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Dynamo action in an annular array of helical vortices
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We numerically study the induction mechanisms generated from an array of helical motions
distributed along a cylinder. Our flow is a very idealized geometry of the columnar structure that has
been proposed for the convective motion inside the Earth’s core. Using an analytically prescribed
flow, we apply a recently introduced iterative numerical scheme [M. Bourgoin, P. Odier, J.-F. Pinton,
and Y. Richard, Phys. Fluids 16, 2529 (2004)] to solve the induction equation and analyze the flow
response to externally applied fields with simple geometries (e.g., azimuthal, radial). Symmetry
properties allow us to build selected induction modes whose interactions lead to dynamo
mechanisms. Using an induction operator formalism, we show how dipole and quadrupole dynamos
can be envisioned from such motions. The method identifies the main induction mechanisms that
generate dynamo action in the selected geometry. Here, it emphasizes the competition between
a-effect and field expulsion as well as the role of scale separation. © 2008 American Institute of

Physics. [DOL: 10.1063/1.2830983]

I. INTRODUCTION

The understanding of the self-sustained dynamo of the
Earth is still a major challenge. Following Larmor’s original
hypothesis,1 it is supposed to originate in the convective mo-
tion inside the liquid iron core. There, the induction due to
fluid motions may overcome the Joule dissipation and a dy-
namo can be generated. Although knowledge of the fluid
motion is essential because it drives the magnetic induction,
the structure of the core convective motion is not precisely
known. It is due to the extreme range of parameters in this
problem: the Earth is in rapid rotation, and the electrical
conductivity of molten iron is large, but finite. As a result,
two important dimensionless parameters of the problem are
very small: the Ekman number may be as low as 107!° and
magnetic Prandtl numbers of the order of 10762 are usually
quoted. In addition, the source of the convective motion is
mixed and still debated; thermal and compositional convec-
tion contribute, with heat and solute exchanged at the bound-
aries (solidification of the iron at the solid inner core, heat
transfer at the mantle boundary) and heat is also possibly
released in the core because of radioactive decay of 40K 34
The Rayleigh and Nusselt numbers are not precisely known,
and the coupling with the magnetic field can result in signifi-
cant changes in the structure of the convective flow. How-
ever, many models of the Earth’s dynamo have invoked the
columnar flow structure first derived by Busse at the onset
of convection in a spherical Couette geometry.6 These col-
umns may persist for a system moderately above the onset of
convection® although their existence in the actual Earth’s
core is still an open question.9 There are also arguments for a
subcritical dynamo bifurcation,10 in which the columnar
structure may be stabilized by the large scale magnetic
field."

The focus of this paper is on the induction mechanisms
that result from the existence of such a columnar structure.
We consider a highly idealized situation in which columns
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with helical motion are distributed along a cylinder, as helic-
ity is known to favor dynamo action.'” The geometry is cho-
sen to be cylindrical so that the curved boundary conditions
of the Earth are ignored. We also do not take into account the
drift of Busse’s rolls, nor the presence of a zonal wind. The
flow is prescribed, and we analyze its response to externally
applied fields with simple geometries (azimuthal, radial, etc.)
in order to understand the induction mechanisms in this sys-
tem. For instance, several numerical simulations (e.g., Ref.
13, and references therein) have noticed that both dipole and
quadrupole dynamos are possible, as well as coexisting
modes with oscillatory instabilities, with thresholds in close
proximity. These numerical studies focus on bifurcation dia-
grams. Our goal here is to detail how specific induction
mechanisms interact to produce a dynamo cycle. The results
emphasize the competition between a-effect and field expul-
sion, as they are observed in experiments, and on the action
of scale separation on the expulsion effect.

Note that the periodic array of helical columns in the
Roberts flow'* and Karlsruhe dynamo'5 preferentially gener-
ates a transverse dipole. We show here that the annular ge-
ometry can lead to both axial dipoles and quadrupoles, as
also shown in Ref. 16. We describe in detail the flow struc-
ture and the numerical method in Sec. II. In Sec. III we
present our results concerning induction responses to simple
applied fields. Section IV is devoted to the study of possible
dynamo action in this type of flow, based on an operator
formalism. Conclusions and possible extension of the study
are presented in Sec. V.

Il. SYSTEM AND METHODS
A. System

The flow geometry is made of a system of cylindrical
columns forming an annulus, as shown in Fig. 1. The
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columns are grouped in pairs of cyclonic and anticyclonic
roll, for which the axial flow is reversed. The velocity is
assumed to be stationary and is expressed as the sum of a
contribution due to the circular motion of the fluid in a col-
umn [the rotational component VX(r)] and of a contribution
due to an axial motion, which we label VA(r). In an Earth-
like geometry, VA(r) would be generated by the Ekman
pumping at the upper and lower boundaries. One thus writes
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V(r) = VE(r) + £VA(r). (1)

We chose analytical expressions of the fields such that
the components are separately divergence-free, V-VZ(r)
=V-VA(r)=0. The coefficient & measures the intensity of the
axial motion compared to the rotational one.

