
Kappa tutorial
Russ Harmer

LIP, CNRS & ENS Lyon

0. Introduction

Why model signaling?
• Widely believed that many diseases arise

from perturbed signaling networks

• cancer, diabetes, neurodegenerative diseases, ...

• mutations, gene amplification / ablation, ...

• These networks are mind-bogglingly
complicated

• 10s or even 100s of thousands of PPIs

• impossible to ‘figure out’ in your head

Context-dependence
• The ‘rules’ of signaling are universal ...

• ‘Grb2 binds Sos’ is an in vitro fact

• cell-centric perspective: no spatial/tissue context

• ... but perturbations affect their meaning

• which proteins and mutants are present: static
context that changes slowly: ‘cell type’

• transient presence of ligands: dynamic context;
can feed back on the static: ‘signaling’

Traditional modeling
(of dynamical systems’ behavior)

• Primarily a ‘mental’ activity

• specify the key variables and their inter-
dependencies resulting from perturbations

• this amounts to making model-level assumptions
during model construction

• Comes from physics

• a model is a synthesis of our understanding

• tends to be a (small and) closed world

Traditional modeling
(of dynamical systems’ behavior)

• Biology needs a different notion of model

• we cannot hope to ‘understand’ signaling
networks a priori: too big, complex, ...

• we need models precisely in order to achieve
this understanding!

• models must be (large and) open worlds:
extensible, modifiable and perturbable

• do not want a different model for each cell type

‘Open’ modeling?
• What if ...

• a model could be assembled from many
independently-conceived elements;

• and model-level assumptions be discovered a
posteriori ?

• Enables incremental model development

• ‘easy’ to modify, and add new, elements

↝ rule-based modeling

Rule-based modeling
• A way of conveniently defining a large

class of dynamical systems

• based on an agent abstraction and rewriting rules

• An agent has an interface of sites

• loci of binding interaction (with optional states)

• A rule specifies local conditions for

• binding / unbinding and state changes

Rule-based modeling
• The state of a system is a ‘site graph’

• a graph whose nodes are sites

• agents are equivalence classes of nodes

• Applying a rule effects a rewrite

• induces a state transition

• initial state + rules define a transition system

• transitions can be weighted: CTMC

The agent abstraction
• Agent = formal protein

• a name, e.g. Grb2, Shc

• a set of binding sites with optional states:

%agent: Grb2(SH3n, SH2, SH3c)
%agent: Shc(PTB, Y317~u~p)

Grb2 SH2

SH3c

SH3n PTBY317 Shc
p

u

Site graphs
• Connected component = formal complex

• ‘Deterministic’ in the sense that

• at most one edge/stub from any given site

• at most one state on any given site

Grb2SH3n

SH3c

Y317

p
Shc PTBSH2

Rules

• Express all and only that which is necessary
for a single interaction, e.g.

Grb2(SH2), Shc(Y317~p) -> Grb2(SH2!0), Shc(Y317~p!0)

• A formal expression of what biochemists say

Grb2Grb2 ShcShc SH2SH2 Y317Y317

pp

• A rule-based model consists of

• a collection of rules (with rate constants)

• initial conditions (how many of each agent)

• Implicit-state stochastic semantics

• tacit assumptions, e.g. ‘EGFR and Grb2
compete for Shc’, constrain the state space

• KaSim v3: developed by J. Krivine & J. Feret
[available on github]

Rule-based modeling

Static model-dependence

• In a given model, some rules may never be
applicable

• this can be detected by static analysis

• reveals implicit constraints / invariants

• does not need rate constants

• KaSA [in development]: J. Feret

• previously complx [available on github]

Causal model-dependence

• Rules can be causally related

• a firing of r1 may enable a firing of r2

• a firing of r1 may disable a firing of r2

• These relations are model-independent

• but only some are active in a given model

• rules experience different causal pressure in
different models: changes the variety of possible
causal paths [detected by KaSim v3]

Complementary analyses

• Static analysis of a model can

• confirm a negative assertion, e.g. ‘this complex
cannot be formed’

• refute a positive assertion

• Causal analysis can

• confirm a positive assertion, by exhibiting the
causal paths leading to it [uses simulation]

• refute a negative assertion

In summary...
• Rules are model elements

• document necessary conditions for individual
protein-protein interactions

• Models are collections of rules

• static and causal analyses can render explicit
their implicit assumptions

• rules intrinsically have model-dependent
meaning [reflects context-dependence]

I. Binding equilibrium

You need to be able to...

