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0. Introduction



Why model signaling?
• Widely believed that many diseases arise 

from perturbed signaling networks 

• cancer, diabetes, neurodegenerative diseases, ... 

• mutations, gene amplification / ablation, ... 

• These networks are mind-bogglingly 
complicated 

• 10s or even 100s of thousands of PPIs 

• impossible to ‘figure out’ in your head



Context-dependence
• The ‘rules’ of signaling are universal ... 

• ‘Grb2 binds Sos’ is an in vitro fact 

• cell-centric perspective: no spatial/tissue context 

• ... but perturbations affect their meaning 

• which proteins and mutants are present: static 
context that changes slowly: ‘cell type’ 

• transient presence of ligands: dynamic context; 
can feed back on the static: ‘signaling’



Traditional modeling 
(of dynamical systems’ behavior)

• Primarily a ‘mental’ activity 

• specify the key variables and their inter-
dependencies resulting from perturbations 

• this amounts to making model-level assumptions 
during model construction 

• Comes from physics 

• a model is a synthesis of our understanding 

• tends to be a (small and) closed world



Traditional modeling 
(of dynamical systems’ behavior)

• Biology needs a different notion of model 

• we cannot hope to ‘understand’ signaling 
networks a priori: too big, complex, ... 

• we need models precisely in order to achieve 
this understanding! 

• models must be (large and) open worlds: 
extensible, modifiable and perturbable 

• do not want a different model for each cell type



‘Open’ modeling?
• What if ... 

• a model could be assembled from many 
independently-conceived elements; 

• and model-level assumptions be discovered a 
posteriori ? 

• Enables incremental model development 

• ‘easy’ to modify, and add new, elements

↝ rule-based modeling



Rule-based modeling
• A way of conveniently defining a large 

class of dynamical systems 

• based on an agent abstraction and rewriting rules 

• An agent has an interface of sites 

• loci of binding interaction (with optional states) 

• A rule specifies local conditions for 

• binding / unbinding and state changes



Rule-based modeling
• The state of a system is a ‘site graph’ 

• a graph whose nodes are sites 

• agents are equivalence classes of nodes 

• Applying a rule effects a rewrite 

• induces a state transition 

• initial state + rules define a transition system 

• transitions can be weighted: CTMC



The agent abstraction
• Agent = formal protein 

• a name, e.g. Grb2, Shc 

• a set of binding sites with optional states: 

%agent: Grb2(SH3n, SH2, SH3c) 
%agent: Shc(PTB, Y317~u~p) 

Grb2 SH2

SH3c

SH3n PTBY317 Shc
p

u



Site graphs
• Connected component = formal complex 

• ‘Deterministic’ in the sense that 

• at most one edge/stub from any given site 

• at most one state on any given site

Grb2SH3n

SH3c

Y317

p
Shc PTBSH2



Rules

• Express all and only that which is necessary 
for a single interaction, e.g. 

Grb2(SH2), Shc(Y317~p) -> Grb2(SH2!0), Shc(Y317~p!0)

• A formal expression of what biochemists say

Grb2Grb2 ShcShc SH2SH2 Y317Y317

pp



• A rule-based model consists of 

• a collection of rules (with rate constants) 

• initial conditions (how many of each agent) 

• Implicit-state stochastic semantics 

• tacit assumptions, e.g. ‘EGFR and Grb2 
compete for Shc’, constrain the state space 

• KaSim v3: developed by J. Krivine & J. Feret 
[available on github]

Rule-based modeling



Static model-dependence

• In a given model, some rules may never be 
applicable 

• this can be detected by static analysis 

• reveals implicit constraints / invariants 

• does not need rate constants 

• KaSA [in development]: J. Feret 

• previously complx [available on github]



Causal model-dependence

• Rules can be causally related 

• a firing of r1 may enable a firing of r2 

• a firing of r1 may disable a firing of r2 

• These relations are model-independent 

• but only some are active in a given model 

• rules experience different causal pressure in 
different models: changes the variety of possible 
causal paths [detected by KaSim v3]



Complementary analyses

• Static analysis of a model can 

• confirm a negative assertion, e.g. ‘this complex 
cannot be formed’ 

• refute a positive assertion 

• Causal analysis can 

• confirm a positive assertion, by exhibiting the 
causal paths leading to it [uses simulation] 

• refute a negative assertion



In summary...
• Rules are model elements 

• document necessary conditions for individual 
protein-protein interactions 

• Models are collections of rules 

• static and causal analyses can render explicit 
their implicit assumptions 

• rules intrinsically have model-dependent 
meaning [reflects context-dependence]



I. Binding equilibrium



You need to be able to...