The rotational part in columns of height 2H is expressed
in cylindrical polar coordinates as

)
me=mMM»ﬁ{§w-m_mJ

Y V0= L costun Zfam{fo-«R_d»}+sm[fouwR_d»}} (2)
\Vf(ra 0) =07

where 7n is the number of column pairs, R is the outer radius
of the annulus, d is the thickness of the region in which
the columns are confined (within radial distances between
R-d and R). The velocity is set to zero outside the domain
R-d<r<R.

For the axial flow, we consider two cases. In the first
one, the columns have a height 2H and the axial flow has a
defined direction within each column and reverses between
neighboring columns. It corresponds to the geometry
sketched in Fig. 1(a). Figures 1(c) and 1(d) show, respec-
tively, a cut of the flow in the planes z=0 and 6=0. The
helicity [H=V-(V X V)] has the same sign in each column,
negative in this case (a column with positive axial velocity
rotates with negative vorticity). The corresponding velocity
is given by

)
VA(z,6)=0

Viz,0) = s sin(n6) sin(ﬂ>

VA9 2nH 2H (3)

V?(z, 0) = cos(n 0)005(%) .

\

In the second case [sketched in Fig. 1(b)], the axial flow is
reversed about the plane z=0, hence having symmetries
similar to Busse’s columns in rotating convection. Figure
1(e) shows a cut of the flow in the plane #=0. The helicity is
therefore negative in the columns of the upper half of the
cylinder and positive in the lower half. The axial velocity is
then written

]
Viz.0)=0

V/;(z, 0)=- :T; sin(nH)COS(%) @

VA(z,0) = cos(n@)sin(%) .

\

In our study, we call T1/2 the configuration obtained
with the rotational velocity and the first choice of the axial
velocity field, and 71 the configuration obtained with the
second choice. We shall look for stationary solutions of the
induction equation,

dB=0=V X (VX B)+ 7AB, (5)

where 7 is the magnetic diffusivity of the fluid. The bound-
ary conditions are such that the medium inside the annulus
has the same electrical conductivity as the fluid while the
outside medium is insulating. The magnetic permeability is
equal to that of vacuum in the whole space.

We stress that once the radius R of the cylinder and the
aspect ratio H/R=2 are fixed there are still many indepen-
dent parameters which may be varied: the number 2n of
columns, their aspect ratio d/R, the magnitude of the axial
flow compared to the rotational one, etc. We concentrate on
the geometry portrayed in Fig. 1: four pairs of columns with
relative thickness equal to 0.4 (yielding a square aspect ratio
for the columns), and é=1.25 (this sets the ratio of the
maxima of axial to rotational velocities to 0.7, close to the
values in the existing experimental dynamosls’”’lg). The
only remaining free parameter is the amplitude of the veloc-
ity field, which is nondimensionalized in the form of the
magnetic Reynolds number R, =V . R/ 7. V. is the maxi-
mum velocity in the domain of the flow, and we write
V=V V.

B. lterative procedure

We use here the iterative technique introduced in Ref.
19. The reader is referred to it for a detailed presentation, and
for an evaluation of its performance compared to standard
analysis in magnetohydrodynamics. This type of self-
consistent approach also underlies the method introduced by
Stefani et al.”® For low orders in the development, the
method has been previously used for analytical studies,”’ in-
cluding flows with a similar geometry as the one used here.?
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FIG. 1. (Color online) Geometry investigated. (a) Sketch of the column
arrangement for the 71/2 flow. (b) Column arrangement for the 71 flow. (c)
Cut of the 71/2 flow in the plane z=0 (shades correspond to the vertical
flow, arrows correspond to the flow in the plane z=0). (d) Cut of the T1/2
flow in the plane 6=0. (e) Cut of the T1 flow in the plane 6=0.

We consider the response of the flow to an applied mag-
netic field By, looking for the induced field B which solves
the stationary induction equation

VX (VXB)+ 7AB=-V X (V XBy). (6)
The result is expressed as the integer series

0

B=>,B, with |B,/~ O(R*)B,. (7)
k=1

The contributions B, are computed iteratively from a
hierarchy of nondimensional Poisson equations

ABj =-R,V X (vXBy), k=0, (8)

which can be solved for any given set of boundary condi-
tions.

C. Numerical simulation

Applying a standard Poisson solver to Eq. (8) would
require us to write the complete set of conditions for the
magnetic field at the boundaries of the computational do-
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main. In practice, the boundary conditions are more readily
expressed in terms of electric currents and potentials. We
thus implement the following sequence:

(i) The electromotive force (emf in units of V,,.B) in-
duced by the flow motion is computed from e, ;=v
X B,.

(ii)  Electric current being divergence free, the distribution
of electric potential is obtained from Agy, =V-(v
X B,), with von Neuman boundary conditions [n-V¢
=n-(vXB), with n the outgoing normal of the do-
main].

