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Studies of magnetic induction in von Kármán swirling flows have so far linked the time-averaged
induced magnetic field to the structure of the mean flow. They have evidenced the Omega and
Parker mechanism generated, respectively, by the flow differential rotation and helicity, which
underly the Dudley and James �N. L. Dudley and R. W. James, Proc. R. Soc. London, Ser. A 425,
407 �1989�� dynamos. Using an array of Hall probes we study here the dynamical regime. In the
experimental flow, turbulence is fully developed and large fluctuations are observed in the magnetic
induction processes. We find that the large scale turbulent fluctuations have different characteristics
when induction results from the differential rotation or from the dynamics of the stagnation point in
the midplane of the von Kármán flow. Symmetry considerations indicate that the dynamical flow
spends half of its time away from the time-averaged structure. The consequences of these
observations for dynamo experiments are discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2265009�
I. INTRODUCTION

The von Kármán flows generated in the gap between
counter-rotating impellers have been considered by several
groups as a possible candidate1–3 in the search for a labora-
tory demonstration of a homogeneous fluid dynamo that
would be less constrained than the Riga and Karlsruhe
designs.4,5 In these experiments, liquid sodium is often used
because its electrical conductivity is high �half that of cop-
per, at 120 °C�, while its density remains low, of the order of
that for water. Its magnetic diffusivity, as for all metals, is
many orders of magnitude larger than its hydrodynamic vis-
cosity. The flow Reynolds number needs to be very large in
order for nonlinearities to develop in the magnetic induction.
As a consequence, the hydrodynamic flow is very turbulent,
and many questions arise concerning the influence of turbu-
lence on the bifurcation threshold and the dynamics in an
eventual saturated regime.

This problem is very complex, and many studies so far
have focused on the dynamo capacity of the average flow
engineered in the von Kármán �VK� geometry. Here, “aver-
age” has the meaning of “time-average.” A time-averaged
flow field �U��r� is derived from measurements in water pro-
totypes �for convenience and because velocimetry methods
are scarce in opaque, high temperature flows of liquid
metals6,7� as

�U��r� =
1

T
�

0

T

U�r,t�dt , �1�

where T is a time much longer than the one characteristic of
the forcing of the flow �estimated, for instance, as the period
of rotation of the driving impellers�. This stationary flow
profile—no longer a solution of the Navier-Stokes
equation—is then usually inserted into a kinematic numerical

solver, in which the induction equation
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�tB = � � ��U� � B� + ��B �2�

�� is the magnetic diffusivity� is solved with the velocity
field kept constant in time.8–10 These studies have shown the
possibility of dynamo action in the average VK flows, and
the underlying induction processes have been measured in
sodium and gallium flows3,11 and analyzed in detail.12,14 It
showed that the helicity and differential rotation present in
the von Kármán mean flow cooperate to generate a self-
sustained dynamo.

The existence of a kinematic dynamo threshold for the
VK flows, together with the possibility to bring its value
within experimental reach �in terms of power requirements�
has motivated the sodium experiments in Maryland,
Cadarache, and Wisconsin �see Ref. 15, and references
therein�. However, it has also been recognized early16 that
VK flows at high Reynolds numbers have strong fluctua-
tions. As a result the instantaneous mean flow structure can
differ significantly from the time-averaged flow. This has
motivated investigations regarding the influence of noise on
the dynamo bifurcation. For instance, it has been proposed
that the VK flow may lead to an intermittent dynamo;2,17,18

burst of dynamo activity would occur, triggered by transient
flow structures that are most efficient at generating magnetic
induction.

Induction measurements in the presence of an externally
applied field have been made in the VKS experiment.3 They
have demonstrated the existence of fluctuations in the mag-
netic induction due to small scale turbulence and also gener-
ated from the unstationary large scales. For example, it has
been observed that the local fluctuations of induction mea-
sured during a time interval � increase logarithmically with
�.3 This finding can be linked to the existence of a 1/ f scal-
ing in the low frequency domain of the magnetic induction

spectrum, a feature that has been also observed in numerical
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models19 and in the dynamo regime of the Karlsruhe and
Riga experiments.4,20

The purpose of this article is to explore further the above
ideas. We relate the fluctuations in time of magnetic induc-
tion to large scale fluctuations in the geometry of VK flows.
We use a VK flow of liquid gallium, and we study the mag-
netic induction in the presence of an externally applied field.
Besides being relatively easy to handle in the laboratory,
gallium flows allow to reach magnetic Reynolds numbers of
order 1; induction effects are measurable and the nonlineari-
ties are not yet strong. The amplitude of the induced field is
often an order of magnitude smaller than the amplitude of
the applied field, and, in the quasistatic limit,12 the induction
equation �2� is reduced to �� ��U��B0�+��B=0, with B0

the applied field. When the applied field is uniform in space,
the induced field solves ��B=−�B0 ·���U� so that it is di-
rectly related to the velocity gradients in the flow �although
the solution is not local; the overall topology of the velocity
gradients and the boundary conditions do enter in the solu-
tion of this Poisson equation�.

The induction measurements are made using a new
probe made of a line of magnetic field sensors. It samples
simultaneously one component of the magnetic field at sev-
eral location within the flow. The paper is organized as fol-
lows: in the next section, we describe the experimental setup
and we characterize our multiprobe magnetic measurements.
The results are detailed in Sec. III and their implications
regarding dynamo action in VK flows are discussed in
Sec. IV.

