Stochastic Simulation

- In explicit state simulation,
 - one transition per reaction/rule
 - each transition has a numerical weight
 - number of instances (multiplied by rate constant)
 - updating weights is just a matter of doing some arithmetic

- In implicit state simulation,
 - one transition per instance
 - weight = rate constant
 - must update transitions, not weights:
 - all new transitions → pick a transition
 - remove invalid transitions

[Conceptually, two phases: negative & positive update]

Multi-sums (1)

- recall the notion of pushout:
 - Given $A \rightarrow_{B} C$

- construct $B \rightarrow_{C} [st. the square commutes]

- there is a unique $D \rightarrow_{E}$ such that

- the triangles $B \rightarrow_{D} C$ commute

Multi-sums (2)

- if A is an initial object, i.e. there is
 - exactly one arrow from A to B
 - for all objects B

- a span $A \rightarrow_{B} \rightarrow_{C}$ is essentially just

- a choice of two objects, B and C, and
 - the pushout is known as the sum, or
 - coproduct, written $B + C$

Multi-sums (3)

- Given B and C, it is sometimes the case that

- there is not a unique object $B + C$ but a
 - family of objects D_i:

- given B, C, we construct a family

- of co-spans such that any

- factors uniquely through exactly one member of the family:

- The family of co-spans $B \rightarrow_{D_i} C$ is

- called the multi-sum (or multi-coproduct) of
 - B and C
Examples

- In the category of sets and total functions, the co-product of \(A \) and \(C \) is the disjoint union \(B \cup C \).
- Similarly for the categories of simple graphs or rick graphs and homomorphisms.
- In the category of sets and injective functions, the co-product breaks down:

5. Gluings and Overlaps

- In the category of rick graphs and names, any pair of objects, \(A \) and \(B \), has a multi-sum.
- We describe the different ways that \(A \) and \(B \) can be "glued together" to form a bigger graph.

\[A \rightarrow B \rightarrow \text{etc.} \]

- Any such gluing automatically induces an overlap (e.g., intersection of sets) by taking the pull-back:

\[O_i : \]

- We want to say that \(R_1 \) activates \(R_2 \) if, for some overlap \(O_i \), the further pull-back satisfies:

\[O_i \not\cong \text{not an isomorphism} \]

- This means that \(O_i \) was modified in some way by the action of \(R_1 \).

9. Activation (5)

- Activation is a relation between roles.
- Given \(R_i = \frac{p}{R_i} \), and \(q \): \(\frac{p}{R_2} \).
- We first construct the multi-sum at \(R_1, R_2 \):

\[R_1 \rightarrow \ldots \rightarrow R_2 \]

- Then we construct the overlap of each \(G_i \):

\[G_i \]

- We want to say that \(R_1 \) activates \(R_2 \) iff.

\[R_1 \not\cong \text{not an isomorphism} \]

- So a new instance of \(R_2 \) has been created...
Activation

- Another way to say this:
 - If the error Q_i^+ is an isomorphism,

 This means that O_i^+ is contained in P_i, the
 produced region of vi

 $\implies O_i^+$ was not modified by vi (by def.)

Inhibition

- Compute, as above, but for L_i and L_j:

 \[
 O_i^+ \quad \overset{L_i}{\to} \quad P_i \quad \overset{L_j}{\to} \quad O_j^-
 \]

 and then:

 \[
 P_i \quad \overset{L_j}{\to} \quad O_j^-
 \]

 \implies iso: $O_i^+ \cong O_j^-$ is contained in P_i
 and will not be modified by vi

 $\not\implies$ not iso: O_i^+ will be modified

 vi inhibits v_j iff, for some i, $O_i^+ \neq 0_i^-$

NB:

- Activation and inhibition are just relations between rules; but, if we know that particular G_i^+ (or G_i^-) for which $O_i^+ \neq 0_i^-$:
 - Any matching that factors thru G_i^+ (keep G_i^-) will be created/destroyed by the action of vi
 - This is the basis of how we 'update weights' for graph-based/implicit state simulation

Implicit State Simulation

- Given rules $v_i \ldots v_n$ where

 \[
 v_i := \overset{L_i}{\to} P_i \overset{L_j}{\to} O_j^-
 \]

 we compute the multi-sums

 \[
 G_{ij}^+: = R_i \overset{L_j}{\to} L_j
 \]

 \[
 G_{ij}^-: = L_i \overset{L_j}{\to} L_j
 \]

 (j ranges over the family)

 and remove all induced $m_{ij}: L_j \to G$

 1. Pick a rule v_i and a matching $m_i: L_i \to G$
 2. For all j,k, consider all factorizations $m_{ijk}: G_{ijk} \to G$
 3. Rewrite G to G' using m_i
 4. For all j,k, consider all factorizations $m_{ijk}: G_{ijk} \to G'$
 5. For all j,k, consider all factorizations $m_{ijk}: G_{ijk} \to G'$

ISS

- As a first optimization, keep only those members of the G_{ijk}^+ / G_{ijk}^- families that have a productive / counter-productive overlap: i.e.

 $0_{ij}^+ \neq 0_{jk}^-$, $0_{ij}^- \neq 0_{jk}^+$

 - 'Productive' / 'counter-productive'
 - If v_i does not activate v_j, there will be no productive overlap
 - If v_i does not inhibit v_j, there will be no counter-productive overlap

ISS (3)

- Negative update

ISS (4)

- Positive update