(iii) Induced currents (nondimensionalized) are then com-
puted as from Ohm’s law ji.; ==V ¢y, +€;, 1, and used
to compute the magnetic field B;,; from the Biot and
Savart law.

All calculations are made with a magnetic Reynolds
number equal to unity (we set R=1, V=1 and n=1). Its
actual value enters only in the final step, when contributions
are collected and the integer series is computed, B(R,,)
=3By (R,,= l)Rﬁl. This approach requires that the series con-
verges, and sets an upper value for the magnetic Reynolds
number R, *(Rm<R:’;). We have found that the radius of con-
vergence R, is of the order of 30; for higher magnetic Rey-
nolds number values we have shown in Ref. 19 that Padé
approximants23 still give results in remarkable agreement
with the solution of the induction equation computed without
approximation.

lll. INDUCTION PROCESSES

In this section, we study how, at various stages of the
iterative development, several magnetic modes can be ob-
tained as the flow acts on externally applied fields with
simple geometries. We will show in the next section how
positive feedback loops can be constructed between combi-
nations of the axisymmetric part of these modes. For this
reason, as well as for the sake of simplicity, in the present
section, the presentation of the induced fields and current
densities is restricted to their axisymmetric part. This part is
extracted by averaging any given quantity A(r, 6,z) over the
azimuthal angle 6,

2
(A)(r,z) = LJ dOA(r,0,z). 9)
2w ),

A. Induction from a toroidal applied field

When an external magnetic field is applied in the azi-
muthal direction (By=Be,), one expects the generation of an
azimuthal current, in very much the same manner as the
a-effect™ operates in the Roberts flow'* and in the Karlsruhe
dynamo.ls’25 This is because there is no conceptual differ-
ence between a horizontal field transverse to the columns in
the Karlsruhe geometry and a toroidal field applied in the
geometry considered here. In the azimuthal direction, there is
a scale separation between the size of one column and the
circumference of the annulus, so the results of mean-field
MHD, as for instance explored in Ref. 26 should apply. Note
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(Bg)

FIG. 2. T1/2: Applied toroidal field By, Structure of the azimuthal average (B,) of the fields induced at orders n=2,4,6,8,10.

(B2)

that in the sequel, although our geometry is not spherical, we
shall use the standard term “poloidal” to describe a magnetic
field (or electrical current) with field lines in a meridian
plane and the term “toroidal” will refer to fields with azi-
muthal field lines.

1. Basic mechanisms at first orders

The topology of B, is chosen to be identical to the one
that would be generated by the flow of an electric current in
a rod of radius a located along the z-axis

leg (r<a=0.1),
B():BO (10)

—ey (a<r).
R

The first order having a nonvanishing axisymmetric con-
tribution is the second order. It is illustrated in the left panel
of Fig. 2. The poloidal component (arrows) shows a dipolar
structure, corresponding to an induced current parallel to the
applied field B, and having the symmetry of the flow helic-
ity; as we have verified, this current is reversed as either
v or v is reversed but not when both change sign. This
type of effect, due to the helical motion in the columns,
was first proposed by Parker,”” and evidenced in the
VKS experiment.28 It is also in agreement with the a-effect
introduced in  the  framework of  mean-field
magnetohydrodynamics,24 for the 2D array of columns in the
Roberts ﬁow,14 and for the columnar ring discussed here.?®
Following this analogy, we will call it a-effect in the rest of
our study.

One can also observe on the left panel of Fig. 2 an in-
duced toroidal field (gray scale), largest in the center of the
columns and with its direction opposed to the applied field.
This remains true even when the rotation of the columns is
reversed, or when the axial flow is reversed or even sup-
pressed. The effect traces back to the expulsion of magnetic
field lines by vortical motions, as shown by numerical” and
experimenta130 studies on an isolated vortex.

The response of the flow to an applied field is thus more
complex than the generation of an azimuthal current J, 4 by
an a-effect due to the helical motion in the columns; this

(Be)
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(Bs) (B1o)

effect is indeed present, but the net current J, is related to the
applied field by a full second rank tensor, J,=0{ a]|B. In the
tensor [ ] not all components are due to the flow helicity and
some components correspond to an expulsion effect.

2. Higher orders

As detailed in Ref. 19, the interest of the iterative pro-
cedure is to associate induction effects with specific actions
of velocity gradients. It is particularly convenient when a
patterns develops through the iterations. As it is the case
here, we define a tool to help us quantify the convergence of
the pattern. Let B; and B, be the fields induced at respective
orders j and k. We compute the scalar product

1
(Bj|Bk)=mfvd3rBj~Bk, (11)

and the associated norm N(B,)=+/(B;|B,). Comparisons are
made using the normalized scalar product

p.k=< Y B ) (12)
" A\NB) NBY

In the case of an azimuthal applied field, the expulsion
eventually dominates. To wit, we compare in Fig. 2 succes-
sive iterations of the magnetic field (B,;). One finds
Py 4~-0.95, while P,;< 1073; the field induced at fourth
order is almost exactly opposed to B, and perpendicular
to B;. As a result, the successive induction steps lead to
the expulsion of the applied field, with P;;,;~0 and
Py 142 ~—1, at higher orders. Bear in mind that this concerns
normalized values. In dimensional units, one has

with y ~ — 1/400. (13)

B, ~ vBy,

After the tenth order, we could not detect any appre-
ciable evolution of the pattern.