II. SETUP AND MEASUREMENTS

A. Flow

Our experiments are carried out in the setup sketched in
Fig. 1. The flow is produced by the rotation of one or two
disks inside a stainless steel cylindrical vessel filled with
liquid gallium. The cylinder radius R is 97 mm and its length
is 323 mm. The disks have a diameter equal to 165 mm and
are fitted to a set of 8 blades with a height of 10 mm. They
are separated by a distance H=203 mm. The disks are driven
by two 11 kW AC motors which provide a constant rotation

FIG. 1. Setup: �a� schematics of the von Kármán mean �time-averaged� flow
geometry for counter rotating disks at equal rate �. The rotation is opposite
in each half of the cylinder, leading to a strong differential rotation and the
recirculation loops in the flow create a stagnation point; the poloidal flow
converges in the midplane and is drawn towards the disks on either side. �b�
Experimental arrangement: coils and magnetic measurement probe. Defini-
tion of coordinate system.
rate in the interval �� �0.5,25� Hz with a stability of about
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0.1%. The system is cooled by a set of coils located behind
the driving disks; the experiments are made with the flow
kept at a temperature in an interval between 42 °C and
48 °C. The fluid is liquid gallium �density �=6.09
�103 kg m−3� whose electrical conductivity is �=3.68
�106 �−1 m−1. Its kinematic viscosity is �=3.1
�10−7 m2 s−1. The integral kinematic and magnetic
Reynolds numbers of the flow are defined as Re=2	R2� /�
and Rm=2	
0�R2�. Values of Rm up to 5 are achieved, with
corresponding Re in excess of 106.

B. Induction measurements

Two sets of coils �see Fig. 1� are used to apply an exter-
nal magnetic field B0, either parallel or perpendicular to the
axis of the cylinder. The locations of the coils is such that the
configuration is close, but not strictly equal, to a Helmholtz
geometry. Variations of applied field intensity over the flow
volume are of the order of 18% of the mean, for axial or
transverse applied fields. Its magnitude B0 is less than 100 G,
so that the interaction parameter,

N = �B0
2L/�U = �B0

22R/�2	R� � 10−3,

is quite small. One can safely neglect the back-reaction of
the Lorentz forces on the velocity field. We stress that we
concentrate here in induction effects in the bulk of a highly
turbulent flow, so that the interaction parameter, rather than
the Hartmann number, is the relevant dimensionless number.

Magnetic induction measurements are performed using a
multisensor probe. Eight Hall sensors form a linear array
which can be inserted inside the flow to yield simultaneous
measurements of the magnetic field along a line, i.e., mea-
surements of magnetic induction profiles. In the experiment,
the probe array is inserted radially into the flow, in the mid-
plane between the driving disks. The magnetic field is
sampled at 8 locations between 1.5 and 8.5 cm from the
rotation axis. The spacing between the Hall sensors is equal
to 1 cm, equal to the overall diameter of the probe—small
compared to magnetic diffusive scale in the gallium flow
��M �2R /Rm

3/4�6 cm�. According to the orientation of the
probe, one obtains a radial profile of one component of the
magnetic field, Bx�ri , t� or Bz�ri , t� �for i=1, . . . ,8�—the axis
are shown in Fig. 1. The Hall sensors are single axis ele-
ments from Sentron �1SA-1M�, with a sensitivity of
0.03 V/G and a frequency range from DC to 10 kHz. We
have calibrated these probes by comparison with a tempera-
ture compensated Hall probe connected to a Bell FW-9953
gaussmeter. Their temperature dependence is small, of the
order of 0.01 G/K in the temperature range of interest, i.e.,
between 40 and 50 °C. In typical measurements, the signals
from the 8 sensors are recorded for durations between 150
and 480 s, using a National Instrument PXI-4472 digitizer at
a rate of 1000 Hz with a 23 bits resolution.

We compare in Fig. 2 a typical frequency spectrum com-
puted using a time series from a single sensor, compared to
the equivalent measurement made with the Bell gaussmeter.
In this case, the flow is set into motion by the rotation of
only one of the driving disk, as in Ref. 21; this choice is

made in order to have a steady flow with little large scale
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fluctuations. The two curves are in excellent agreement. The
dynamical range spans 80 dB. Our in-house magnetic line
array has thus characteristics that are equivalent to those of
the commercial single probe.

III. RESULTS

A. Average induction profiles

We present here the analysis of mean induction effects
which will be useful for our discussion of the fluctuations;
the reader is also referred to Ref. 11.

We label B0 the applied field and B�r , t� the field in-
duced by the flow motion. We write the total magnetic field
as B0+ �B�+b, where �B� is the time average of the induced

FIG. 2. Spectrum obtained with one Hall sensor, compared to a measure-
ment made using a calibrated Bell Gauss meter. Flow driven by the rotation
of a single disk, at �=10 Hz. The main peak is at 8.5 Hz because the flow
rotation rate is lower than that of the driving disk.
Downloaded 19 Sep 2006 to 140.77.240.66. Redistribution subject to 
field, and b is the fluctuating part ��b�=0�. By definition, the
kth component of time-averaged induced field at location r j

is

�Bk�rj�� =
1

T
�

0

T

dtBk�rj,t� . �3�

In practice we have chosen T�100 �−1, where �−1 is the
period of rotation of the driving disks.