• Create and edit plain text files 

• TextEdit, emacs, ... 

• Run the Kappa simulator from the command line 

• sh> KaSim -i AB.ka -e 1000 -p 500 

• Plot the output using gnuplot (or other software) 

• gnuplot> plot “data.out” using 1:3 with lines



Binding equilibrium 
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AB.ka 
http://perso.ens-lyon.fr/russell.harmer/CR11/AB.ka

# agent declarations
%agent: A(b)
%agent: B(a)

# some useful variables
%var: 'fast' 10
%var: 'medium' 1
%var: 'slow' 0.1
%var: 'BND' 0.00001
%var: 'BRK' 0.1
%var: 'MOD' 0.1

# binding rule
A(b), B(a) -> A(b!0), B(a!0) @ 'BND' # * 'fast'

# unbinding rule
A(b!0), B(a!0) -> A(b), B(a) @ 'BRK' # * 'slow'

# initial state
%init: 1000 A(b)
%init: 1000 B(a)

# count the number of AB complexes
%obs: 'AB' A(b!1), B(a!1)

http://perso.ens-lyon.fr/russell.harmer/CR11/AB.ka


Running KaSim

• We must specify: 

• the input file: -i 

• the number of events or time: -e or -t 

• number of output time points: -p 

• e.g. 

• sh> KaSim -i AB.ka -e 3000 -p 500



Displaying output

• KaSim outputs to the file data.out 

• you can change this with the -o option 

• Run gnuplot from the command line 

• sh> gnuplot 

• gnuplot> set term ‘x11’ 

• Then 

• gnuplot> plot “data.out” using 1:2 with lines





Questions
• Time to equilibrium? 

• What does ‘equilibrium’ even mean in a stochastic 
setting like this? 

• Run the model a second time: 

• gnuplot> replot “data.out” using 1:2 with lines 

• Run the model for longer: 

• sh> KaSim -i AB.ka -t 100 -p 500





Questions

• What happens if you 

• increase the binding rate by a factor of 10 ? 

• increase the binding and the unbinding rate by a factor of 
10 ?







Briefly…
• By equilibrium thermodynamics: 

• By detailed balance of the kinetic equations: 

• i.e.  koff / kon  =  Kd  ∝  e-∆G/T

Kd := [A]eq [B]eq / [AB]eq  ∝  e-∆G/T

kon [A]eq [B]eq = koff [AB]eq



Perturbations

• Modify rate constants during simulation ! 

•sh> KaSim -i AB.ka -t 30 -p 1000

%mod: [T] > 10 do 'BND' := 'BND' * 10 
%mod: [T] > 20 do 'BND' := 'BND' * 10





Questions

• What happens if you introduce a conflict ? 

• a new agent C(a) 

• rules for binding and unbinding of C to/from A





About bi-molecular 
rate constants

• kdet  has dimension conc-1time-1 

• usually M-1s-1 where M = mol / l 

• sometimes use ‘mass concentration’, e.g. g/l 

• kstoch has dimension time-1 

• kdet / V has units mol-1s-1 

• kstoch  = kdet / AV has units molecule-1s-1 

(where V = volume in l  and  A = Avagadro)



About rate constants

• For eukaryotes, AV ~ 1012 

• typical kdet ~ 107 - 109 M-1s-1 

• so typical kstoch ~ 10-5 - 10-3 molecule-1s-1 

• Unbinding is volume-independent 

• kdet = kstoch ~ 0.1 s-1



Rescaling 
(a useful trick)

•%var: ‘vol’ 1.0 

• Modify birth and binding rates and variables: 
A(b),B(a) -> A(b!0),B(a!0) @ ‘BND’/‘vol’ 

-> A(b) @ ‘BIRTH’*‘vol’ 

%init: 1000*‘vol’ A(b) 

• Decreasing vol preserves system dynamics 

• increases fluctuations; speeds up simulation 

• What about increasing vol ?



