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Concrete nodes

❖ Forget for now that observables are intentionally 
described

❖ Assume an infinite set of nodes     (meta-variables u,v,w)

❖ Nodes are sorted according to 

❖ Assume also a signature map

❖ We define                         as             (i.e number of sites)

N

⌃ : K ! N

 : N ! {A,B,C, . . . } = K

intf : N ! N ⌃ � 



Concrete edges

❖ An edge is a two element set           where   

❖ where 

❖ two edges are connected if they share a node

❖ A (concrete) site graph is a set of edges.

❖ We use a special kind ‘free’ (with arity 1)

{p, q} p, q 2 N⇥ N

p = (u, i) =) i < intf(u)
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We define pre(U) �= L and post(U) = (L\N) [ P .

3 Coherent graphs

Not all subsets of E have a biological interpretation. Edges typically denote a
physical contact between two entities (the nodes) and therefore two edges that
have a common end should be equal. The graphs depicted in the example above
are, for instance, incoherent as they are conflicting on the site 1 of node u.

The domain of consistent graphs can be seen as the coherent space G gen-
erated by (E , _

^E). The graphs of G are sets of edges (they are the cliques of
the graph induced by the coherence relation) that satisfy the coherence relation
_
^E ✓ E ⇥ E defined as:

8e, e0 2 E .e _
^
E

e0 () e \ e0 = ; _ e = e0

We say that G abstracts H if G ✓ H. Conversely we say that H refines G
whenever H ✓ G. Say that G is connected if for all e, e0 2 G e ./+ e0. We also
say that G is complete whenever:

8u 2 N,8i < intf(u),9e 2 G.(u, i) 2 e

4 Observables

An observation is a predicate Obs : G ! 2. For any graph G 2 G, we say that
G is an observable whenever Obs(G) holds. For all G 2 G, let OG

�= {H ✓ G |
Obs(H)}. A state is pair s = hM,OM i where M 2 G is a complete graph called
the state mixture.

Assume a state s = hM,OM i. After an update U = (L, N, P ) with L ✓ M ,
s is updated to s0 = hM 0 = M\N ] P,OM 0i.

Property 1. Let U = (L, N, P ), for all M !
U

M 0 we have:

OM 0 = (OM\�M (N)) ]�M 0(P )

with, for all H 2 {N,P}:

�M (H) �= {O 2 G | Obs(O) ^ (H \O) 6= ; ^ (H [O) ✓ M}

Property 1 essentially states a newly active observable O (resp. inactive)
necessarily has a non trivial intersection with the graph P that was just added
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Concrete update

❖ An update U is a triple (L,N,P) where L,N,P are set of 
edges and such that                and 

❖ An instance of U in a graph G is defined as 

Notes on incremental update for site graph

rewriting

P. Boutillier T. Ehrhard J. Krivine

1 Tuning to Kappa

Let N be a set of nodes with meta-variables {u, v, w, . . . }. Nodes are sorted
according to the map  : N ! K where K = {A, B, C, . . . , free} is a finite
set of node kinds with a distinguished element free. A signature ⌃ : K ! N
maps a kind to a (finite) sequence of sites identified by natural numbers, with
⌃(free) = 1. Let intf : N ! N be the interface of a node, defined as intf = ⌃�.

An edge e is a two elements set e = {p, q} where p, q 2 N⇥N and such that
p = (u, i) implies i < intf(u). Two edges e and e0 are connected if e 6= e0 and
there exists (u, i) 2 e and (u, j) 2 e0 such that i 6= j for some node u. We write
e ./ e0 whenever e is connected to e0.

Let E(N, ,⌃) denote the set of possible edges over N,  and ⌃.
In the following with fix N, ,⌃ and K, and simply use E . Subsets of E are

called ⌃-graphs.

2 Updates

An update is a triple U = (L, N, P ), with L, N, P ✓ E , such that N ✓ L and
P \ L = ;.

We call N and P respectively the negative and positive part of the update.
For all G such that L ✓ G and P \ G = ;, we define an application of U to G
as the transition G !

U

G0 with G0 = (G\N) [ P . For instance consider the
update U = (L, N, P ):
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which induces the transition G !
U

G0:
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Concrete update instance (example)

Notes on incremental update for site graph

rewriting

P. Boutillier T. Ehrhard J. Krivine

1 Tuning to Kappa

Let N be a set of nodes with meta-variables {u, v, w, . . . }. Nodes are sorted
according to the map  : N ! K where K = {A, B, C, . . . , free} is a finite
set of node kinds with a distinguished element free. A signature ⌃ : K ! N
maps a kind to a (finite) sequence of sites identified by natural numbers, with
⌃(free) = 1. Let intf : N ! N be the interface of a node, defined as intf = ⌃�.