In Fig. 3 we show the induction profiles �B���rj� and
�Bz��rj� measured when an external field B0=B0ẑ is applied,
directed along the axis of the cylinder. As detailed in previ-
ous studies �e.g., Ref. 11�, the azimuthal component �B�� is
mainly generated by the counter rotation induced by the driv-
ing impellers on each side of the midplane, via the Omega
effect22

����B��� = − B0,z�z�U�� . �4�

On the other hand, when one probes the induced field along
the axis, the main effect is due to the axial stretching caused
by the motion of the fluid towards each driving disks �the
stretching component of the stagnation point in the mid-
plane�,

���Bz� = − B0,z�z�Uz� . �5�

These mechanisms are sketched in Fig. 3. We stress that
these profiles are obtained from simultaneous sampling in
space of the magnetic field, and not from a series of inde-
pendent measurements in which a single probe is succes-
sively located at a set of radial positions, as previously
reported.3,11

We then compare the measurements to a numerical so-
lution of the stationary induction equation

FIG. 3. Induction generated from a
axial applied field B0,z. �Top� Time-
averaged induction profile �B���rj�;
�left�: measurements for Rm=1,2 ,3 ,4,
top to bottom �the symbols are the
measurements and the solid line is the
result of the numerical simulation
based on the time-averaged flow�;
�right�: schematics of the Omega ef-
fect responsible for the induction.
�Bottom� Corresponding figures for
�Bz��rj� measurements. In this case the
induction is due to the stretching and
compression of the field lines by the
axial flow.
AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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0 = � � ��U� � �B0 + �B��� + ���B� . �6�

In the numerical computation, the time-averaged velocity
field is taken from experimental measurements8 and the in-
duction equation is solved using the iterative method de-
scribed in detail in Ref. 12 �the scheme is based on finite
difference computations, and thus allows for the implemen-
tation of realistic electromagnetic boundary conditions�. Be-
cause Rm remains small �less than 5�, we have found that in
each case it was sufficient to compute the induction up to
order 3 in Rm; the precision of the procedure is about 5%,
due to errors in the velocity measurements in the water pro-
totype setup and to numerical uncertainties. In Fig. 3, the
profiles obtained numerically are shown as solid lines. One
observes an excellent agreement with the experimental mea-
surements. It indicates that the mean induction is very well
accounted for by the time-averaged flow, Eq. �6�. We stress,
however, that such may not be the case at higher magnetic
Reynolds numbers, where large deviation inductions com-
pared to the mean flow prediction have been reported.23

Using all combinations for the directions of the applied
and measured induced magnetic fields, we have observed
that the induction is dominated by two main mechanisms: the
differential rotation generated by the counter rotating disks
�the toroidal part of the flow� and the existence of a stagna-
tion point in the midplane �the poloidal component�. For an
applied field parallel to the rotation z axis �case in Fig. 3�, the
toroidal velocity gradients induce a toroidal magnetic field
�the Omega effect� and the poloidal velocity gradients gen-
erate a stretching of the applied field lines. When the field is
applied transverse to the rotation axis �e.g., along the x axis�
the poloidal flow produces a compression of the applied field
lines while the toroidal flow generates a z component asso-
ciated with the connection of the magnetic field lines induced
along the y axis on each side of the midplane. This effect is
quite sensitive to the electromagnetic boundary conditions;
we have called it the BC effect.12
Regarding the mean �time-averaged� value of the mag-
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netic induction, our main finding is that the average induc-
tion coincides with the induction predicted from the average
flow—at least for the magnetic Reynolds numbers reached in
this gallium experiment. One has

�B� = induction from �U� , �7�

i.e., the mean induced field effectively solves �� ��U�
� �B0��+���B�=0. We have reported elsewhere a detailed
analysis of the induction effects due to turbulent small scale
fluctuations24 in toroidal screw geometry; its main finding is
to confirm the above statement: the small scale turbulent
fluctuations do not contribute to the mean induction.

B. Fluctuations

1. General considerations

As pointed out in the Introduction, due to the very small
value of the Prandtl number, the flow is fully turbulent. The
Reynolds number is larger than 106, even for the relatively
moderate values of the magnetic Reynolds number reached
here. The local velocity fluctuations reach 35% of the mean
speed, and so do the induced fields, as shown in Figs. 4�a�
and 4�b�. The fluctuations are large and occur over a very
broad range of time scales. The fastest fluctuations are asso-
ciated with the shearing of the applied field by the turbulent
small scale motion.25 Komogorov’s scaling for the inertial
range of motions together with the use of Taylor’s hypothesis
predict an f−11/3 for frequencies larger than the forcing fre-
quency �. This is due to the fact that in our experiment Rm is
of order one, so that the magnetic resistive scale �M is of the
order of the flow size. Our measurements �Fig. 4�c�� show a
steeper slope, of the order of −4.6 for driving disks fitted
with blades. The Kolmogorov prediction −11/3 was ob-
served in the flow generated by flat rugose disks.25 The slope
of the spectra in the high-frequency region does not depend
upon which component is being probed, nor on the rotation