3. Evolution with R,,

The magnetic Reynolds number is reintroduced in the
summation B;,q==;_,R* B,. We have summed terms up to
order 22, resulting in a 1% accuracy. We show in Fig. 3 the
evolution with R,, of two components of the induction: the
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=== pade
=@= order 22
= 1 order 2

FIG. 3. *(Color online) 7'1/2: evolution with R,,. (a) Axial field in the center of the annulus, at (r=0, z=0); (b) toroidal field in the columns, at (r=0.8,
z=0). R,, is the radius of convergence of the integer series. The dashed line corresponds to the summation stopped at order 2, the continuous line with dots
to the summation up to order 22, and the continuous line to the summation using Padé approximants.

axial field in the center of the cylinder, and the toroidal field
in the center of the columns. For R, <8, the calculation at
second order yields a very good approximation of the net
induction. This is interesting because the second order trun-
cation corresponds to the computation of the mean-field
theory with a first order smoothing approximatiorl.26 For
magnetic Reynolds numbers greater than about 8, the contri-
butions of higher orders in the summation need to be taken
into account. One finds that the mean-field approximation
tends to overestimate the induced dipole field, Fig. 3(a), as
well as the expulsion of the toroidal field, Fig. 3(b).

Empirically, we obsgrve that the radius of convergence
of the integer series is R,,=17. This value can be understood
from our observation that Py ;.1 ~0 and B, ~ ¥B,. Indeed
one can then rewrite the summation as

B =(R,B; +R2B,)> (- |[¥RL, (14)
k=0

from which one immediately gets 1/\s’|z|~20 for the radius
of convergence. In addition, for R,,<R,,, one gets

R R?

m m

B= B1+ B2,
L+[AR, T 1+[AR;,

(15)

which shows that the divergence of the integer series actually
lies in the existence of imaginary roots. Such a configuration
is particularly suited to the use of Padé approximants.23 The
result, plotted as a solid line in Fig. 3, shows that at large
magnetic Reynolds numbers (R,,=40) the axial induction
and the expulsion may saturate.

B. Induction from a radial field applied

As detailed above, starting from an applied toroidal field,
the a-effect generates a poloidal induced field with a large
axial component. But this axial component gives in turn very
weak contributions to the induction; an applied field in the
axial direction induces fields that are two orders of magni-
tude weaker than the values obtained with other orientations.

In contrast, we show in this section that a radially applied
field generates an induced field which has a significant com-
ponent in the azimuthal direction.

Specifically, we consider an applied field B, of the form

r
—e, (r<a=0.1)

B, =B, (16)

—e, (a<r).

,

Two remarks about this functional form are in order:

(i)  Within the domain of resolution of the induction equa-
tion it is essential that B, be divergence free because
we solve iteratively AB, ;=—V X (vXB,) rather than
AB,,,=—v-VB,~B,-Vv.

(ii) Here, By is not divergence free for r<a, but in this
domain the source term in AB;=-V X (vXB,) van-
ishes with v.

1. Basic mechanisms

For one individual column, a radial applied field is very
similar to a toroidal applied field. Therefore, one expects the
same mechanisms to be at play. The screw motion in the
columns produces again a current parallel to the applied
field. The current lines close inside the conducting fluid,
leading to two poloidal loops. They generate a field (B,)
whose toroidal part is antisymmetric about the z=0 plane, as
shown in Fig. 4 (left panel). The arrows in the same figure
correspond to a poloidal field whose radial component is
opposed to the applied field, as expected from an expulsion
mechanism at play in the center of each column. In terms of
amplitude, the radial/azimuthal conversion generated by the
a-effect is of the same order of magnitude as the
reverse process, discussed in the previous section. One
computes max{(B, 4/ By, }~7-107%, to be compared to
max{(B,,)/Bg g} ~11-10~* obtained in the case of the azi-
muthal applied field. However, the major difference is that
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(Ba)

FIG. 4. T1/2: applied radial field B,. Structure of the azimuthal average (B,) of the fields induced at orders n=2,4,6,8,10.

R

(B2)

the expulsion is much weaker. The component of (B,) op-
posed to the applied radial field is 10 times weaker than the
induced toroidal field. This can be explained by the fact that,
while B, has a component opposed to the applied field in the
center of the columns, it has a contribution which reinforces
the applied field in their periphery. Therefore, when the azi-
muthal average is computed, the expulsion effect is weak-
ened. On the contrary, in the case of the azimuthal applied
field, the expulsion effects from each column was adding up
collectively, resulting in a larger contribution.

