recap

• 18/09
 • categories, monos, push-outs
 • expansive rewriting
 • forward propagation
 • homework assignment #1 [for Monday]

• 2/10
 • pull-backs, pull-back complements
 • restrictive rewriting
 • backward propagation
 • homework exercise #2

• 16/10
 • graph-based knowledge representation
 • the KAMI bio-curation system
 • choice of research papers to present
When we update G, we split the rule into two phases: **strict** & **canonical/propagation**.

- The **strict phase** updates G in such a way that the result is still typed by T.
- The **propagation phase** completes the update of G and afflicts the same update to T.

Rule #1: add an element that can be typed by T.

- Only need the strict phase of rewriting — no propagation to T.

Rule #2: add an element that cannot be typed by T.

- Only need the propagation phase — strict update is trivial.

Rule #3: merge two elements of different types in T.

- No strict phase but all the red and the elements turn purple! Side-effect.

Combined rule:

- We see the same side-effect but if we merge rules all of the same type no side-effect occurs and this can be performed in the strict phase of rewriting.
plan for my classes

• 18/09
 • categories, monos, push-outs
 • expansive rewriting
 • forward propagation
 • homework assignment #1
• 2/10
 • pull-backs, pull-back complements
 • restrictive rewriting
 • backward propagation
 • homework exercise #2
• 16/10
 • graph-based knowledge representation
 • the KAMI bio-curation system
 • choice of research papers to present
restrictive rewriting
intuitively

• to rewrite a graph T, need a rule $r : L \leftarrow R$, and a matching $m : L \rightarrow T$
 • intuition [from first week]: replace the image (via m) of L in G by R
 • R may contain nodes/edges that are not in the image (via r) of L: these are deleted from T
 • R may contain nodes that are the image (via r) of multiple nodes in L: these are cloned in T
• if T types a graph G, i.e. we have $h : G \rightarrow T$, these changes may propagate
 • if nodes of T are deleted, all their instances in G must also be deleted [canonical]
 • we must specify which nodes of G, typed by a cloned node, are still uniquely typed [requires a choice]
• we are seeking an abstract means to express these aspects of rewriting
 • again uses the language of category theory…
duality
two for the price of one

• if \(C \) is a category, the opposite (or dual) category \(C^{\text{op}} \) is defined by:
 • the objects of \(C^{\text{op}} \) are the same as those of \(C \) and, if \(f : A \to B \) is an arrow in \(C \), \(f^{\text{op}} : B \to A \) is an arrow in \(C^{\text{op}} \)
 • the identity \(1^{\text{op}} : A \to A \) in \(C^{\text{op}} \) is the identity \(1 : A \to A \) in \(C \) and, if \(g : B \to C \) in \(C \), the composition in \(C^{\text{op}} \) is defined as \(f^{\text{op}} \circ^{\text{op}} g^{\text{op}} := (g \circ f)^{\text{op}} : C \to A \)

• if \(A \to A + B \leftarrow B \) is a co-product in \(C \), what is it in \(C^{\text{op}} \) ?

• all categorical concepts have a dual
 • the dual of initial object is terminal object: an object \(I \) with exactly one arrow from \(X \) to \(I \) [any \(X \)]
 • the dual of mono is epi: a pre-cancellable arrow
 • in Set, epis are precisely the surjective functions
 • the dual of a slice category is a co-slice category: arrows from \(T \)
 • the dual of co-product is product
 • the dual of push-out is…
pull-backs [not pull-ins!]
generalized products

• in the category of sets and inclusions, i.e. $\text{Set}^> / U$
 • if $B \subseteq D$ and $C \subseteq D$ then $A := B \cap C$ is the largest set such that $A \subseteq B$ and $A \subseteq C$
 • same as on the previous slide [where $D = U$]
• in the category of sets and functions, i.e. Set
 • if $f : B \to D$ and $g : C \to D$ then $A := \{(b,c) \in B \times C \mid f(b) = g(c)\}$ is the largest set with $g' : A \to B$ and $f' : A \to C$
 such that $g \cdot f' = f \cdot g$'
 • varying the set D varies the result A
 • if $D = \{\cdot\}$, we get $A = B \times C$
 • as D gets bigger, we pick out smaller sub-objects of $B \times C$ by violating $f(b) = g(c)$ in more cases

