Stochastic Simulation

- In explicit state simulation, there is one transition per reaction/rule, and each transition has a numerical weight (number of instances, multiplied by a rate constant). Updating weights is not a matter of doing some arithmetic.

- In implicit state simulation, there is one transition per instance. Weight = rate constant.

Must update transitions, not weights:

 - Add new transition.
 - Pick a transition.
 - Remove instance transition.

 [Conceptually, two phases: negative & positive update.]

Multi-sums

1. **Multi-sums (1)**
 - Recall the notion of pushout:

 ![Diagram](image)

 Construct $B \xrightarrow{D} C$ [st. the square commutes]

 Such that for any $B \xrightarrow{E} C$, there is a unique $D \xrightarrow{E}$ such that the triangle $B \xrightarrow{D} C \xrightarrow{E}$ commutes.

2. **Multi-sums (2)**
 - If A is an initial object, i.e., there is exactly one arrow from A to B for all objects B.
 - A span $B \xrightarrow{E} C$ is essentially just a choice of two objects, B and C, and the pushout is known as the sum, or co-product, written $B + C$.

3. **Multi-sums (3)**
 - Given B and C, it is sometimes the case that there is not a unique object $B + C$ but a family of objects D_i:

 ![Diagram](image)

 Given B, C, we construct a family of co-spans such that any $B \xrightarrow{E} C$ factors uniquely through exactly one member of the family:

 ![Diagram](image)

4. **Multi-sums (4)**
 - The family of co-spans $B \xrightarrow{E} C$ is called the multi-sum (or multi-co-product) of B and C.
Examples

- In the category of sets and total functions, the co-product of B and C is the disjoint union B ∪ C.

- Similarly for the categories of simple graphs or finite graphs and homomorphisms.

- In the category of sets and injective functions, the co-product breaks down:

5 GLUINGS AND OVERLAPS

- In the category of finite graphs and isomorphisms, any pair of objects, A and B, has a multi-sum.

- These describe the different ways that A and B can be 'glued together' to form a bigger graph.

- Any such gluing automatically induces an overlap (cf. intersection of sub-half-graphs) by taking the pull-back:

6 ACTIVATION (s)

- Activation is a relation between nodes.
- Given $r_i := \frac{p_i}{\ell_i}$ and $r_j := \frac{p_j}{\ell_j}$.

- We first construct the multi-sum $A \cup \ell_i, \ell_j$:

- Then we construct the overlap of each G_i:

7 'TYPES OF MATCHING PAIRS'

- Each member G_i of the multi-sum of A and B defines one way that a pair of matchings — one from A, the other from B, can jointly map into some graph G:

- We want to say that r_i activates r_j iff for some overlap O_i, the further pull-back satisfies:

- This means that O_i was modified in some way by the action of r_i.

- So a new instance of r_j has been created...
Activation:

- another way to say this:
 if the error O_i' is an isomorphism,

 This means that O_i' is contained in P_i, the preserved region of v_i.

 O_i' was not modified by v_i (by def).

Inhibition:

- compute, as above, but for L_1 and L_2.

and then:

O_i' is O_i' is contained in P_i, and will not be modified by v_i.

O_i' is O_i' is contained in P_i, and will not be modified by v_i.

O_i' inhibits v_i if, for some i, $O_i' \neq O_i$.

Implicit State Simulation:

Given rules $v_1 \ldots v_n$ where

1. pick a rule v_i and a matching $m_i: L_i \rightarrow G$
2. for all j,k, consider all factorizations $m_{ijk}: L_{ijk} \rightarrow G$
3. rewrite G to G' using m_i
4. for all j,k, consider all factorizations $m_{ijk}: L_{ijk} \rightarrow G'$ and all all induced $m_{ijk}: L_j \rightarrow G'$

and remove all induced $m_{ijk}: L_j \rightarrow G'$

$G_{ij} = \frac{R_i}{L_i} \frac{L_j}{G_{ijk}}$

$G_{ij}^+ = \frac{R_i}{L_i} \frac{L_j}{G_{ijk}^+}$

$G_{ij}^- = \frac{L_i}{L_j} \frac{G_{ijk}}{G_{ijk}^-}$

(Ik ranges over the family.)

N.B.: activation and inhibition are just relations between rules; but if we know that particular G_i^+ (or G_i^-) for which $O_i' \neq O_i$:

- any matching that factors thru G_i^+ (resp. G_i^-) will be created/deleted by the action of v_i.

- this is the basis of how we 'update weights' for graph-based/implicit state simulation.

ISS (1):

- as a first optimization, keep only those members of the G_i^+ / G_i^- families that have a productive/correction-productive overlap; i.e.

 $O_i' \neq O_j^+$, $O_i' \neq O_j^-$

 *if v_i does not activate v_j, there will be no productive overlap.