Hence, expulsion is less effective in the direction per-
pendicular to the direction where scale separation develops
(in the azimuthal direction the columns cross section is an
order of magnitude smaller than the cylinder diameter, while
in the radial direction the characteristic size of the flow is
equal to the width of the column). We conclude that in
the case considered here, scale separation does not particu-
larly favor magnetic induction, but dramatically reduces
expulsion.

(Be)
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2. Higher orders

The structure of the induced magnetic field is rapidly
stabilized towards a quadrupolar structure as higher orders
are computed. As shown in Fig. 4 the fields at all even orders
closely resemble that at order 2, with a change of sign be-
tween consecutive even orders; the normalized scalar prod-
ucts are P, ,~-0.70 and P,4~-0.92.

The fields produced at a given order are again fairly
orthogonal to the fields at next or previous order:
(B¢|By.1) ~0. In addition, as can be seen in Fig. 4, the itera-
tion converges for even orders towards a quadrupolar struc-
ture with a negative feedback in a two step mechanism,

By, =— By (v~ 1/415). (17)
3. Evolution with R,,

The R,, dependence of the induced radial and azimuthal
magnetic field is shown in Fig. 5, after summation of the

=== pade
=@= order 22
= 1 order 2

— D o
o |m

FIG. 5. (Color online) T'1/2: induction at higher orders for an applied radial field B, ,. Variation with R,, of the induced fields. (a) Radial induced component,
sampled at (r=0.7, z=0). (b) Azimuthal induced component, sampled at (r=0.7, z=—0.6). The dashed line corresponds to the summation stopped at order 2,
the continuous line with dots to the summation up to order 22, and the continuous line to the summation using Padé approximants.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



016601-7 Dynamo action in an annular array of helical vortices

terms up to order 22. Note that B, is sampled at (r=0.7,
z=-0.6), because for a quadrupole, the toroidal field is very
weak in the z=0 plane. One observes in Fig. 5(b) that a
second order calculation is a correct approximation for mag-
netic Reynolds numbers up to 10. For higher R,, other terms
need to be included. As in the case of the toroidal applied
field, they tend to slow the increase of the induced field,
mainly because of expulsion generated from rotatlonal mo-
tion in the columns. The integer series diverges for R =18,
as expected from the value 1/1]3] ~20. Results obtained us-
ing Padé approximants, although extending the computed in-
duction beyond the radius of convergence of the series, do
not point to a saturation at large R,,.

IV. DYNAMO ACTION

In the previous section, we showed that the induction
mechanisms in the case of the 71/2 flow consist of a mutual
conversion between azimuthal and radial fields, through the
a-effect, along with an effect of expulsion of these fields by
the rotating columns. We have identified two modes, dipole
and quadrupole, mainly axisymmetric, that realize a feed-
back loop in a two-step mechanism [Egs. (13) and (17)] with
a negative sign, therefore leading to an antidynamo configu-
ration. Following the ideas developed in Ref. 19, we can
express these results using an induction operator formalism.
From Eq. (8), we define £(R,,)=-R,,A"{V X (vX )} for a
velocity field v corresponding to the value R,,=1. Equations
(13) and (17) can then be interpreted in the following way:
the (B,,) modes (n>5) obtained in the induction studies in
Secs. IIT A (dipole mode) and III B (quadrupole mode) are
eigenvectors of £2(R,,). From this observation, we will show
in this section that using a poloidal/toroidal decomposition, a
matrix analysis can be performed on the identified eigen-
modes to find eigenvectors of £L%(R,,) with positive eigenval-
ues, thus leading to possible dynamo solutions. Writing for
simplicity £=£(1) [we then have L(R,)B=R,LB], let us
assume that we can find a magnetic field B, that is not an
eigenvector of the operator £, but of £? with a positive ei-
genvalue v,; then, B,=B,+1/ \ZEB is an elgenvector of L
with a positive eigenvalue y,=\'y,. Taking R,,=1/\y,, we
then have L(R,,)B,=B,, which defines B, as a self-sustained
magnetic ﬁeld in the corresponding velocity field, at thresh-
old R,=1/\y,.

We emphasize that this method is more complex than an
eigenvalue calculation. In addition, as will become clearer
later, it does not strictly respect the symmetries,16 since ap-
proximations have to be made when projecting the results of
the application of the operator £ onto the initial vectors. We
will discuss the validity of all approximations and show that
the technique helps understanding not only the dynamo
modes and their thresholds but also how the induction effects
can combine to produce a dynamo.

A. Dynamo action in the T1/2 flow

We first illustrate our method with an example: the gen-
eration of a dipole field for a given flow. We use this example
to estimate the error associated to the approximations made
in the method.

