plan for my classes

• 18/09
 • categories, monos, push-outs
 • expansive rewriting
 • forward propagation
 • homework assignment #1

• 2/10
 • pull-backs, pull-back complements
 • restrictive rewriting
 • backward propagation
 • homework exercise #2

• 16/10
 • graph-based knowledge representation
 • the KAMI bio-curation system
 • choice of research papers to present
expansive rewriting
intuitively

• to rewrite a graph G, need a rule $r : L \rightarrow R$, and a matching $m : L \rightarrow G$
 • intuition [from last week]: replace the image (via m) of L in G by R
 • R may contain nodes/edges that are not in the image (via r) of L: these are added to G
 • R may contain nodes that are the image (via r) of multiple nodes in L: these are merged in G
• if the graph G is typed, i.e. we have $h : G \rightarrow T$, these changes may propagate
 • we must specify which added nodes/edges can already be typed in T [requires a choice]
 • if nodes of different types are merged, their types must also be merged [canonical]
• we are seeking an abstract means to express these aspects of rewriting
 • uses the language of category theory…
categories

- a **pre-order** on a set S is a binary relation R on S such that
 - reflexive: for all $s \in S$, $s R s$
 - transitive: for all $s_1, s_2, s_3 \in S$, if $s_1 R s_2$ and $s_2 R s_3$ then $s_1 R s_3$
 - can also be seen as a kind of simple directed graph: where there’s a path, there’s an edge
 - $s_1, s_2 \in S$ are **isomorphic**, written $s_1 \cong s_2$, iff $s_1 R s_2$ and $s_2 R s_1$
 - quotienting by \cong yields a partial order, i.e. antisymmetric: for all $s_1, s_2 \in S$, if $s_1 R s_2$ and $s_2 R s_1$ then $s_1 = s_2$

- a **category** is a collection of objects and a collection of arrows
 - let A, B, \ldots range over objects and f, g, \ldots range over arrows
 - an arrow has a source and a target object, i.e. $f : A \to B$

where
- each object A has an **identity** arrow $1_A : A \to A$
- each pair of arrows $f : A \to B$ and $g : B \to C$ [target of $f =$ source of g] has a **composite** $g \circ f : A \to C$

satisfying
- identity: for all $f : A \to B$, $f \circ 1_A = f = 1_B \circ f$
- associativity: for all $f : A \to B$, $g : B \to C$ and $h : C \to D$, $h \circ (g \circ f) = (h \circ g) \circ f$

- some examples
 - sets and functions, groups and their homomorphisms, vector spaces and linear maps, …
 - (simple) graphs and their homomorphisms
 - why does $g \circ f$ preserve edges?
arrows

• some special kinds of arrows
 • \(f : A \rightarrow B \) is an **isomorphism** iff, for some \(g : B \rightarrow A \), \(g \cdot f = 1_A \) and \(f \cdot g = 1_B \)
 • \(f : A \rightarrow B \) is a **monomorphism** iff, for any pair \(g,h : X \rightarrow A \) of arrows, if \(f \cdot g = f \cdot h \) then \(g = h \)
 • in words, \(f \) makes no identifications
 • alternatively, \(f \) is post-cancellable
 • to assert that \(f \) is a mono(morphism), we write \(f : A \rightarrowtail B \)
 • in the category **Set** of sets and functions, the monos are precisely the injective functions
 • the notion of inclusion / subset
 • monos in **Grph**, the category of graphs and homomorphisms, are used in graph rewriting
 • the notion of **matching**

• quick exercises
 • if \(f : A \rightarrow B \) is an isomorphism, the arrow \(g \) is unique [and is usually written \(f^{-1} \)]
 • if \(f : A \rightarrowtail B \) and \(g : B \rightarrowtail C \) then \(g \cdot f : A \rightarrowtail C \) [monos are closed under composition of arrows]
 • suppose \(f : A \rightarrow B \), \(g : B \rightarrowtail C \) and \(g \cdot f : A \rightarrowtail C \)
 • show that \(f : A \rightarrowtail B \)
 • give an example where \(g \) is not a mono

• sub-categories
 • sub-collections of objects and arrows closed under composition
 • **Set** is the category of sets and injective functions
given a category C and an object T, the slice category C / T is defined as
- objects: all arrows $f : X \rightarrow T$ of C
- given objects $f : X \rightarrow T$ and $g : Y \rightarrow T$, an arrow from f to g is an arrow $h : X \rightarrow Y$ of C satisfying $f = g \cdot h$
- in words, objects are arrows and arrows are commuting triangles

what is Set / T?

what is $\text{Set}^\triangleright / U$?
categorical constructions

- many familiar constructions on sets can be defined purely in terms of categories
 - no need to refer to ‘sets’ or ‘elements’ or ‘functions’, &c.
 - just refers to (objects and) arrows and the properties that we require [the concept of mono is a simple example]
 - this use of category theory abstracts away from the specific details of the objects and arrows
 - a way to identify expected, or unexpected, commonalities between different mathematical theories
 - also a labour-saving technique: a result that can be proved purely categorically can easily be transferred to many specific concrete settings
- very often, and always in this class, this works as follows
 - we have some (given) starting data: objects and arrows
 - we state a construction: some more objects and arrows [that we want to exist]
 - we state the universal property that the construction must satisfy: a specification of the construction
- easiest to understand with an example!
 - given two objects A and B
 - we ask that there exists an object C and two arrows $i_A : A \to C$ and $i_B : B \to C$
 - satisfying: for any (other) object D and arrows $f : A \to D$ and $g : B \to D$, there exists a unique arrow $h : C \to D$
 such that $f = h \cdot i_A$ and $g = h \cdot i_B$