II. Enzyme-Substrate



Enzyme-Substrate

• Agent signatures 

%agent: E(s) 

%agent: S(s~0~1) 

• Observable 

•%obs: S(s~1)



ES.ka
%agent: E(s)
%agent: S(s~0~1)

# E(s), S(s) -> E(s!0), S(s!0) @ 0.0001
E(s), S(s~0) -> E(s!0), S(s~0!0) @ 0.001
# E(s), S(s~1) -> E(s!0), S(s~1!0) @ 0.00001

E(s!0), S(s!0) -> E(s), S(s) @ 0.1
# E(s!0), S(s~0!0) -> E(s), S(s~0) @ 0.01
# E(s!0), S(s~1!0) -> E(s), S(s~1) @ 1.0

E(s!0), S(s~0!0) -> E(s!0), S(s~1!0) @ 0.1
# E(s!0), S(s~0!0) -> E(s), S(s~0) @ 0.1
# E(s!0), S(s~0!0) -> E(s), S(s~1) @ 0.1

%init: 5000 E(s)
%init: 5000 S(s~0)

%obs: 'free active substrate' S(s~1)
%obs: 'total active substrate' S(s~1?)



Questions

• Try different relative amounts of E and S 

• roughly equal 

• excess S (e.g. 50-100×E) 

• How does this affect the rate of production of P ? 

• saturation ?



E = 100, S = 5000 
k1 = 0.001, k-1 = k2 = 0.1



E = 5000, S = 5000 
k1 = 0.001, k-1 = k2 = 0.1



Variants

• Easy to build small variants of a model 

• rules that allow E to bind to P [product inhibition] 

• make unbinding sensitive to the state of S 

• E(s!0), S(s~0!0) -> E(s), S(s~1) [MOD + BRK]



QSSA
• Corresponding system of ODEs cannot be solved 

analytically: 

• What can we say about the rate of the overall 
reaction ?



QSSA

(why?)



QSSA



http://www.pps.univ-paris-diderot.fr/~russ/AIV/ESMM.ka

http://www.pps.univ-paris-diderot.fr/~russ/AIV/ES.ka


QSSA

• A very good approximation under appropriate 
conditions; see 

• Lee Segel. On the validity of the steady state assumption 
of enzyme kinetics. BMB, 1988. 

• Lee Segel and Marshall Slemrod. The quasi steady state 
assumption: a case study in perturbation. SIAM review, 
1989.



Quasi-equilibrium

• A different approximation 

• leads to the same equation for the time evolution of P 

• but with a different constant: Kd := k-1 / k1



Quasi-equilibrium







Rule refinement

• A rule does not have to mention all the sites of the 
agents in the rule 

• many possible contexts may be possible 

• e.g. ‘E’ can unbind ’S’ in state 0 or 1 

• Refine a rule by adding some (or all) of the 
‘missing’ context 

• can evaluate the relative importance of sub-cases 

• can introduce kinetic subtleties: co-operativity...



Neutral refinement

• A refinement is neutral if the refined rules 
collectively behave exactly like the original rule 

• all sub-cases have the same rate constant 

• Provides a baseline against which kinetic 
adjustments can be made 

• e.g. kinases tend to have lower affinity for their products 
than their substrates



A different viewpoint
• Refinements as (small) perturbations of a rule 

• expose some previously ‘hidden’ bit of context to enable 
‘kinetic adjustment’ 

• can only be done in a rule-based setting 

• A plausible mechanism by which a signaling 
network could be subject to selection 

• increases the number of ‘tunable parameters’ 

• could give rise to very opaque systems…



ID



Evolution



A specificity puzzle





The rules!
• U1 and U2 bind the same site s of X 

• D1 and D2 bind the same site t of X 

• X cannot distinguish U1 and U2, nor D1 and D2 

• Specificity: 

• U1 should activate D1 

• U2 should activate D2 

• some ‘leakage’ is permitted (not too much!)