Phys. Fluids 20, 016601 (2008)

1. Method and error estimates:
Example of the generation of a dipole field

We start from the field (B,,) (Fig. 2), which was shown
[Eq. (13)] to be an eigenvector of £2, with a dipolar geom-
etry and a negative eigenvalue. Since a dynamo cycle is of-
ten seen as a toroidal/poloidal feedback loop,12 we decom-
pose this field into its toroidal—B)—and poloidal—
Bg—components, to which we apply the operator £2. As
expected, the resulting fields are of opposite sign with re-
spect to Bg and Bg . In addition, their topology are very simi-
lar and look like a linear combination of the initial fields B/,
and BZ) . Using the scalar products defined in Eq. (11), we can
project (£L?B”) and (£?B/) onto the initial fields, thus defin-
ing an induction matrix,

Mpp MPT>
MTP MTT

) <(<5235>|B§> (<£235>|B§>)
\(LBDIBY)  (L7BOIBY)

M (T1/2) = (

(18)

where we have taken V(B))=A(B})=1, using the norm A
defined in Sec. IIT A 2. This matrix M 4(T1/2) is the restric-
tion of the two-step induction operator £? to the vector space
of the axisymmetric dipoles. The diagonal terms represent
the expulsion effect and the extra-diagonal terms represent
the action of the a-effect. Positive eigenvalues correspond to
an axisymmetric dipolar dynamo.

Let us discuss the approximations made in this method.
We have assumed so far that (£?B)) and (£?B/) belong to
the vector space generated by Bg and Bf; . In order to check
the validity of this hypothesis, we show some comparisons in
Fig. 6, using profiles normalized by their maximum value: in
(a) the axial profiles of the radial component of <£2B§) and
(L?BY) are compared to the equivalent profile for BY. One
can see that the overlap is very good. In (b), the radial pro-
files of the azimuthal component of (£?B’) and (£?B/) are
compared to the radial profile for Bg. In the case of the
a-effect ((L?BL) profile), the overlap is very good again. In
the case of the expulsion effect ((£?BJ) profile), there is a
discrepancy. We have computed the error to be about 10%.
Thus the Myr term in the matrix represents the expulsion
mechanism for the applied toroidal field within an error of
10%, while the other elements of the matrix can be consid-
ered as correct within less than 1%.

2. General expression for the matrix M

By redefining the £ operator as a linear function of the
poloidal and toroidal components of the flow, we obtain a
general expression of the matrix M, for any value of the
axial/rotational ratio (£ parameter). We normalize the com-
ponents v! and v® of the velocity field, max(v*)=1 and
max(v¥)=1 and rewrite Eq. (1) as V=V, v+ VgvE, where V,
and Vj represent the maximum amplitude of each compo-
nent. Let £, be the induction operator when V=v* and L
be the induction operator when V=v*; £ can then be written
as the linear combination,
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FIG. 6. (Color online) Dipolar mode: estimate of the error made doing the projection (a) axial profile of B, at r=0.8 from the Oz axis. (b) Radial profile of
By in the median plane. (l): Components of the applied field. (4 ): Components of (£2B5). (®@): Components of (LZB(T).

£=VA£A+VR["’R’ (19)
yielding
L2=VALALA+ VA VR(LRLA + LALR) + VALRLR,  (20)

so that the four matrix elements M;; can also be written as
quadratic forms of V, and Vg,

M[j=a[jvi+bijVRVA+cijV12?‘ (21)

As we studied the induction mechanisms, we noticed
that the a-effect and the expulsion behave differently under a
reversal of the axial pumping (V,——V,) or of the columns
rotation (Vz— —Vy). More precisely, it was observed that the
expulsion effect is independent of these sign changes,
whereas the a-effect transforms as the product V, V. These
observations allow to eliminate some terms in Eq. (21),
yielding

aVy+bV;4

CVRVA ) (22)
dViV, '

eVa+fVi

We will now compute the value of these six coefficients
in the case of the T'1/2 flow. The corresponding expressions
for the matrix M are the following:

Axial dipole:

We use here the axial dipole basis, defined in Sec.
IVAL,

M(VR’ VA) = (

22V2 +6Va
18V, Vg

46V, Vg

— 104
MAWMQ_10< 1«ﬁ+%).(m)

Axial quadrupole:

In this case, the generating vectors are formed by the
poloidal and toroidal components of the field (B,,) presented
in Fig. 4, which was shown [Eq. (17)] to be an eigenvector of
the operator £, with a quadrupolar geometry and a negative
eigenvalue. This mode is orthogonal to the dipole mode,

25V, Ve
11(VA + V2

23V +5Vq

25V, Vp ) - 29

M (V4. Vi) =— 10—4<

Transverse dipole:

Until now, we have only considered axisymmetric fields.
However, since the 71/2 flow presents several analogies
with the Roberts flow, it would be interesting to study the
possibility of generating a transverse dipole (perpendicular to
the columns), as observed in the Karlsruhe dynamo.]5 We
follow the same strategy as before: a uniform transverse field
B,=Bye, (where the direction of e, is given by =0, see Fig.
1) is applied to the flow and we compute the fields B; ob-
tained after k iterations. They rapidly converge towards a
stable structure. After 8 iterations, the fields B, and L£’By
have an overlap close to 100%, and the eigenvalue is nega-
tive, y=—1/400. This nonaxisymmetric mode cannot be de-
composed into a poloidal and toroidal part but we noticed
previously that this decomposition also separated symmetric
and antisymmetric components, under the reflection symme-
try with respect to the plane z=0. In the same way, the mode
B; obtained here can be decomposed into its symmetric and
antisymmetric parts, that form a generating basis. Using this
basis, the matrix M is