FIG. 4. Fluctuations for local measurements. Counter-
rotation of the disks at �=10 Hz. �a� Bx induced com-
ponent for an applied axial field B0,z; �b� Bx induced
component for an applied transverse field B0,x; �c� cor-
responding time spectra �black line: signal in �b�; blue
line: signal in �a��. The curves have been shifted verti-
cally for clarity; �d� power spectral density of the pres-
sure recorded at the flow wall in the midplane.
rate of the disks.
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Another observation is that the magnetic induction also
fluctuates in a broad range of long time scales, as indicated
by the behavior of the power spectra for frequencies lower
than the disks rotation rate � �Fig. 4�c��. In addition, it is
clear in Fig. 4�c� that the lower end of the frequency spectra
does depend on which induction mechanism is at work. In
the case of an axial applied field, the fluctuations in the tor-
oidal component of the induction are related to fluctuations
in the differential rotation. The low frequency part of the
spectrum is close to an f−0.5 behavior. The fluctuations of the
induced field in the direction of a transverse applied field are
linked to the dynamics of the stagnation point in the mid-
plane. In this case the low frequency part of the spectrum has
stronger fluctuations �the spectrum is close to a f−1.2 behav-
ior�. The fluctuations of induction are associated to fluctua-
tions in the position of the stagnation point. Concerning this
slow dynamics, we have also varied the disks rotation rate
between 5 Hz and 20 Hz without detecting any noticeable
change in the above features; the spectra as in Fig. 4�c� col-
lapse when rescaled by the rotation rate and the fields rms
amplitude.

The slow dynamics in the induction traces back to the
evolution of the hydrodynamic flow. This is evidenced by
measurements of pressure fluctuations at the wall; one ob-
serves a 1/ f behavior in the same range of frequencies where
the magnetic fields shows a long-time dynamics �Fig. 4�d��.
However, the magnetic measurement is quite sensitive be-
cause it probes the velocity gradients selectively. The poloi-
dal and toroidal components are independently probed by
choosing the direction of the applied field and the particular
component of the induced field under inspection.

2. Profile fluctuations

We analyze below the fluctuations of induction “pro-
files” which we define as the set of measured magnetic field
values 	Bk�r1 , t� , . . . ,Bk�r8 , t�
 with �r1 , . . . ,r8� radial posi-
tions at distances between 1.5 and 8.5 cm from the axis of

rotation, and the applied field along direction ı̂. The choice of
the �i ,k� couple determines which component �toroidal or
poloidal� of the flow is probed. We stress again that we do
not address here the question of the contribution of the small
scales of turbulence. The recorded signals Bk�rn , t� are low-
pass filtered with a corner frequency equal to 3 times the
disks rotation rate �.

Examples of the evolution in time of such profiles are
shown in Fig. 5. The profiles are shown at time intervals
equal to the period of rotation of the disks, and one observes
significant fluctuations with respect to the time-averaged
curves. In addition, the points in the profiles tend to vary as
a block. This is evidenced by computing the correlation func-
tion, between, say the first element in the array, and the pro-
gressively more distant ones. The resulting variation is dis-
played in Fig. 6�a�, showing the maxima of the correlation
functions as a function of position. They decrease very
slowly from 0.9 for the second element down to about 0.4 for
the last one. These values do not change as the disks rotation
rates are varied from 5 Hz to 20 Hz. For an estimation of a

typical correlation length, one notes that the curve can be
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fitted by an exponential function exp− �r /r0�, with r0�R, the
radius of the cylindrical vessel. This confirms that the fluc-
tuations in the induction are a global feature rather than a
local one. In addition, we have observed that the correlation
functions are symmetric and peaked around the zero time-lag
value. This behavior is also evidenced in Fig. 6�b� which
shows a space-time diagram of the induction profiles; fluc-
tuations are felt simultaneously at all points with a response
time of the order of 1 /�.

3. Distance to the mean

Let us compute a global distance between the mean flow
induction profile and a realization. Using the L2 norm, we
define

Ek�t� =� 1

N
�
i=1

N=8

�Bk�ri,t� − �Bk�ri���2. �8�

We find that the time averaged value of E are of the same
order of magnitude as the average induced field, that is
�E�t����B�. In units of the applied magnetic field, we mea-
sure �E��0.07 B0 for situations in which the maximum of
the induced field �maxri

�B��ri�� is also of the order of 0.1 B0.
These observations indicate that instantaneous induction pro-
files differ significantly from the time averaged computation.
In addition, we also observe that the distance E has large
fluctuations away from its mean value. This is evidenced in
Fig. 7 which shows the probability density functions P�E�
for induction measurements probing the toroidal and poloidal
flows. The curves are wide, with events that span several
standard deviations. The fluctuations are found to be larger in
the case of the induction due to differential rotation than
when due to the stretching by the stagnation point in the
midplane.

As the intrinsic magnetic Reynolds numbers �defined by
the ratio max�B� /B0 �Ref. 26�� reached in our experiment is

FIG. 5. Examples of fluctuations of profiles. Counter rotation of the disks at
�=10 Hz; applied field along the z axis, B0,z=24 G. �Left� Transverse in-
duced field due to differential rotation; �right� axial induced field due to the
stretching effect.
always less than 1, we believe that these fluctuations mirror
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the variations in the flow velocity gradients. However the
geometry of these changes is lost with the use of a global L2

norm. In the next section we further analyze the profile fluc-
tuations, with the purpose of trying to quantify how the in-
duction deviates from the one expected from the mean flow.