An edge e is a two elements set e = {p, q} where p, q 2 N⇥N and such that
p = (u, i) implies i < intf(u). Two edges e and e0 are connected if e 6= e0 and
there exists (u, i) 2 e and (u, j) 2 e0 such that i 6= j for some node u. We write
e ./ e0 whenever e is connected to e0.

Let E(N, ,⌃) denote the set of possible edges over N,  and ⌃.
In the following with fix N, ,⌃ and K, and simply use E . Subsets of E are

called ⌃-graphs.
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We define pre(U) �= L and post(U) = (L\N) [ P .

3 Coherent graphs

Not all subsets of E have a biological interpretation. Edges typically denote a
physical contact between two entities (the nodes) and therefore two edges that
have a common end should be equal. The graphs depicted in the example above
are, for instance, incoherent as they are conflicting on the site 1 of node u.

The domain of consistent graphs can be seen as the coherent space G gen-
erated by (E , _

^E). The graphs of G are sets of edges (they are the cliques of
the graph induced by the coherence relation) that satisfy the coherence relation
_
^E ✓ E ⇥ E defined as:

8e, e0 2 E .e _
^
E

e0 () e \ e0 = ; _ e = e0

We say that G abstracts H if G ✓ H. Conversely we say that H refines G
whenever H ✓ G. Say that G is connected if for all e, e0 2 G e ./+ e0. We also
say that G is complete whenever:

8u 2 N,8i < intf(u),9e 2 G.(u, i) 2 e

4 Observables

An observation is a predicate Obs : G ! 2. For any graph G 2 G, we say that
G is an observable whenever Obs(G) holds. For all G 2 G, let OG

�= {H ✓ G |
Obs(H)}. A state is pair s = hM,OM i where M 2 G is a complete graph called
the state mixture.

Assume a state s = hM,OM i. After an update U = (L, N, P ) with L ✓ M ,
s is updated to s0 = hM 0 = M\N ] P,OM 0i.

Property 1. Let U = (L, N, P ), for all M !
U

M 0 we have:

OM 0 = (OM\�M (N)) ]�M 0(P )

with, for all H 2 {N,P}:

�M (H) �= {O 2 G | Obs(O) ^ (H \O) 6= ; ^ (H [O) ✓ M}

Property 1 essentially states a newly active observable O (resp. inactive)
necessarily has a non trivial intersection with the graph P that was just added
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Domain of consistent graphs0
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Observables

Complete graph M:

8u 2 M, 8i < intf(u) :
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Simple update
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necessarily has a non trivial intersection with the graph P that was just added

2

M’

O N

M

O \N O0 \ P

U=(L,N,P)

O’ P



Incremental update

M’

N

M
U=(L,N,P)

P

pre(U)=L post(U)=L\N+P

O\pre(U) O’\post(U)
O O’

O is removed by U iff  O\pre(U) was in M

O \N 6= ; =)
O’ is added by U iff  O\post(U) is in M’

O0 \ P 6= ; =)



Concrete Update Structure

Let

The concrete update structure is the meet semi lattice:

H�
U = {H | H = O\pre(U) ^O \NU 6= ;}

H+
U = {H | H = O\post(U) ^O \ PU 6= ;}

D± = (# H±
U ,⇢)



Concrete algorithm (neg. case)

O1\pre(U)

O2\pre(U)

O3\pre(U)

O5\pre(U)

M

O4\pre(U)

;G

H�
U = {H | H = O\pre(U) ^O \NU 6= ;}

R0 = H�
U X0 = ;G F0 = ; p = X0

Update domain for U=(L,N,P)

no sup

Xi+1 = Xi [ {e}

e 2 M

F i+1 = F i

if

else

if

p 2 H�
U

F i+1 = F i [ {p}

else
F ireturn

while true

e 62 Xi

Ri+1 = Ri\{H 2 Ri | H · · ·Xi+1 _H = Xi+1}

&& &&

b = max{G 2 D | G ✓ Xi ^G [ {e} 2 D}

p = b [ {e}

{e} 2 D && Ri 6= ;



Example

O1\pre(U)

O2\pre(U)

O3\pre(U)

O5\pre(U)

M

O4\pre(U)

;G X0

X1

X2

X3

X4

p

F0 = ;

F1 = ;

F2 = ;

F3 = {O3}

F4 = {O3, O2}



Re-rooting

O1\pre(U)