22V3 +13V3
46V, Vy

29V, Vi

. (25
16vj+14v§) )

M (Vy, Vi) =— 10_4(

3. Dynamo capability of T1/2 flow

From the expressions of the matrix M obtained in the
previous paragraph, the largest eigenvalue A\, of each ma-
trix can be computed as a function of V, and V. The result
is shown in Fig. 7. In order to facilitate the reading of these
plots, when A,,, was negative (no dynamo), we artificially
set its value to zero. For each case, two regions are
evidenced: the first one, for which \,,>0, corresponds to
the possibility to observe a dynamo for the considered
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FIG. 7. (Color online) T1/2 flow: evolution of the largest eigenvalue of the induction matrix in the (Vg,V,) plane. (a) Axial dipole; (b) axial quadrupole; (c)
transverse dipole; (d) predominance diagram for the different possible modes. For simplicity, when the eigenvalue is negative we plotted a zero value.

geometric parameters (d/r=0.4 and n=4) with a threshold

R, =1/ @ The second, for which A\, <0, corresponds
to the case where no dynamo instability can take place. Fig-
ures 7(a)-7(c) show that the three dynamo modes coexist in
the same region, in the neighborhood of the line V,=V;.
This is not surprising, since when one of the velocity com-
ponent dominates the other, the expulsion mechanism is
more important than the a-effect, which needs both compo-
nents together.

For a given couple (Vy, Vg), one can observe that A, is
always larger than A\, (corresponding to a lower threshold).
In the same way, the transverse dipole always has a lower
threshold than the axial dipole. A summary of the predomi-
nance of the different modes is given in Fig. 7(d), where one
can see that the transverse dipole is favored by higher ratio
axial/rotational, whereas the quadrupole is favored by a
lower ratio.

The case of the transverse dipole mode is interesting,
since it sheds light on the Karlsruhe dynamo, using the

analogies between the 71/2 flow and the Roberts flow. As
suggested earlier in Refs. 31 and 32, along the two directions
perpendicular to the pipes, the two components of the field
transform into one another through an a-effect.

In a T1/2 flow, we thus observed that several dynamo
modes can be sustained when R,, = 80. This result is consis-
tent with other numerical studies in thermal convection,33
which have shown that various dynamo solutions can coexist
in the same region of the parameter space. This kind of be-
havior has also been observed in the VKS dynamo
experiment,34 where different dynamo modes (steady, chaoti-
cally reversing, bursts, periodic) can be obtained when
changing the rotation rate of the driving impellers.

B. Dynamo mechanisms in the T1 flow

The analytical expression of the 7’1 flow is given in Eq.
(4). Compared to the T1/2 flow [Eq. (3)], the only difference
is that the azimuthal and axial components are now, respec-
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FIG. 8. (Color online) Comparison between the schematic induction mecha-
nisms for the 71/2 and T'1 flows, due to the a-effect in the case of a toroidal
applied field. The lines in the second column represents the applied field,
and in the third column, the dashed line represents the resulting order 2
current and the solid line the resulting order 2 magnetic field. (a) 71/2 flow;
(b) T1 flow, with a symmetric applied field; (¢) T1 flow, with an antisym-
metric applied field.

tively, symmetric and antisymmetric under S,. T'1 is a super-
position of two T1/2 flows, one in each half-cylinder, sym-
metric with respect to S,. They have opposite helicity, since
their axial component is reversed, while the rotation of the
columns is unchanged. The strong similarity between the
T1/2 and T1 flows indicates that the same mechanisms,
a-effect and expulsion, will take place. Figure 8 compares
the schematic induction mechanisms for the a-effect in both
types of flow. In (a), the case of the T1/2 flow is recalled,
where the induced current (j=oaB) is parallel to the applied
field with the same sign, since helicity 7 is negative in this
flow and the « coefficient is proportional to —H. In (b), it is
shown that in the 71 flow, applying a symmetric toroidal
field results in a symmetric poloidal field, corresponding to a
quadrupolar geometry. In (c), we show that the dipolar ge-
ometry (antisymmetric poloidal field) is obtained by apply-
ing an antisymmetric toroidal field.

Based on these symmetry considerations, the dipolar
mode for the 71 flow was built by applying L iteratively to
an initial toroidal field antisymmetric with respect to S,. We
chose an initial field of the form By,=B sin(7z/H)e,y The
iterations converge rapidly towards a mode whose toroidal
and poloidal parts, once the azimuthal average is done, form
a basis which is closed under the action of £ In the same
way, the quadrupolar generating basis was constructed start-
ing from an azimuthal z-independent field [note that an iden-
tical mode is obtained if one starts from a symmetric radial
field of the form By=Bga/r cos(mz/H)e,].