4. Polynomial analysis

Because of the strong correlation in the signal measured
by successive elements in the magnetic array, the induction
profiles are smooth and are well described by polynomials of
order three. We do not claim here that the fitting functions
are the actual solutions to the induction equation. We use the
polynomials as a way to take advantage of the symmetries
associated to the von Kármán flow. For instance, the mean
velocity is reflection-symmetric about the mean plane, and
the azimuthal velocity is zero on the rotation axis. As a re-
sult, the induction due to differential rotation in the presence

FIG. 6. �a� Evolution with the distance to the first element in the array, of
the maximum �reached at �=0� of the correlation function C1j���
= �B�r1 , t�B�rj , t+��� �normalized to the signals standard deviations�.
Counter rotation at �=5,10,15,20 Hz, corresponding to Rm values between
1 and 4. �b� Space-time diagram of the induction profile measured by the
probe array, at �=15 Hz. Measurements for counter rotating disks, with
B0,x=48 G, induced field along the same direction Bx.
of an axial applied field �the � effect� has a zero average in
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the midplane at r=0. Deviations from this value can then be
associated with a symmetry breaking in the mean flow pat-
tern. We thus write an instantaneous profile as

	Bk�r,t�
 = a0�t� + a1�t�r + a2�t�r2 + a3�t�r3 �9�

and we study in the sequel the evolution of the coefficients
aj�t�.

Mean flow polynomials. We first present the coefficients
�aj� for the mean profiles, and their evolution with the disks
rotation rate. From the results presented in Sec. III A we
expect that they are well accounted for by the structure of the
mean flow, i.e., �aj�=aj �from �U��.

Let us first consider the evolution of Bx in the case of an
axial applied field �along z�. As detailed in Sec. III A, induc-
tion in the midplane is dominated by the twisting of the
magnetic field lines by differential rotation. Thus, �a0�
should be null because of axisymmetry and �a1� should in-
crease linearly with the disk �counter� rotation rate. This is
indeed observed in Fig. 8�b�. We have no simple interpreta-
tion for the coefficients a2 and a3 which mainly ensure that
the induced field vanishes at the outer cylinder �because of
the insulating boundary condition�.

Similarly, when ones probes the z-induced field the main
effect is due to the stretching of the applied field lines. Since
the applied field is uniform, one expects a nonzero compo-
nent �a0�, which increases with the disk �counter� rotation
rate, as confirmed in Fig. 8�d�. The other contribution is in
the a2 coefficient, since here the axisymmetry requires that
the odd terms be null.

The situation is equivalent when the applied field is
transverse B0=B0x̂. The average field induced along x in the
midplane comes from the compression of the applied field by
the converging flow. The dominant contribution is in a0

�negative� which varies linearly with the rotation rate �Fig.
9�d��, while the axisymmetry imposes �a1�= �a3�=0. When

FIG. 7. Probability density function of the fluctuations of the L2 distance
E�t� to the mean induction profile. Counter rotation at �=10 Hz, corre-
sponding to Rm=2.
one probes Bz, the dominant contribution comes from the
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differential rotation whose effect is not felt on the rotation
axis, so that �a0�=0. The dominant contribution is in �a1�,
which varies linearly with � �Fig. 9�b��.

Fluctuations of the polynomial coefficients. Let us first
discuss the case of the fluctuations in the Omega effect, i.e.,
for measurements of the toroidal field induced by differential
rotation when the applied field is axial. The time variations
Downloaded 19 Sep 2006 to 140.77.240.66. Redistribution subject to 
of the leading coefficient a1 are shown in Fig. 10�a�. One
observes very strong fluctuations, although the probability
density function is quasi-Gaussian �Fig. 10�b��. One finds
a1,rms/ �a1�=114% at a �counter� rotation rate �=10 Hz. The
spectrum in Fig. 10�c� indicates that the fluctuations in the
profile have a long-time behavior �the slope of the spectrum
in the low frequency range is close to −0.7�. One thus ob-

FIG. 8. Polynomial coefficients for the
mean induction profile. Axial applied
field B0,z=24 G. �Top� Induction due
to the differential rotation. �a� Mea-
sured profiles and corresponding poly-
nomial fits �dashed lines� for Rm

=1,2 ,3 ,4. �b� Evolution of the poly-
nomial coefficients as a function of
Rm. �Bottom� Corresponding plots for
the axial stretching of the applied
field.

FIG. 9. Polynomial coefficients for the
mean induction profile. Transverse ap-
plied field B0,x=48 G. �Top� Induction
due to the differential rotation. �a�
Measured profiles and corresponding
polynomial fit �dashed lines� for Rm

=1,2 ,3 ,4. �b� Evolution of the poly-
nomial coefficients as a function of
Rm. �Bottom� Corresponding plots for
the transverse compression of the ap-
plied field in the midplane.
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serves that the fluctuations in the induction profile corre-
spond to a slow process, compared to the turbulence fast
scales and also compared to the disk turnover time. The fact
that the entire induction profile changes in time is clear in
Figs. 10�c� and 10�e� which show the correlation between the
coefficients a0 and a1. One observes that a0 and a1 are anti-
correlated, with a0�0 only for small deviations of a1 about
its mean. In most configurations a0 is nonzero. As at small
Rm the induction mirrors the evolution of the velocity, we
conclude that the flow has a slow dynamics with strong de-
viations from the mean von Kármán geometry.