- what are C and the arrows $i_A : A \to C$ and $i_B : B \to C$?
 - in the category of sets and inclusions
 - in Set
 - in category theory, this construction is called a co-product
push-outs

generalized co-products

• in the category of sets and inclusions, i.e. $\text{Set}^\rightarrow / U$
 • if $A \subseteq B$ and $A \subseteq C$ then $D := B \cup C$ is (still) the smallest set such that $B \subseteq D$ and $C \subseteq D$
 • same as on the previous slide [where $A = \emptyset$]
• in the category of sets and monos, i.e. $\text{Set}^>$
 • if $f : A \rightarrow B$ and $g : A \rightarrow C$ then $D := A + (B - A) + (C - A)$ is the smallest set with $g' : B \rightarrow D$ and $f' : C \rightarrow D$ such that $g' \circ f = f' \circ g$
 • varying the set A varies the result D — unlike in $\text{Set}^> / U$ [which is a rather strange special case; why?]
 • if $A = \emptyset$, we get $D = B + C$
 • as A gets bigger, we quotient $B + C$ by identifying pairs of elements

• the general notion of push-out
 • given a pair of arrows $f : A \rightarrow B$ and $g : A \rightarrow C$
 • we want an object D and a pair of arrows $g' : B \rightarrow D$ and $f' : C \rightarrow D$ such that $g' \circ f = f' \circ g$
 • satisfying: for any (other) object E and arrows $g'' : B \rightarrow E$ and $f'' : C \rightarrow E$, there exists a unique arrow $h : D \rightarrow E$ such that $g'' = h \circ g'$ and $f'' = h \circ f'$

• what happens in Set? and in Grph?
expansive rewriting
formally

- assume a category with all push-outs
 - or at least “push-outs over monos”
- a rule is an arrow $r : L \rightarrow R$ and a matching is a mono $m : L \rightarrow G$
 - take the push-out of r and m: $m^+ : R \rightarrow G^+$ and $r^+ : G \rightarrow G^+$
 - G^+ is the updated version of G
 - m^+ is a matching of the RHS of r into G^+
 - r^+ is the instantiation of r to G

- we have seen that \textbf{Set} and \textbf{Grph} have all push-outs
 - intuitive that \textbf{Set} / T and \textbf{Grph} / T also do
 - but how do we prove this categorically [i.e. for all slice categories]?
two technical points

• the **pasting lemma** for push-outs
 • if the two inner squares are push-outs then so is the outer rectangle

 \[
 \begin{array}{ccc}
 \text{A} & \rightarrow & \text{C} & \rightarrow & \text{E} \\
 \downarrow & & \downarrow & & \downarrow \\
 \text{B} & \rightarrow & \text{D} & \rightarrow & \text{F}
 \end{array}
 \]

 • proof?

• the **image factorization** of an arrow \(f : A \rightarrow B\)
 • an object \(I\) and an arrow \(m : I \rightarrow B\) such that
 • there exists an arrow \(e : A \rightarrow I\) such that \(f = m \cdot e\)
 • for any other \(e' : A \rightarrow I'\) and \(m' : I' \rightarrow B\) such that \(f = m' \cdot e'\), there is a unique \(i : I \rightarrow I'\) such that \(m = m' \cdot i'\)
 • in words, \(I\) is the **smallest** object through which we can factorize \(f\) with a mono \(I \rightarrow B\)
propagation

\[G \rightarrow T \]

- suppose we have a rule \(r : L \rightarrow R \), a matching \(m : L \rightarrow G \) and a typing \(h : G \rightarrow T \)
 - we want to apply \(r \) to \(G \) via \(m \) — but we may not be able to type all of these changes in \(T \)
 - we split \(r \) into two phases:
 - the strict phase, which makes all changes to \(G \) that can be typed by \(T \)
 - the propagation phase, which performs the remaining changes to \(G \) and propagates these changes to \(T \)

\[L \xrightarrow{r} R \]

\[h \cdot m \]

\[T \leftarrow S \]

- let us note that
 - by the pasting lemma, the two-stage rewrite of \(G \) is equivalent to using \(r \) directly
 - the propagation phase is not, in general, a rule application
 - the 'matching' is not a mono!
 - we can construct a bona fide rule application using the image factorization of the arrow \(S \rightarrow T \)
propagation

general case

• if we have multiple levels of typing, e.g. \(G \rightarrow T \rightarrow U \)
 • given a rule to be applied to \(G \), we need one factorization for \(T \) and another for \(U \)
 • these factorizations must be compatible: the strict phase for \(U \) includes that for \(T \)

• if we have branching, e.g. \(T \leftarrow G \rightarrow U \)
 • we still need one factorization for \(T \) and another for \(U \)
 • no compatibility is needed at this level — but will be required later if we “close the diamond”

• in general
 • all graphs below \(G \) are susceptible to be modified by propagation
 • update sink graphs first; then the pre-sinks; &c.
 • this allows to perform \textbf{in-place} update
 • more efficient, at least for in-memory implementations
 • our implementation in Neo4j proceeds in the other direction
 • breaks typing at each rewrite
 • but we can exploit the QL to \textbf{repair} locally — and this performs propagation