 *if v_i does not inhibit v_j, there will be no correction-productive overlap.
Implicit State Multi-set Rewriting

1. Suppose we have two reactions:
 - \(r_1: A \rightarrow B + C \)
 - \(r_2: B + C \rightarrow D \)

2. As rewriting rules, these are:
 - \(r_1: \)
 - \(r_2: \)

3. There is no inhibition between these rules; however, \(r_1 \) activates \(r_2 \):
 - The multiset of \(r_1 \)'s RHS and \(r_2 \)'s LHS is:

 \[
 \begin{align*}
 &B, C \\
 &B, C, C \\
 &B, B, C \\
 &B, B, C, C \\
 &B, C, B, C, C \\
 \end{align*}
 \]

 - The first three cases give rise to a non-empty PB:

4. **Positive Update**:
 - After firing \(r_1 \), we have a matching for \(r_1 \)'s RHS to an updated state \(M' \):

 \[
 \begin{align*}
 &B, C \\
 &B, C, C \\
 &B, B, C \\
 \end{align*}
 \]

 - Which we must now factorize into the three productive overlaps with the LHS of \(r_2 \)

 - The factorization into \(B, C \) is trivial:
 - just \(M' \) itself

 - The factorization into \(B, B, C \) can occur in \(M'(B)-1 \) different ways (the non-overlapping C can map anywhere [different to the choice of \(M' \)]:

 - Likewise, the factorization into \(B, B, C \) can occur in \(M'(B)-1 \) different ways

5. **Update (2)**:
 - The first factorization is an instance of \(r_2 \) that
 - adds the new \(B \) and the new \(C \)
 - The second class of factorizations use the new \(B \) and an old \(C \)
 - The third class uses an old \(B \) and a new \(C \)

6. **NB**:
 - Implicit state multi-set rewriting is strange:
 - Counting matchings is the same as counting the number of \(A, B, C, D \) explicitly [less]
 - in effect, it is a complicated way of doing exactly the same as explicit multi-set rewriting!

 - unless...

 - we don't count matchings!

 - instead, associate each matching with its own private timer.

 - 'next event' is now simply the fastest event; and

 - negative/positive update removes/adds the matchings/timers as required

 - This is exactly the 'next event' method of simulation [from lecture 3]
ISS: efficiency concerns

- Def of true-/ve update is elegant; but...

- This is a problem when $C^{-1/f}_{ij,k}$ has one or more connected components that are not all in the image of the arrow $L_i/R_i
ightarrow C^{-1/f}_{ij,k}$.

- If all connected components of $C^{-1/f}_{ij,k}$ are in this image, then there is at most one way to factorize m_i.

- This is non-trivial (but not too hard) and depends on realizability of site graphs and the fact that sites are all distinct.

- If we consider matchings from each connected component of the LHS/RHS of a rule separately, all the $C^{-1/f}_{ij,k}$ graphs are connected too!

- We are always in the good case above...

CLASHES

- If rule R_i has n_e connected components in its LHS and n_e in its RHS, we have n_e independent matchings for its LHS and n_e for its RHS.

- If all connected components are mapped to disjoint parts of M, all is okay.

- By distinct c.c.s to distinct c.c.s in event: distinct c.c.s to disjoint areas of a single c.c.

- But it can happen that the collection of independent matchings is not collectively a valid matching.

- Two matchings can target the same agent or site...

- We need to find a way to deal with these "false" events dynamically.

NULL EVENTS

- A "fake", or null, event is just a loop in the underlying Markov jump process... that takes time!

- If the sum of all true event weights is T and the sum of all null event weights is N,

- The probability of looping once is $\frac{N}{N+T} = q$ where $q = \frac{1}{q}$.

- More generally, the total time to exit a state is N time to loop a time times follow a true event

- "Erlang" distribution (like G):

$$p(e) = \sum_{n=0}^{\infty} e^n \frac{(N+T)^n}{n!}$$

$$= p(N+T)e^{-(N+T)e} \sum_{n=0}^{\infty} \frac{e^n}{n!}$$

$$= T e^{-(N+T)e} e^{N}$$

$$= T \cdot e^{-(N+T)e} e^{N}$$

$$= T \cdot e^{-(N+T)e} e^{N}$$

as if the null events did not exist...
Null Events (2)

- We also need to verify that the exit probabilities are correct.

- If there are n true events, each with weight $T_i (1 \leq i \leq n)$ s.t.

\[
\sum_{i=1}^{n} T_i = T
\]

Then the probability of choosing a true event of type i is: \[\frac{T_i}{N+T}\]

So, the probability that the next true event is of type i is:

\[\frac{T_i}{N+T} / \frac{T}{N+T} = \frac{T_i}{T}\]

* This can also be derived by summing the geometric series (2)*

* In effect, a jump process w/o loops is the same as the underlying process w/ loops but with modified time advance.

AMBIGUOUS MOLECULARITY

- A binary rule may match a single connected component:

- Such an event has a different character than if it was matching two distinct connected components.

\[\Rightarrow\] the latter involves a collision — and so has a volume-dependent rate.

\[\Rightarrow\] the former is independent of the (system) volume...

\[\Rightarrow\] as if it were a unimolecular reaction with a first-order rate constant.

\[\Rightarrow\] This constant factors in the (small) 'reachin volume'-dependent that is implicit.

\[\Rightarrow\] rule should have its rate constants.

OVER-Sampling

- If you want to perform some action once per second (on average), the easiest solution is to use a clock ticking once per second...

\[\Rightarrow\] But could also use a 'clock' and 'roll a Coin' at each tick [null events...]

\[\Rightarrow\] This is a way to accumulate a second event that you wish to occur ten times per second.

\[\Rightarrow\] At each tick, do an 'a' with probability \(\frac{1}{10}\)

\[\Rightarrow\] and do a 'b' with probability \(\frac{9}{10}\).

OVER-Sampling (2)

- We can use this idea to deal with rules having two rate constants.

\[\Rightarrow\] a 'fast' clock for inter-molecular instances.

\[\Rightarrow\] Will lead to null events.

\[\Rightarrow\] if most instances are inter- [i.e., the system is in a 'percolated state'], null events will be rare.

\[\Rightarrow\] if most instances are inter-, most events will be null — not good?

- A context-specific strategy for the simulator.

\[\Rightarrow\] Maybe dynamically switch between over-sampling and other methods?

\[\Rightarrow\] or bound over-sampling dynamically?