We now compare the fluctuations in time for the leading
polynomial coefficient and each choice of �B0,i ,Bj� �Fig. 11�.
Two kinds of behavior are evidenced. When �i , j�= �z ,x� or
�i , j�= �x ,z�, i.e., as one probes the toroidal flow �influence of
differential rotation� the fluctuations are large. When the in-
duction probes the poloidal component �stagnation point�,
i.e., for �i , j�= �z ,z� or �i , j�= �x ,x�, the fluctuations are re-
duced by a factor 3. Note that in Fig. 10 the coefficients are
compared in gauss, so that the a1 values have been multi-
plied by a length chosen as half the cylinder radius. This
choice is justified because in the profiles the induction is
maximum at R /2 in the corresponding case. In addition, R /2
is also close to the resistive length scale ��M =2R /Rm

3/4�.
Another feature is the change in the ratio of the rms fluctua-
tion amplitude to the mean. In the case of an applied field
parallel to the rotation axis, we had a1,rms/ �a1�=114% at a
�counter� rotation rate �=10 Hz for induction resulting from

FIG. 10. Fluctuations of the polynomial coefficients, for the Omega effect:
a magnetic field B0,z=24 G is applied along the rotation axis, and the induc-
tion profile B�
Bx is measured. Counter-rotation of the disks at �=10 Hz.
�a� Time evolution of the polynomial coefficient of order 1; �b� correspond-
ing centered probability density function; �d� time spectrum; �c� and �e�
cross-correlation and joint probability density function for the coefficients
a0�t� and a1�t�.
the differential rotation. For the induction due to the pump-
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ing motion towards each disk, one has a0,rms/ �a0�=20%.
Note that a 20% fluctuation level is what one observes for
induction effects in the case of a single rotating disk.11 One
thus finds that fluctuations in the induction are larger when
associated to the toroidal flow compared to the poloidal ve-
locity component. This is confirmed in Figs. 11�c� and 11�d�
where the applied field is transverse to the rotation axis.
There a0 for the compression effect fluctuates with a level
a0,rms/ �a0�=50%, while a1 for the BC effect has a1,rms/ �a1�
=160%. In all cases, the PDFs of the time fluctuations of the
coefficients are quasi-Gaussian.

Very slow quasiperiodic modes. We must mention that in
Fig. 11�d�, the profiles were high-pass filtered at a frequency
above 3 Hz �for a disk rotation rate of 10 Hz� before pro-
cessing. The reason is that there is a quasiperiodic evolution
in the induction profile, as can be observed in the signal
displayed in Fig. 12 �and previously in Fig. 4�b��. The unfil-
tered time variations of a0�t� are shown in Fig. 12�a�, and its
corresponding time spectrum and probability density func-
tion in Figs. 12�b� and 12�c�. The spectrum has a marked
peak at a frequency f =0.1 Hz�� /100, with the quasiperi-
odic evolution also reflected in the bimodal shape of the

FIG. 11. Fluctuations of the polynomial coefficients, for four orientations of
the applied and measured components, �B0,i ,Bj�. �a� �i , j�= �z ,x�; �b�
�i , j�= �z ,z�; �c� �i , j�= �x ,z�; �d� �i , j�= �x ,x�. Counter-rotation at �=10 Hz.
The solid red line corresponds to the mean value and the dashed line to a
level of fluctuation equal to 20% of the mean.
probability density function.
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In this configuration, the external magnetic field is trans-
verse. The induced component probed is parallel to the ap-
plied field, and results from the compression of the applied
field lines by the poloidal flow converging in the median
plane. This effect strongly depends on the exact location of
the shear layer.11 Its oscillations with respect to the midplane
would generate oscillations as in Fig. 12�a�. We note that
these slow oscillations are reminiscent of the global instabili-
ties of the median shear layer, previously discovered and
studied in water prototypes by the CEA-Saclay group.13,27

IV. DISCUSSION AND CONCLUDING REMARKS

In the last case discussed above, the fluctuations are at-
tributed to the existence of large scale �vortical� structures,
possibly due to the roll-up of the shear layer in the von
Kármán flow. When these structures exists, it is obvious that
the flow is no longer in the averaged configuration pictured
in Fig. 1�a�. We would like to show now that even if one
discards the influence of these large scale coherent structures
�as we have done by high-pass filtering the data�, the inher-
ent turbulence of high Reynolds number von Kármán flows
is such that the fluctuations in the instantaneous flow geom-
etry are very large. The instantaneous flow configurations
differ from the mean flow, not only in regards to the ampli-
tude of the toroidal and poloidal velocity components, but
also in regards to the symmetries and to the flow overall
structure.

We first comment again about the fluctuations, and we
study in greater details the induction profile for the Omega
effect. In this case the induction is less sensitive to displace-
ments of the midplane shear layer because the differential
rotation is found to be rather uniform in the center of the
flow.11 For �B0,z ,Bx�, the a0 coefficient should vanish be-

FIG. 12. Transverse field and compression effect: applied field B0,x and
induced component Bx. �a� Time variation of the leading polynomial coef-
ficient a0 �low-pass filtered at frequencies lower than 3 Hz�; ��b�, �c�� time
spectrum and probability density function of a0�t�. Measurement with
counter-rotating disks at �=10 Hz.
cause of axisymmetry. Its actual fluctuations in time are
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shown in Fig. 13. The mean value �a0� is equal to 0.5 G;
although one expects �a0�=0, the recorded mean value is
really within the precision of our polynomial analysis �lim-
ited by the number of elements in the array probe�. On the
other hand, the rms amplitude of fluctuations for a0 is
a0,rms=1.25 G �for an applied field equal to 24 G�, well
above its mean. This is a significant variation, even when
compared to the mean induction ��a1�R /2=−2.5 G�.