O2\pre(U)

O3\pre(U)

O5\pre(U)

M

O4\pre(U)

;G

pre(U)

O1

O2

O3

O4

O5

;G

M



Abstracting to finite domains



Abstract graphs

CGraph
Obj: concrete site graphs

Morphisms: inclusion

AGraph
[-]

6 Quotienting

Morphisms of G are  and site preserving maps that are injective on nodes, i.e
f(G) = H if and only if 8e 2 G, f(e) = {(x, i), (y, j)} implies e = {(x0, i), (y0, j)}
with (x) = (x0) ^ (y) = (y0). We use Mor(G) and Iso(G) to denote respec-
tively the set of morphisms and isomorphisms on G. For all G 2 G define:

[G] �= {H 2 G | 9� 2 Iso(G).�H = G}

and G/⇠
�= {[G] | G 2 G}. Let f, f 0 2 Mor(G) and �, 2 Iso(G). Morphisms of

G/⇠ are equivalence classes of morphisms of G defined by commuting diagrams
of the form:

G
f //

�
✏✏

=

H

 
✏✏

G0 f 0 // H 0

We use A, B,C, . . . as meta-variables for equivalence class of concrete graphs
and f, g, h for the equivalence class of concrete morphisms. We write f = [f ]
whenever f is the equivalence class of f .

Property 5. Let A
f! B and B

g! C, then there exists h 2 Mor(G/⇠) such that

A
h! C.

Proof. We define gf as the equivalence class of g f .

G
f //

�
✏✏

=

H

 
✏✏

G0 f 0 // H 0 g // K

Let CGraph be the category that has concrete graphs in G as objects and
morphisms in Mor(G) as arrows. We call AGraph the category that has elements
of G/⇠ as objects and arrows in Mor(G/⇠) as morphisms.

Property 6. [ ] defines a functor from CGraph to AGraph.

Property 7. AGraph describes a poset with initial element 0

Graph

= [;].

Proof. Transitivity is a direct consequence of AGraph being a category. For the
antisymmetry, suppose a

f! b and b
g! a. Because elements of f and g are

injective morphisms, both a and b have to be isomorphic and hence a = b.

Property 8. AGraph has pullbacks and pullback complements.
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Properties

Proof. For the pullback, a co-span hA f! C, B
g! Ci implies the existence of a

diagram:

G
f // H

�
✏✏

G0 g // H 0

for some f 2 f, g 2 g and � 2 Iso(G). We construct the pullback explicitly by
taking I = �f(G) \ g(G0) and we get:

G �f
''

I
h 88

h0 &&
> H 0

G0 g
77

Now we take h and h0 to be respectively the equivalence class of h and h0 and
hh, h0i is the pullback of hf, gi.

For the pullback complement, we are given the maps hC f! A
g! Di. There

exists G, G00 2 A and H 2 D such that we can build the diagram:

H

G0
g0 77
> G

� // G00

g
tt

I f

88
f 0
gg

for some f 2 f, g 2 g and � 2 Iso(G). By taking G0 = H\g�(G) [ g�f(I) we
obtain the pullback complement as the equivalence class of f 0 and g0.

However AGraph has no pushout as shown by this counter example:

0

0

G
11A B

0 0

x y

z t

N P

free free
11A

B

free

0

x
y

z t

C1
u

free

1

1
A B
x y

11A
B

free

0

0

x
y

z t

C1

u

free

2

1
1A

Bx
y

C1

u
2

G G’

2

2

2

A B

A B CC A B

C A B C A B C

1 01

0 1 01

01 0 1

1 0

1 0 01 0 1
0 1

Yet the above counter example is an instance of a multi-pushout in AGraph,
which can be defined in the following way.

Given a span ~f = hC f! A, C
f0! Bi, one defines the upper bounds of ~f as

a set of cospans C = {~gi = hA gi! Di, B
g0

i! Dii}ik that satisfy gif = g0if
0.

6

AGraph has no pushout

Furthermore, when this set of upper bounds satisfy the diagram below:

D

D0 . . . Di

!h

OO

. . . Dk

A

g

//

g0

??

gi

88

gk

::

B

g0

oo

g0k

``

g0i

gg

g00

dd

C

f

aa

f0

==

we say that S is the multi-pushout of ~f. Note that S may be empty.

Property 9. AGraph has multi-pushouts.