• the general notion of pull-back
 • given a pair of arrows $f : B \to D$ and $g : C \to D$
 • we want an object A and a pair of arrows $g' : A \to B$ and $f' : A \to C$ such that $g \cdot f' = f \cdot g'$
 • satisfying: for any (other) object X and arrows $g'' : X \to B$ and $f'' : X \to C$, there exists a unique arrow $h : X \to A$ such that $g'' = g' \cdot h$ and $f'' = f' \cdot h$

• what happens in Grph?
limits and co-limits

- pull-backs and push-outs are examples of (respectively) limits and co-limits
 - limit = “the largest … such that …” vs. co-limit = “the smallest … such that …”
 - formal definition requires new concepts: functor, natural transformation and functor category

- given categories C and D, the functor category D^C is defined by:
 - objects are functors $F : C \to D$, i.e. homomorphisms of categories
 - formally, two mappings — one from the objects and one from the arrows of C to those of D — satisfying, for all objects A of C, $F(1_A) = 1_{F(A)}$ and, for all arrows $f : A \to B$ and $g : B \to C$ of C, $F(g \circ f) = F(g) \cdot F(f)$
 - arrows are natural transformations $\alpha : F \to G$, i.e. homomorphisms of functors $F,G : C \to D$
 - formally, a mapping from the objects A of C to arrows $\alpha_A : F(A) \to G(A)$ satisfying, for all arrows $f : A \to B$ of C, $G(f) \cdot \alpha_A = \alpha_B \cdot F(f)$

- limits, formally
 - a J-diagram is a functor $D : J \to C$ where J is (typically) a finite category, a ‘shape’
 - the functor category C^J is the category of J-diagrams
 - a cone to D is an object C of C and arrows $\alpha_J : C \to D(J)$ such that $D(f) \cdot \alpha_J = \alpha_K$ [for $f : J \to K$ in J]
 - an arrow of C^J of the form $\alpha : \Delta C \to D$ where $\Delta J : J \to C$ is the constant functor [all objects to C, all arrows to 1_C]
 - a universal cone to D is a cone $v : \Delta U \to D$ such that, for any cone to D, there is a unique arrow $f : C \to U$ of C satisfying $v_J \cdot f = \alpha_J$ [for all objects J of J]
 - a universal cone to D, if it exists, is called a limit of the diagram D — and is unique up to unique isomorphism
 - co-limits use functors from J^{op} to C

- provide convenient means for the definition of a large class of universal properties
 - however, not all universal properties can be captured by limits or co-limits…
pull-back complements

• in the category of sets and inclusions, i.e. $\textbf{Set}^> / \mathcal{U}$
 • if $A \subseteq B$ and $B \subseteq D$ then $C := D - (B - A)$ is the largest set such that $A \subseteq C$, $C \subseteq D$ and $A = B \cap C$

• general notion of pull-back complement
 • given a pair of composable arrows $g : B \to D$ and $f : A \to B$
 • we want an object C and arrows $g' : A \to C$ and $f' : C \to D$ such that the square is a PB
 • satisfying...
 • NB: a PBC is neither a limit, nor a co-limit, although it has more the flavour of a limit

• in \textbf{Set}, PBCs do not always exist
 • a question of integer division
 • however, if $g : B \rightharpoonup D$, then $C := (D - \text{im}(g)) + A$ [can always integer divide by 1]
 • this is a sufficient [but not necessary] condition for PBCs to exist in \textbf{Set}: it has “PBCs over monos”

• in \textbf{Grph}, we also have all PBCs over monos
 • uses the definition in \textbf{Set} for nodes and edges
restrictive rewriting
abstractly

• assume a category with all pull-back complements over monos
• a rule is an arrow \(r : L \leftarrow R \) and a matching is a mono \(m : L \twoheadrightarrow G \)
 • take the pull-back complement of \(r \) and \(m : R \twoheadrightarrow G \) and \(r' : G \leftarrow G' \)
 • \(G' \) is the updated version of \(G \)
 • \(m' \) is a matching of the RHS of \(r \) into \(G' \)
 • \(r' \) is the instantiation of \(r \) to \(G \)

