for a transverse applied field BA along the x-axis; (a)
initial field and discs rotations; (b) radial differential rotation creates a perpendicular
induced component BI

y ; (c) induced current sheets jIx responsible for the generation of
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conductivity.

in these regions a sheet of the current of opposite sign. To wit, we have measured
BI

z versus z, just outside the vessel at a series of points (x = 0, y = R + 2 cm,
0 ≤ z ≤ 16 cm, again in the case of two counter-rotating discs at equal speeds.
The result is shown in Fig. 11: BI

z indeed changes the sign at z ∼ 10 cm, to reach
clear negative values for z � 15 cm.

As a final comment to the measurements made in the presence of an external
transverse field, we note that we have been able to explain all the characteristics
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Fig. 11. Transverse applied
field BA

x for counter-rotating
discs at Ω = 12 Hz. The axial
component of the induced field
is measured outside the vessel,
from the mid-plane to one end
of the vessel, (x = 0, y = R +
2 cm, 0 ≤ z ≤ 16 cm).
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in Fig. 7 using only the induction generated by the mean flow. If turbulent fluc-
tuations actually give a contribution to the mean induction, we have not found a
clear evidence for it, either while analyzing the values of the induced magnetic field
or its symmetry properties. At point 1, the observed symmetries of the induced
field do not correspond to the symmetries expected for the turbulent contribution.
At point 2, the symmetries correspond, but all features can be explained without
having to invoke a turbulent source term.

6.4. A further comment on section 5. Resting upon the understanding
developed in this section, we can return to the measurements reported in section 5.
We concluded there that the observed induced field was due to the external field
BE. This field, though probably not homogeneous along the z-axis, is observed to
be mainly parallel to the y-axis, at least in the mid-plane. Therefore, one would
expect for the induced field a behaviour similar to what was observed in the case
of a transverse applied field, except that points 1 and 2 should be exchanged.
For counter-rotating discs, one indeed observes a linear induction effect at point 1
(Fig. 6b) and almost no effect at point 2 (Fig. 6e). The behaviour is more difficult
to explain for the cases with a single rotating disc, even under the hypothesis of a
transverse field BE. It may be due to the fact that this field is not homogeneous
along the z-axis.

7. Concluding remarks. We have observed that in the presence of en
externally applied field the magnetic field induced in the flow has bulk contribu-
tions as well as boundary contributions. Although the production of the induced
field is localized in regions, where the velocity gradients, or conductivity gradients,
are essentially large, their influence is felt over the entire flow volume because of
the large magnetic diffusion length.

Induction, bulk effects. We have described the omega (linear) and Parker
(quadratic) effects in swirling flows of liquid Gallium at moderate magnetic Reynolds
numbers (Rm < 10). These bulk effects dominate in different parts of the flows,
showing that the induction is localized within the limits of a large diffusion scale
unavoidable in liquid metals. Recent measurements in liquid Sodium in flows with
the same geometry [17] show that these two effects can cooperate. It opens up
the possibility of an αω dynamo cycle in the von Kármán flow generated by the
counter-rotation of the discs. This cycle is in agreements with the kinematic dy-
namo simulations of Marié et al. [10], where the dynamo field is transverse. We
have observed that the poloidal to toroidal conversion is very efficient, but found
no evidence of a symmetric conversion of a toroidal field into a poloidal one. Al-
though this is expected from the laminar mean flow, a contribution from turbulent
fluctiations could not be a priori ruled out. In fact, a contribution from turbulence
could have been expected because the small scale helicity is related to the large
scale one [22, 23]. This has prompted us to look for induction characteristics with
the symmetry of the turbulent source term. Our finding is that at the Rm and Re
studied clear effects of turbulence are not observed.

Induction, boundary condition effect. We emphasize that the boundary con-
ditions are important in real experimental flows. The ’new’ BC-effect described in
this paper stems from the discontinuity of the electric conductivity. In the case of
the von Kármán flow, it is important to note that the magnetic field it generates
has the same symmetries as the one produced via the non-linear Parker effect.
This effect also appears as soon as the conductivity at the flow wall is not strictly
equal to that of the fluid. Bulk effects are thus enhanced if the moving fluid is
surrounded with a layer of fluid at rest, as in the Riga and Karlsruhe experiments.
Finally we note that this ‘new’ boundary effect can be derived directly from the

29



induction equation if one takes into account electric conductivity inhomogeneities
from the start. In such a case, the induction equation reads

∂tB = ∇× (v × B) +
1

µ0σ
∆B +

1
µ0σ

∇ ln σ × (∇× B) , (18)

the boundary condition being now that of vanishing magnetic field at infinity. The
existence of a gradient of the electric conductivity may play an essential role in
dynamo mechanism, either in natural situations or laboratory experiments. In the
laboratory conductivity, the gradients within the flow are very hard to establish,
but they are plausible in natural dynamos, where the temperature of the medium
has huge variations. For example, in a spherical geometry with a radial gradient
of conductivity, the ‘BC-effect’ can amplify a poloidal induced field. This could
help the toroidal-poloidal conversion in natural dynamos, where the alpha-effect
alone might not be sufficient.
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[24] L. Marié et al. in “MHD dynamo experiments”, special issue of Magne-
tohydodynamics, vol. 38, (2002), pp. 163–176.

[25] D. Franck, Stacey et a.l Electronic and thermal conductivity of the
Earth core. Phys. Earth Plan. Int., vol. 124, (2001), pp. 153–162.

Received 09.04.2003

31