Let us now discuss changes in the flow geometry. We
compute how long the flow remains in the neighborhood of
its mean configuration, by imposing that both a1 and a0 take
values within a standard deviation of their mean. In this case,
one finds again that no longer than 50% of the time is spend
in the mean von Kármán geometry. We stress that �i� a simi-
lar conclusion is reached if one does the estimation from
induction effects generated by the presence of the stagnation
point �stretching of the axially applied field lines or compres-
sion of a transverse field�; �ii� the large changes in the poly-
nomial coefficients are related to the long-time dynamics of
the flow �i.e., to frequencies lower than that of energy injec-
tion into the flow�.

At the low magnetic Reynolds numbers probed in this
gallium experiment, the above effects can be attributed to the
hydrodynamics of the flow. Note that such is not necessarily
the case for sodium experiments in which nonlinear induc-
tion processes15,21 or dynamo4,5 take place. The understand-
ing of such long time dynamics in confined turbulent flows is
a challenge. It has now been reported in several experiments
�e.g., recently in Rayleigh-Bénard convection28� but its un-
derstanding is still elusive. For instance no known argument
gives the time scale of the slowest motion.

These slow global changes in the geometry of the flow
may not favor dynamo action. First because all configura-
tions may not be consistent with self-generation, in the sense
that any instantaneous velocity field at time t, U �r, t fixed�,
may not lead to a positive growth rate when inserted in the
induction equation for a kinematic dynamo computation.
Second, in order for the magnetic field to grow, the flow
must be maintained for many kinetic advection times; indeed
one has for the magnetic diffusion time �M =R2 /��Rm�NL,
with �NL=R /U the time scale of the forcing. Altogether these
arguments indicate that a stable flow configuration is desir-
able for the self-generation of a stationary dynamo. For in-
stance, for flows generated by the rotation of only one disk
with the other kept at rest, we have observed that the fluc-
tuations are much less �cf. Fig. 14�. The flow spends most of

FIG. 13. � effect, for a counter rotation at 10 Hz. Time fluctuations of the
a0 coefficient shifted by 0.5 G �see text� so that �a0�=0 in the plot.
its time in the s1t1 configuration imposed on average by the

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



085105-10 Volk, Odier, and Pinton Phys. Fluids 18, 085105 �2006�
driving. As a result, depending on the forcing and large scale
hydrodynamic evolution of the flow, one may have to be
cautious with approaches that estimate the dynamo threshold
from mean flow geometries. This procedure may be valid for
purely helical flows in which we have not detected strong
fluctuations about the mean; it certainly did yield a correct
estimate of the onset of the Riga dynamo.4 However, it may
not be the case for the flow generated by counter-rotation in
the von Kármán geometry. The observed slow dynamics is
associated with important changes in the flow topology, and
a mean field kinematic simulation may underestimate the
threshold.

ACKNOWLEDGMENTS

We gratefully acknowledge many useful discussions
with M. Bourgoin, P. Frick, Y. Ponty, W. L. Shew, and all the
members of the VKS team �M. Berhanu, A. Chiffaudel, F.
Daviaud, S. Fauve, R. Monchaux, N. Mordant, and F. Rav-
elet�. We are indebted to P. Metz and M. Moulin for technical
assistance in the development of the experiment. This work
is supported by the CNRS and the Rhône-Alpes Region
Emergence program.

1N. L. Peffley, A. B. Cawthrone, and D. P. Lathrop, “Toward a self-
generating magnetic dynamo: The role of turbulence,” Phys. Rev. E 61,
5287 �2000�.

2R. O’Connell, R. Kendrick, M. Nornberg, E. Spence, A. Bayliss, and C.
Forest, “On the possibility of an homogeneous MHD dynamo in the labo-
ratory,” in Dynamos and Dynamics: A Mathematical Challenge, NATO
Series Vol. 26 �Kluwer, Dordrecht, 2000�, pp. 59–66.

3M. Bourgoin, L. Marié, F. Pétrélis, C. Gasquet, A. Guiguon, J.-B. Luciani,
M. Moulin, F. Namer, J. Burguete, F. Daviaud, A. Chiffaudel, S. Fauve,
Ph. Odier, and J.-F. Pinton, “MHD measurements in the von Kármán
sodium experiment,” Phys. Fluids 14, 3046 �2002�.

4A. Gailitis, O. Lielausis, S. Dement’ev, E. Platacis, A. Cifersons, G. Ger-
beth, T. Gundrum, F. Stefani, M. Christen, H. Hänel, and G. Will, “Detec-
tion of a flow induced magnetic field eigenmode in the Riga dynamo
facility,” Phys. Rev. Lett. 84, 4365 �2000�; A. Gailitis, O. Lielausis, E.

FIG. 14. Probability density function of the fluctuations of the L2 distance
E�t� to the mean induction profile. ��a�, �b�� Flow generated by counter
rotating disks at �=10 Hz, axial applied field �a� induction due to differen-
tial rotation, �b� due to stretching; �c� flow generated by the rotation of one
disk only at �=10 Hz, transverse applied field.
Platacis, G. Gerbeth, and F. Stefani, “Riga dynamo experiment and its

Downloaded 19 Sep 2006 to 140.77.240.66. Redistribution subject to 
theoretical background,” Phys. Plasmas 11, 2838 �2004�.
5R. Stieglitz and U. Müller, “Experimental demonstration of a homoge-
neous two-scale dynamo,” Phys. Fluids 13, 561 �2001�.