• Create and edit plain text files

• TextEdit, emacs, ...

• Run the Kappa simulator from the command line

• sh> KaSim -i AB.ka -e 1000 -p 500

• Plot the output using gnuplot (or other software)

• gnuplot> plot “data.out” using 1:3 with lines

Binding equilibrium

BA
b a

A B
b akon

A(b) B(a)

B(a!1)A(b!1)
koff

,

,

AB.ka
http://perso.ens-lyon.fr/russell.harmer/CR11/AB.ka

agent declarations
%agent: A(b)
%agent: B(a)

some useful variables
%var: 'fast' 10
%var: 'medium' 1
%var: 'slow' 0.1
%var: 'BND' 0.00001
%var: 'BRK' 0.1
%var: 'MOD' 0.1

binding rule
A(b), B(a) -> A(b!0), B(a!0) @ 'BND' # * 'fast'

unbinding rule
A(b!0), B(a!0) -> A(b), B(a) @ 'BRK' # * 'slow'

initial state
%init: 1000 A(b)
%init: 1000 B(a)

count the number of AB complexes
%obs: 'AB' A(b!1), B(a!1)

http://perso.ens-lyon.fr/russell.harmer/CR11/AB.ka

Running KaSim

• We must specify:

• the input file: -i

• the number of events or time: -e or -t

• number of output time points: -p

• e.g.

• sh> KaSim -i AB.ka -e 3000 -p 500

Displaying output

• KaSim outputs to the file data.out

• you can change this with the -o option

• Run gnuplot from the command line

• sh> gnuplot

• gnuplot> set term ‘x11’

• Then

• gnuplot> plot “data.out” using 1:2 with lines

Questions
• Time to equilibrium?

• What does ‘equilibrium’ even mean in a stochastic
setting like this?

• Run the model a second time:

• gnuplot> replot “data.out” using 1:2 with lines

• Run the model for longer:

• sh> KaSim -i AB.ka -t 100 -p 500

Questions

• What happens if you

• increase the binding rate by a factor of 10 ?

• increase the binding and the unbinding rate by a factor of
10 ?

Briefly…
• By equilibrium thermodynamics:

• By detailed balance of the kinetic equations:

• i.e. koff / kon = Kd ∝ e-∆G/T

Kd := [A]eq [B]eq / [AB]eq ∝ e-∆G/T

kon [A]eq [B]eq = koff [AB]eq

Perturbations

• Modify rate constants during simulation !

•sh> KaSim -i AB.ka -t 30 -p 1000

%mod: [T] > 10 do 'BND' := 'BND' * 10
%mod: [T] > 20 do 'BND' := 'BND' * 10

Questions

• What happens if you introduce a conflict ?

• a new agent C(a)

• rules for binding and unbinding of C to/from A

About bi-molecular
rate constants

• kdet has dimension conc-1time-1

• usually M-1s-1 where M = mol / l

• sometimes use ‘mass concentration’, e.g. g/l

• kstoch has dimension time-1

• kdet / V has units mol-1s-1

• kstoch = kdet / AV has units molecule-1s-1

(where V = volume in l and A = Avagadro)

About rate constants

• For eukaryotes, AV ~ 1012

• typical kdet ~ 107 - 109 M-1s-1

• so typical kstoch ~ 10-5 - 10-3 molecule-1s-1

• Unbinding is volume-independent

• kdet = kstoch ~ 0.1 s-1

Rescaling
(a useful trick)

•%var: ‘vol’ 1.0

• Modify birth and binding rates and variables:
A(b),B(a) -> A(b!0),B(a!0) @ ‘BND’/‘vol’

-> A(b) @ ‘BIRTH’*‘vol’

%init: 1000*‘vol’ A(b)

• Decreasing vol preserves system dynamics

• increases fluctuations; speeds up simulation

• What about increasing vol ?