As for the transverse mode, we tried to follow the same
procedure used in the case of the 7'1/2 flow, but it turned out
that the converged mode, starting from an initial uniform
transverse field, is formed of two dipolar structures at 90°
from each other, having the same behavior under the reflec-
tion symmetry with respect to the plane z=0. Therefore, it is

Phys. Fluids 20, 016601 (2008)
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FIG. 9. (Color online) 71 flow: evolution of the largest eigenvalue of the
induction matrix in the (Vg,V,) plane, for the axial quadrupole. For sim-
plicity, when the eigenvalue is negative we plotted a zero value.

not possible to use this symmetry to construct the basis vec-
tors. And we were indeed unable to find any basis that would
be closed under the action of £2. This shows a limitation of
our method.
The expressions for the matrix M obtained are:
Dipolar mode:

16V2 +8V2
16V, Vg

33V, Vg

1%@+@J'(%)

M (Va,Vg)=— 10—4<

There is no value of the couple (V,, V) for which the
axial dipole can be sustained by the 71 flow. Some studies
have shown™ that in order for a T1-type flow to sustain an
axial dipole, the presence of differential rotation, absent in
our study, would be necessary.

Axial quadrupole:

20V4+ 5V
20V, Vi

25V, Vi

.7
11vf,+8v,%) 27)

M (V4 Vi) == 10-4<

Figure 9 shows the evolution of A, in the case of the
quadrupole mode. It is interesting to note that in all the cases
where a dynamo was possible, the corresponding matrix
[M(T1/2), M,(T1/2), M(T1/2), and M ,(T1)] presented the
following characteristics: one could find values of the couple
(V4,Vg) so that the product of the nondiagonal terms was
larger than the product of the diagonal terms. One can easily
show that this is a necessary and sufficient condition for a
2 X2 matrix (with negative diagonal coefficients) to have a
positive eigenvalue. And this condition physically corre-
sponds to the facts that the expulsion mechanism (diagonal
terms) is weaker than the & mechanism (nondiagonal terms).
On the contrary, in the case of [M,(T1)], this condition is not
met.

V. CONCLUDING REMARKS

A better understanding of the MHD induction mecha-
nisms in a given system can help to build dynamo cycles. In
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the first part of this study, we have identified two mecha-
nisms, related, respectively, to the a-effect and to expulsion
by vortices. We expressed these mechanisms in terms of the
induction operator £? and, using a poloidal/toroidal decom-
position of the eigenvectors of £2, we were able to perform a
matrix analysis leading to the determination of self-sustained
magnetic modes. This analysis not only allows to predict a
threshold for these dynamo modes, as could indeed have
been computed using more standard eigenvalue computation,
but the additional benefit is that it also brings a new insight
into these modes, providing the actual induction mechanisms
which combine to produce a dynamo effect. In regards to
natural or experimental conditions, it helps understand which
features of the velocity field favor or hinder dynamo action.
In addition, as already noticed in other studies,® the compe-
tition between the a-effect, favorable to the dynamo, and the
expulsion effect, that works against it, can be monitored by
the ratio of poloidal to toroidal components of the velocity
field (in our case the axial to rotational ratio V,/Vyg). Our
studies show that a positive feedback requires a comparable
amplitude for rotation and pumping. In the case of the 7'1/2
flow (for eight columns and an aspect ratio of 0.4), we ob-
served that both axisymmetric modes (dipolar and quadrupo-
lar) can be sustained, with a threshold of the order of R,,
=100. We also showed that a transverse dipole mode can
exist, as one could expect, because of the analogy between
our flow and the Karlsruhe dynamo. On the other hand, the
T1 flow can only sustain a quadrupolar mode, when the
pumping amplitude is larger than the rotation amplitude. For
the axial dipole mode, the poloidal to toroidal conversion
seems too weak to compensate for the strong expulsion of
the azimuthal field.

This study also provides a better understanding of the
role of scale separation; it does not particularly enhance the
induction effects, but rather reduces the field expulsion in the
direction perpendicular to the separation, thus indirectly fa-
voring the dynamo process.

Coming back to the Earth’s case, our model system leads
to several observations. An a? dynamo process relies on the
helicity contained in Busse’s columns,” but Ekman pumping
would give a very weak source of axial motion, since the
Ekman number E is of the order of 107!° and the ratio of the
axial flow to the rotational flow scales like EY2.*7 Another
source of axial velocity could be the S-effect due to the
curvature of the core-mantle boundary—note that in this case
the axial flow is in phase with the radial flow rather than with
the Vorticity.35 A large scale dipole field could also be gen-
erated from an a—w dynamo. It would require differential
rotation as provided, for instance, by zonal winds**3° or
super-rotation effects as observed in the DTS laboratory
experiment.40 These ingredients could in principle be added
to the model studied here, and the procedure used to deter-
mine which dynamo modes (dipole, quadrupole or other) are
likely to exist for a given range of Reynolds numbers. As
proposed for geornagnetism,41 and recently observed in the
VKS experiment,34 the close proximity of dynamo modes
may be essential for the development of dynamical regimes.
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