%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 10.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 1000*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
'U_X_op' U(s!0), X(s!0) -> U(s), X(s) @ 1.0
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

%init: 'nU' U #(s,u~2)
%init: 'nX' X

%var: 'X?' X(s~1?) # total active X
%var: 'X' X(s~1) # free active X
%obs: 'total active X' 'X?'/'vol'
%obs: 'free active X' 'X'/'vol'

%mod: [T]>600 do 'U_X_op':=0.1
%mod: [T]>1200 do 'U_X_op':=0.01
%mod: [T]>1800 do 'U_X_op':=0.001
%mod: [T]>2400 do 'U_X_op':=0.0001



What do you think?

• The perturbations gradually reduce the rate of 
unbinding of U and X, i.e. the system gets stickier 
over time 

• How does this affect the amount of active X? 

• and what about free active X?





Let’s add D !

• Write 3 rules expressing: 

• active X, bound or not to U, can bind inactive D 

• X and D can unbind 

• active X, bound or not to U, can activate D 

• Note: X(s~1?) means ‘X with site s in state 1 but 
unspecified binding status 

• Add a 4th rule 

D(t~1) -> D(t~0) @ 0.1



%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 10.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 1000*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
'U_X_op' U(s!0), X(s!0) -> U(s), X(s) @ 1.0
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

X(s~1?,t), D(t~0) -> X(s~1?,t!0), D(t~0!0) @ 'BND'/'vol'
X(t!0), D(t!0) -> X(t), D(t) @ 'BRK'
X(s~1?,t!0), D(t~0!0) -> X(s~1?,t!0), D(t~1!0) @ 'MOD'

D(t~1) -> D(t~0) @ 0.1

%init: 'nU' U
%init: 'nX' X
%init: 'nD' D

%var: 'X?' X(s~1?) # total active X
%var: 'X' X(s~1) # free active X
%obs: 'total active X' 'X?'/'vol'
%obs: 'free active X' 'X'/'vol'





Specificity?

• How can we obtain the desired specificity? 

• X cannot distinguish U1 from U2 

• but something has to be different...



Specificity?

• How can we obtain the desired specificity? 

• X cannot distinguish U1 from U2 

• but something has to be different... 

• What about their binding affinities?



Specificity?

• How can we obtain the desired specificity? 

• X cannot distinguish U1 from U2 

• but something has to be different... 

• What about their binding affinities? 

• U1 could have low affinity 

• and U2 have high affinity...



%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 100.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 500*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
U(s!0,u~1), X(s!0) -> U(s,u~1), X(s) @ 1.0
U(s!0,u~2), X(s!0) -> U(s,u~2), X(s) @ 0.0001
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

X(s~1,t), D(t~0,d~1) -> X(s~1,t!0), D(t~0!0,d~1) @ 'BND'/'vol'
X(s~1!_,t), D(t~0,d~2) -> X(s~1!_,t!0), D(t~0!0,d~2) @ 'BND'/'vol'
X(t!0), D(t!0) -> X(t), D(t) @ 'BRK'
X(s~1?,t!0), D(t~0!0) -> X(s~1?,t!0), D(t~1!0) @ 'MOD'

D(t~1) -> D(t~0) @ 0.1

%init: 'nU' U # U1
%init: 'nU' U(s,u~2) # U2
%init: 'nX' X
%init: 'nD' D # D1
%init: 'nD' D(t~0,d~2) # D2

Liquid

Sticky

Bound

Free D1

D2



U1 only



U2 only



What do you think?

• What happens if both U1 and U2 are present?



U1 + U2 + excess X



What do you think?

• What if we reduce the amount of X by 10-fold? 

• 100 instead of 1000 agents



U1 + U2 + limited X



What do you think?

• Why do U2/D2 ‘win’ over U1/D1? 

• one input trumps the other 

• like a transistor...



Conclusion?

• Cell signalling is complicated! 

• Kappa provides novel tools to analyze their subtle 
and counter-intuitive dynamics...



END


