Efficient update algorithm for Kappa graph rewriting

Incremental update

Jean Krivine CNRS and Univ. Paris Diderot PPS laboratory

Pierre Boutillier Harvard Medical School

Classical algorithm

Negative update

Positive update

Concrete nodes

- Forget for now that observables are intentionally described
- * Assume an infinite set of nodes N (meta-variables u,v,w)
- * Nodes are sorted according to $\kappa : \mathbb{N} \to \{A, B, C, ...\} = \mathbb{K}$
- * Assume also a signature map $\Sigma : \mathsf{K} \to \mathbb{N}$
- * We define intf : $\mathbb{N} \to \mathbb{N}$ as $\Sigma \circ \kappa$ (i.e number of sites)

Concrete edges

- * An *edge* is a two element set $\{p,q\}$ where $p,q \in \mathbb{N} \times \mathbb{N}$
- * where $p = (u, i) \implies i < intf(u)$
- * two edges are connected if they share a node
- * A (concrete) site graph is a set of edges.
- * We use a special kind 'free' (with arity 1)

Concrete update

- * An *update* U is a triple (L,N,P) where L,N,P are set of edges and such that $N \subseteq L$ and $P \cap L = \emptyset$
- * An *instance* of U in a graph G is defined as

Concrete update instance (example)

We define $\operatorname{pre}(\mathsf{U}) \stackrel{\Delta}{=} L$ and $\operatorname{post}(\mathsf{U}) = (L \setminus N) \cup P$.

C' Do Bain ce siscent graphs

The domain of consistent graphs can be seen as the *coherent space* \mathcal{G} generated by $(\mathcal{E}, \bigcirc_{\mathcal{E}})$. The graphs of \mathcal{G} are sets of edges (they are the *cliques* of the graph induced by the coherence relation) that satisfy the coherence relation $\bigcirc_{\mathcal{E}} \subseteq \mathcal{E} \times \mathcal{E}$ defined as:

$$\forall e, e' \in \mathcal{E}.e \underset{\mathcal{E}}{\bigcirc} e' \iff e \cap e' = \emptyset \lor e = e'$$

Observables

Complete graph M: $\forall u \in M, \forall i < intf(u) :$ $\exists e \in M.(u,i) \in e$

Observable:

Assume $Obs : \mathcal{G} \to 2$

 $\mathcal{O}_M = \{ G \subseteq M \mid \mathsf{Obs}(G) \}$

Example

The update problem

Update without exploring M_k !

Simple update

Property 1. Let U = (L, N, P), for all $M \rightarrow_U M'$ we have:

 $\mathcal{O}_{M'} = (\mathcal{O}_M \setminus \Delta_M(N)) \uplus \Delta_{M'}(P)$

with, for all $H \in \{N, P\}$:

 $\Delta_M(H) \stackrel{\Delta}{=} \{ O \in \mathcal{G} \mid \mathsf{Obs}(O) \land (H \cap O) \neq \emptyset \land (H \cup O) \subseteq M \}$

Incremental update

O is removed by U iff $O \setminus pre(U)$ was in M

O' is added by U iff $O \setminus post(U)$ is in M'

Concrete Update Structure

Let

$$\mathcal{H}_{U}^{-} = \{ H \mid H = O \setminus \mathsf{pre}(U) \land O \cap N_{U} \neq \emptyset \}$$
$$\mathcal{H}_{U}^{+} = \{ H \mid H = O \setminus \mathsf{post}(U) \land O \cap P_{U} \neq \emptyset \}$$

The concrete update structure is the meet semi lattice:

$$\mathcal{D}^{\pm} = (\downarrow \mathcal{H}_U^{\pm}, \subset)$$

Concrete algorithm (neg. case)

Update domain for U=(L,N,P)

 $\mathcal{H}_{U}^{-} = \{H \mid H = O \setminus \operatorname{pre}(U) \land O \cap N_{U} \neq \emptyset \}$ $\mathcal{R}^{0} = \mathcal{H}_{U}^{-} \qquad X^{0} = \emptyset_{\mathcal{G}} \qquad \mathcal{F}^{0} = \emptyset \qquad p = X^{0}$ while true
if $p \in \mathcal{H}_{U}^{-}$ $\mathcal{F}^{i+1} = \mathcal{F}^{i} \cup \{p\}$ else