II. Enzyme-Substrate

Enzyme-Substrate

• Agent signatures

%agent: E(s)

%agent: S(s~0~1)

• Observable

•%obs: S(s~1)

ES.ka
%agent: E(s)
%agent: S(s~0~1)

E(s), S(s) -> E(s!0), S(s!0) @ 0.0001
E(s), S(s~0) -> E(s!0), S(s~0!0) @ 0.001
E(s), S(s~1) -> E(s!0), S(s~1!0) @ 0.00001

E(s!0), S(s!0) -> E(s), S(s) @ 0.1
E(s!0), S(s~0!0) -> E(s), S(s~0) @ 0.01
E(s!0), S(s~1!0) -> E(s), S(s~1) @ 1.0

E(s!0), S(s~0!0) -> E(s!0), S(s~1!0) @ 0.1
E(s!0), S(s~0!0) -> E(s), S(s~0) @ 0.1
E(s!0), S(s~0!0) -> E(s), S(s~1) @ 0.1

%init: 5000 E(s)
%init: 5000 S(s~0)

%obs: 'free active substrate' S(s~1)
%obs: 'total active substrate' S(s~1?)

Questions

• Try different relative amounts of E and S

• roughly equal

• excess S (e.g. 50-100×E)

• How does this affect the rate of production of P ?

• saturation ?

E = 100, S = 5000
k1 = 0.001, k-1 = k2 = 0.1

E = 5000, S = 5000
k1 = 0.001, k-1 = k2 = 0.1

Variants

• Easy to build small variants of a model

• rules that allow E to bind to P [product inhibition]

• make unbinding sensitive to the state of S

• E(s!0), S(s~0!0) -> E(s), S(s~1) [MOD + BRK]

QSSA
• Corresponding system of ODEs cannot be solved

analytically:

• What can we say about the rate of the overall
reaction ?

QSSA

(why?)

QSSA

http://www.pps.univ-paris-diderot.fr/~russ/AIV/ESMM.ka

http://www.pps.univ-paris-diderot.fr/~russ/AIV/ES.ka

QSSA

• A very good approximation under appropriate
conditions; see

• Lee Segel. On the validity of the steady state assumption
of enzyme kinetics. BMB, 1988.

• Lee Segel and Marshall Slemrod. The quasi steady state
assumption: a case study in perturbation. SIAM review,
1989.

Quasi-equilibrium

• A different approximation

• leads to the same equation for the time evolution of P

• but with a different constant: Kd := k-1 / k1

Quasi-equilibrium

Rule refinement

• A rule does not have to mention all the sites of the
agents in the rule

• many possible contexts may be possible

• e.g. ‘E’ can unbind ’S’ in state 0 or 1

• Refine a rule by adding some (or all) of the
‘missing’ context

• can evaluate the relative importance of sub-cases

• can introduce kinetic subtleties: co-operativity...

Neutral refinement

• A refinement is neutral if the refined rules
collectively behave exactly like the original rule

• all sub-cases have the same rate constant

• Provides a baseline against which kinetic
adjustments can be made

• e.g. kinases tend to have lower affinity for their products
than their substrates

A different viewpoint
• Refinements as (small) perturbations of a rule

• expose some previously ‘hidden’ bit of context to enable
‘kinetic adjustment’

• can only be done in a rule-based setting

• A plausible mechanism by which a signaling
network could be subject to selection

• increases the number of ‘tunable parameters’

• could give rise to very opaque systems…

ID

Evolution

A specificity puzzle

The rules!
• U1 and U2 bind the same site s of X

• D1 and D2 bind the same site t of X

• X cannot distinguish U1 and U2, nor D1 and D2

• Specificity:

• U1 should activate D1

• U2 should activate D2

• some ‘leakage’ is permitted (not too much!)

%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 10.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 1000*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
'U_X_op' U(s!0), X(s!0) -> U(s), X(s) @ 1.0
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

%init: 'nU' U #(s,u~2)
%init: 'nX' X

%var: 'X?' X(s~1?) # total active X
%var: 'X' X(s~1) # free active X
%obs: 'total active X' 'X?'/'vol'
%obs: 'free active X' 'X'/'vol'

%mod: [T]>600 do 'U_X_op':=0.1
%mod: [T]>1200 do 'U_X_op':=0.01
%mod: [T]>1800 do 'U_X_op':=0.001
%mod: [T]>2400 do 'U_X_op':=0.0001

What do you think?