• we have seen that \textbf{Set} and \textbf{Grph} have all pull-backs and all pull-back complements over monos
 • intuitive that \textbf{Set} / \(T \) and \textbf{Grph} / \(T \) also do
 • but how do we prove this categorically [i.e. for all slice categories]?
 • the proof for PBs is in the notes
 • optional [easy] exercise: prove this for PBCs
sesqui-push-out rewriting

- two rules with a common source object and a restrictive instance of the first
 - $L \leftarrow P \rightarrow R$ and $L \rightarrow G$
 - restrictive rewrite yields $P \rightarrow G$
 - expansive rewrite yields $R \rightarrow G^+$

- [less general] variants exist
 - single-push-out requires $L \leftarrow P$: deletion [with side-effects] but no cloning
 - double-push-out requires $L \leftarrow P$ + concrete conditions to prevent deletion side-effects
- in practice, sesqui-PO provides all the typical rewriting operations required
 - includes deletion and merging side-effects — so rule application need not be reversible
 - this can be managed, without preventing cloning, e.g.
two technical points
pasting lemmas + mono preservation

• pasting for PBs and PBCs
 • if the left inner square is a PB then the outer rectangle is a PB if, and only if, the inner right square is a PB
 • if the left inner square is a PBC then the outer rectangle is a PBC if, and only if, the inner right square is a PBC

• mono preservation [homework #2]
 • in a PB square, if f is a mono then so is f'

\[\begin{array}{cccc}
E & \longleftarrow & B & \longleftarrow & A \\
\downarrow & & \downarrow & & \downarrow \\
F & \longleftarrow & D & \longleftarrow & C \\
\end{array}\]

\[\begin{array}{cccc}
B & \longleftarrow & A \\
\downarrow & & \downarrow \\
D & \longleftarrow & C \\
\end{array}\]
another technical point

PBCs are stable under PB

• if we have a commutative cube where
 • the front face is a PBC
 • the left, bottom and back faces are PBs

then
 • the right and top faces are PBs
 • the back face is a PBC

• proof: homework #2
propagation

$G \rightarrow T$

• suppose we have a rule $r : L \leftarrow R$, a matching $m : L \rightarrow T$ and a typing $h : G \rightarrow T$
 • we want to apply r to T via m — but…
 • we split r into two phases:
 • the strict phase, which makes all changes to T for which we can still type G
 • the propagation phase, which performs the remaining changes to T and propagates these changes to G

• let us note that
 • by the pasting lemma, the two-stage rewrite of T is equivalent to using r directly
 • we can compute the propagation to G
 • by direct PB
 • by constructing the lifting of r to G
 • these methods are equivalent by stability of PBCs under PB
• generalizes to arbitrary hierarchies
rule #1: clone an element and know how to retype G

\[L \xrightarrow{\xi} \{\ldots\} \]
\[T \xrightarrow{\{\ldots\}} \{\ldots\} \]

this homomorphism specifies how to retype G with T-

\[G \xrightarrow{\{\ldots\}} L \xrightarrow{\{\ldots\}} \{\ldots\} \]
\[T \leftarrow \{\ldots\} \]

only uses the strict phase of rewriting

rule #2: clone an element with propagation

\[\{\ldots\} \]
\[\{\ldots\} \]
\[\{\ldots\} \]

only uses the propagation phase — the strict phase is trivial

Rule #3: delete an element

\[L \xrightarrow{\{\ldots\}} \{\ldots\} \]
\[T \leftarrow \{\ldots\} \]

in multi-set rewriting, no side-effect because the green elements of G have no incident edges — but, in general, this would delete an edge from (say) a green rule to a purple rule.
propagation

general case

• if we have multiple levels of typing, e.g. $G \rightarrow T \rightarrow U$
 • given a rule to be applied to U, we need one factorization for T and another for G
 • these factorizations must be compatible: the strict phase for G includes that for T

• if we have branching, e.g. $G \rightarrow U \leftarrow T$
 • we still need one factorization for T and another for G
 • no compatibility is needed at this level — but will be required later if we “close the diamond”

• in general
 • all graphs above U are susceptible to be modified by propagation
 • update source graphs first; then the pre-sources; &c.
 • this allows to perform in-place update
 • more efficient, at least for in-memory implementations
 • our implementation in Neo4j proceeds in the other direction
 • breaks typing at each rewrite
 • but we can exploit the QL to repair locally — and this performs propagation