 $\mathcal{F}^{i+1} = \mathcal{F}^i$

 $\begin{array}{ll} \mathbf{if} \ e \in M \ \&\& \ e \notin X^i \ \&\& \ \{e\} \in \mathcal{D} \ \&\& \ \mathcal{R}^i \neq \emptyset \\ \\ X^{i+1} = X^i \cup \{e\} \\ \\ \mathcal{R}^{i+1} = \mathcal{R}^i \backslash \{H \in \mathcal{R}^i \mid H \cdots X^{i+1} \lor H = X^{i+1}\} \\ \\ \mathbf{b} = \max\{G \in \mathcal{D} \mid G \subseteq X^i \land G \cup \{e\} \in \mathcal{D}\} \\ \\ p = b \cup \{e\} \end{array}$

else

return \mathcal{F}^i

Re-rooting

Abstracting to finite domains

Abstract graphs

Obj: concrete site graphs

Morphisms: inclusion

 $[G] \stackrel{\Delta}{=} \{ H \in \mathcal{G} \mid \exists \phi \in \mathsf{Iso}(\mathcal{G}).\phi H = G \}$

 $\begin{array}{ccc} G \xrightarrow{f} & H \\ [f] = & \phi \middle| & = & \downarrow \psi \\ & G' \xrightarrow{f'} & H' \end{array}$

Property 7. AGraph describes a poset with initial element $\mathbf{0}_{\mathsf{Graph}} = [\emptyset]$.

Property 8. AGraph has pullbacks and pullback complements.

Properties

AGraph has no pushout

but multi-pushouts...

Abstract operations

 $\exists C.A \cdots_C^{\#} B?$

 $A \backslash ^{\#} B?$

Concrete vs. abstract domain

Because of multi-pushout, transitions in the concrete domain do not have a unique abstract counterpart.

Concretization

Abstract algorithm (neg. case)

 $\mathcal{H}_{U}^{-} = \{ H \mid H = O \setminus \mathsf{pre}(U) \land O \cap N_{U} \neq \emptyset \}$ $\mathcal{R}^{0} = \mathcal{H}_{U}^{-} \qquad X^{0} = \emptyset_{\mathcal{G}} \qquad \mathcal{F}^{0} = \emptyset \qquad p = X^{0}$

while true

if $p \in \mathcal{H}_U^ \mathcal{F}^{i+1} = \mathcal{F}^i \cup \{p\}$

else

 $\mathcal{F}^{i+1} = \mathcal{F}^i$

$$\begin{array}{ll} \mathbf{if} \ e \in M \ \&\& \ e \notin X^i \ \&\& \ \{e\} \in \mathcal{D} \ \&\& \ \mathcal{R}^i \neq \emptyset \\ \\ X^{i+1} = X^i \cup \{e\} \\ \\ \mathcal{R}^{i+1} = \mathcal{R}^i \backslash \{H \in \mathcal{R}^i \mid H \cdots X^{i+1} \lor H = X^{i+1}\} \\ \\ b = \max\{G \in \mathcal{D} \mid G \subseteq X^i \land G \cup \{e\} \in \mathcal{D}\} \\ \\ p = b \cup \{e\} \end{array}$$

else

return \mathcal{F}^i

 $\mathcal{A}_U^- = \{A \mid A \in [O] \setminus \#[pre(U)] \land [O] \cap \#[N_U] \neq \{0_{\mathsf{AGraph}}\}\}$ $\mathcal{R}^0 = \mathcal{A}_U^ X^0 = \emptyset_{\mathcal{G}}$ $\mathcal{F}^0 = \emptyset$ $p = [X^0]$ while true if $p \in \mathcal{A}_U^ \mathcal{F}^{i+1} = \mathcal{F}^i \cup \{p\}$ else $\mathcal{F}^{i+1} = \mathcal{F}^i$ if $e \in M$ && $e \notin X^i$ && $[\{e\}] \in \mathcal{D}^{\#}$ && $\mathcal{R}^i \neq \emptyset$ $X^{i+1} = X^i \cup \{e\}$ $\mathcal{R}^{i+1} = \mathcal{R}^i \setminus \{ A \in \mathcal{R}^i \mid A \cdots^{\#} [X^{i+1}] \lor A = [X^{i+1}] \}$ $b = \max\{ [G] \in \mathcal{D}^{\#} \mid [G] < [X^i] \land [G \cup \{e\}] \in \mathcal{D}^{\#} \}$ $p = b + [\{e\}]$ Unique! else return \mathcal{F}^i

A compact representation