6D. Brito, H.-C. Nataf, Ph. Cardin, J. Aubert, and J.-P. Masson, “Ultrasonic
Doppler velocimetry in liquid gallium,” Exp. Fluids 31, 653 �2001�.

7S. Eckert and G. Gerbeth, “Velocity measurements in liquid sodium by
means of ultrasound Doppler velocimetry,” Exp. Fluids 32, 542 �2002�.

8L. Marié, J. Burguete, F. Daviaud, and J. Leorat, “Numerical study of
homogeneous dynamo based on experimental von Kármán type flows,”
Eur. Phys. J. B 18, 469 �2003�.

9C. B. Forest, R. A. Bayliss, R. D. Kendrick, M. D. Nornberg, R.
O’Connell, and E. J. Spence, “Hydrodynamic and numerical modeling of
a spherical homogeneous dynamo experiment,” Magnetohydrodynamics
38, 107 �2002�.

10F. Ravelet, A. Chiffaudel, F. Daviaud, and J. Léorat, “Towards an experi-
mental von Kármán dynamo: numerical studies for an optimized design,”
Phys. Fluids 17, 117104 �2005�.

11M. Bourgoin, R. Volk, P. Frick, S. Kripchenko, P. Odier, and J.-F. Pinton,
“Induction mechanisms in von Kármán swirling flows of liquid gallium,”
Magnetohydrodynamics 40, 13 �2004�.

12M. Bourgoin, P. Odier, J.-F. Pinton, and Y. Ricard, “An iterative study of
time independent induction effects in magnetohydrodynamics,” Phys.
Fluids 16, 2529 �2004�.

13L. Marié, “Transport de moment cinétique et de champ magnétique par un
écoulement tourbillonnaire turbulent: Influence de la rotation,” Ph.D. the-
sis, Université Paris 7 �2003�; http://tel.ccsd.cnrs.fr/documents/archives0/
00/00/77/55/index.html

14M. Bourgoin, “Études en magnétohydrodynamique, application à l’effet
dynamo,” Ph.D. thesis, École Normale Supérieure de Lyon �2003�; http://
tel.ccsd.cnrs.fr/documents/archives0/00/00/83/02/index.html

15L. Marié, F. Pétrélis, M. Bourgoin, J. Burguete, A. Chiffaudel, F. Daviaud,
S. Fauve, P. Odier, and J.-F. Pinton, “Open questions about homogeneous
fluid dynamo: the VKS experiment,” Magnetohydrodynamics 38, 163
�2002�.

16N. Mordant, J.-F. Pinton, and F. Chillà, “Characterization of turbulence in
a closed flow,” J. Phys. II 7, 1 �1997�.

17D. Sweet, E. Ott, J. M. Finn, T. M. Antonsen, Jr., and D. P. Lathrop,
“Blowout bifurcations and the onset of magnetic activity in turbulent dy-
namos,” Phys. Rev. E 63, 066211 �2001�.

18N. Leprovost and B. Dubrulle, “The turbulent dynamo as an instability in
a noisy medium,” Eur. Phys. J. B 44, 395 �2005�.

19Y. Ponty, H. Politano, and J. F. Pinton, “Simulation of induction at low
magnetic Prandtl number,” Phys. Rev. Lett. 92, 144503 �2004�.

20U. Müller, R. Stieglitz, and S. Horany, “A two-scale hydromagnetic dy-
namo experiment,” J. Fluid Mech. 498, 31 �2004�.

21F. Pétrélis, L. Marié, M. Bourgoin, A. Chiffaudel, F. Daviaud, S. Fauve, P.
Odier, and J.-F. Pinton, “Nonlinear magnetic induction by helical motion
in a liquid sodium turbulent flow,” Phys. Rev. Lett. 90, 174501 �2003�.

22H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Flu-
ids �Cambridge University Press, Cambridge, 1978�.

23E. J. Spence, M. D. Nornberg, C. M. Jacobson, R. D. Kendrick, and C. B.
Forest, “Observation of a turbulence-induced large scale magnetic field,”
Phys. Rev. Lett. 96, 055002 �2006�.

24P. Frick, S. Denisov, S. Khripchenko, D. Sokoloff, V. Noskov, R.
Stepanov, and R. Volk, “Magnetic field induction in a toroidal screw flow
of liquid gallium,” AIP Conf. Proc. 733, 58 �2004�; R. Stepanov, R. Volk,
S. Denisov, P. Frick, and J.-F. Pinton, “Induction, helicity and the alpha
effect in a toroidal screw flow of liquid gallium,” Phys. Rev. E 73, 046310
�2006�.

25P. Odier, J.-F. Pinton, and S. Fauve, “Advection of a magnetic field by a
turbulent swirling flow,” Phys. Rev. E 58, 7397 �1998�.

26A. Martin, P. Odier, J.-F. Pinton, and S. Fauve, “Effective permeability in
a binary flow of liquid gallium and iron beads,” Eur. Phys. J. B 18, 337
�2000�.

27F. Ravelet, L. Marié, A. Chiffaudel, and F. Daviaud, “Multistability and
memory effect in a highly turbulent flow: Experimental evidence for a
global bifurcation,” Phys. Rev. Lett. 93, 164501 �2004�.

28F. Chillá, M. Rastello, S. Chaumat, and B. Castaing, “Long relaxation
times and tilt sensitivity in Rayleigh Bénard turbulence,” Eur. Phys. J. B

40, 223 �2004�.

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