• The perturbations gradually reduce the rate of
unbinding of U and X, i.e. the system gets stickier
over time

• How does this affect the amount of active X?

• and what about free active X?

Let’s add D !

• Write 3 rules expressing:

• active X, bound or not to U, can bind inactive D

• X and D can unbind

• active X, bound or not to U, can activate D

• Note: X(s~1?) means ‘X with site s in state 1 but
unspecified binding status

• Add a 4th rule

D(t~1) -> D(t~0) @ 0.1

%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 10.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 1000*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
'U_X_op' U(s!0), X(s!0) -> U(s), X(s) @ 1.0
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

X(s~1?,t), D(t~0) -> X(s~1?,t!0), D(t~0!0) @ 'BND'/'vol'
X(t!0), D(t!0) -> X(t), D(t) @ 'BRK'
X(s~1?,t!0), D(t~0!0) -> X(s~1?,t!0), D(t~1!0) @ 'MOD'

D(t~1) -> D(t~0) @ 0.1

%init: 'nU' U
%init: 'nX' X
%init: 'nD' D

%var: 'X?' X(s~1?) # total active X
%var: 'X' X(s~1) # free active X
%obs: 'total active X' 'X?'/'vol'
%obs: 'free active X' 'X'/'vol'

Specificity?

• How can we obtain the desired specificity?

• X cannot distinguish U1 from U2

• but something has to be different...

Specificity?

• How can we obtain the desired specificity?

• X cannot distinguish U1 from U2

• but something has to be different...

• What about their binding affinities?

Specificity?

• How can we obtain the desired specificity?

• X cannot distinguish U1 from U2

• but something has to be different...

• What about their binding affinities?

• U1 could have low affinity

• and U2 have high affinity...

%agent: U(s,u~1~2)
%agent: X(s~0~1,t)
%agent: D(t~0~1,d~1~2)

%var: 'vol' 100.0
%var: 'BND' 0.0001
%var: 'BRK' 0.1
%var: 'MOD' 0.1
%var: 'nU' 100*'vol'
%var: 'nX' 1000*'vol'
%var: 'nD' 500*'vol'

U(s), X(s~0) -> U(s!0), X(s~0!0) @ 'BND'/'vol'
U(s!0,u~1), X(s!0) -> U(s,u~1), X(s) @ 1.0
U(s!0,u~2), X(s!0) -> U(s,u~2), X(s) @ 0.0001
U(s!0), X(s~0!0) -> U(s!0), X(s~1!0) @ 'MOD'

X(s~1) -> X(s~0) @ 0.01

X(s~1,t), D(t~0,d~1) -> X(s~1,t!0), D(t~0!0,d~1) @ 'BND'/'vol'
X(s~1!_,t), D(t~0,d~2) -> X(s~1!_,t!0), D(t~0!0,d~2) @ 'BND'/'vol'
X(t!0), D(t!0) -> X(t), D(t) @ 'BRK'
X(s~1?,t!0), D(t~0!0) -> X(s~1?,t!0), D(t~1!0) @ 'MOD'

D(t~1) -> D(t~0) @ 0.1

%init: 'nU' U # U1
%init: 'nU' U(s,u~2) # U2
%init: 'nX' X
%init: 'nD' D # D1
%init: 'nD' D(t~0,d~2) # D2

Liquid

Sticky

Bound

Free D1

D2

U1 only

U2 only

What do you think?

• What happens if both U1 and U2 are present?

U1 + U2 + excess X

What do you think?

• What if we reduce the amount of X by 10-fold?

• 100 instead of 1000 agents

U1 + U2 + limited X

What do you think?

• Why do U2/D2 ‘win’ over U1/D1?

• one input trumps the other

• like a transistor...

Conclusion?

• Cell signalling is complicated!

• Kappa provides novel tools to analyze their subtle
and counter-intuitive dynamics...

END