Proof. We prove that the multi-pushout of ~f �= hC f! A, C
f0! Bi is:

{hA g! D,B
g0! Di | f0f = g0g ^ 9G 2 A,9H 2 B.(D = [G [H] ^C = [G \H])}

In the concrete domain we have shown that in order to compute �G(H)
for an observable O it was su�cient to check that O\H was present in G (see
Lemma 1). In the quotiented domain represented by AGraph this has to be
reformulated.

For all A, B 2 G/⇠ such that A, B has an upper bound~f = hA f! D,B
f0! Di,

we define the complement of A in B relative to ~f, written A\~fB as the unique
object that closes the diagram below in a commuting manner:

0

Graph

//

✏✏
y

C

y
g0 //

g

✏✏

B

f0

✏✏
(A\~fB) // A

f
// D

7 Abstract domain

Given a predicate Cut : G/⇠ ! 2 that satisfies

8A, B 2 G/⇠ .Cut(A) ^A
f! B ) Cut(B) (12)

{A 2 G/⇠ | ¬Cut(A)} is finite (13)

the abstract (labelled) domain is a structure U] �= hA,_], �i where:

7

but multi-pushouts…



Abstract operations

\# : AGraph⇥ AGraph ! 2AGraph
A \# BA\#B

A B

0

\# : AGraph⇥ AGraph ! 2AGraph

Using pullback complements

A B

C

A · · ·#C B

A and B conflict on C 

9C.A · · ·#C B =) 8D 6= 0.A · · ·#D B

Rigidity: whenever A and B are connected,

Property:
A · · ·#C B =) C 6= 0

A \# B

A B

Using pullbacks

A BC D
0 0 1 0 1 0

A BC D
0 0 1 0

E

2

0 1

2

A B

A \# B?

A BC D
0 0 1 0 1 0

A BC D
0 0 1 0

E

2

0 1

2

A B

A\#B?

A B

A BC D
0 0 1 0 1 0

A BC D
0 0 1 0

E

1

0 1

2

9C.A · · ·#C B?



Concrete vs. abstract domain

Xi

Xi+1

{e}

[Xi]

;G 0AGraph

[{e}]

Because of multi-pushout, transitions in the concrete domain 
do not have a unique abstract counterpart.  

Concrete domain Abstract domain



Concretization

G

A Bi

G [ {e}
⇢

[�] [�]

Bk

+[{e}]

+[{e}]

Transition in the
concrete domain

Transitions in the
abstract domain

Only one makes 
the diagram commute



Abstract algorithm (neg. case)
H�

U = {H | H = O\pre(U) ^O \NU 6= ;}
R0 = H�

U X0 = ;G F0 = ; p = X0

A�
U = {A | A 2 [O]\#[pre(U)] ^ [O] \# [NU ] 6= {0AGraph}}

R0 = A�
U X0 = ;G F0 = ;

Xi+1 = Xi [ {e}

F i+1 = F i

if

else
F i+1 = F i [ {p}

else
F ireturn

while true

[{e}] 2 D#{e} 2 D && Ri 6= ; e 2 Mif e 62 Xi&& && && Ri 6= ;

Ri+1 = Ri\{A 2 Ri | A · · ·# [Xi+1] _A = [Xi+1]}

p = [X0]

p 2 A�
U

Unique!

Xi+1 = Xi [ {e}

e 2 M

F i+1 = F i

if

else

if

p 2 H�
U

F i+1 = F i [ {p}

else
F ireturn

while true

e 62 Xi

Ri+1 = Ri\{H 2 Ri | H · · ·Xi+1 _H = Xi+1}

&& &&

b = max{G 2 D | G ✓ Xi ^G [ {e} 2 D}

p = b [ {e}

b = max{[G] 2 D# | [G] < [Xi] ^ [G [ {e}] 2 D#}
p = b+ [{e}]



A compact representation

E S
01

E S
10 E

T

1

S

T

1

E S
01

E S

10

E S
01

ES'
1 0

E'S
0 1

E S
10

E

T

0

S

T

0

E S
E

01

0

E
1

E
0

S
0

E S

10

S
1

S
0

E S
10

E1

# # # #

E S
S

01

1

E S
10

E1 S 0
E S

01

ES'
1 0

S
0

E S
S

01

1
ES

1 0

ES
0 1

E S
10

E1 E S
E

01

0

S
1

...

E

S

E

S E

Mixture

1
2

3

4

5

{x:1}

0

0

0

0 1

1

1

1

1

0

T

T

{x:5,3} {} {x:3} {x:5,1} {}

{}{x:3}

x=y
x

y

x x x x x x

{x:3} {x:1} {x:5}

x

{} {} {} {}

x
{x:3} {} {} {} {}

2

3

x=y

yx


