Markov jump processes

Russ Harmer

A random variable X (t) is memoryless iff Pr(X > t1 +t2 | X > 1) =
Pr(X > t3). Equivalently, Pr(X > ¢; +t2) = Pr(X > ¢;) - Pr(X > t2) which
makes it clear that Pr(X > t9) is independent of ¢;.

What form can such an X take? Well, Pr(X >t + dt) can be written in
the form Pr(X > t)- (1 — « - dt), for some positive «, and so

Pr(X >t+dt) — Pr(X >1t)
dt

=—a-Pr(X >1t)

and therefore Pr(X > t) = e=*. The ezponential random variable exp(«),
where a € [0,00), is therefore the only memoryless (continuous) random
variable. Its pdfis o - e™* and cdf is Pr(exp(a) <t) =1 —e .

For our purposes, a Markov jump process is just a finite, directed (simple)
graph with positive real number weights on its edges. A state of the process
is thus characterized by a finite set of outgoing transitions 7;. The fact that
each transition is equipped with a rate o; necessarily means that that rate is
time-independent, ¢.e. memoryless, and so our process is time-homogeneous.

The choice of next state s’ and of time advance 5t is decided by the ‘race’
between the 7;s to make the first transition: given n exponential random
variables T ~ exp(«;), the probability that ‘T; has the smallest value and
that this is in [t;,t; + dt)’ is

[P > ti) - Pr(T; € Jtisti + dt)) = J[e ™" aje ' dt
J#i J#i
= 5 Heiajti dt
j
= e i dt

where a 1=}, a;.
The probability that ‘T; has the smallest value’ is therefore

ai/ etdt = X (1)
0

«

while the probability that ‘the smallest value is in [¢,t 4 dt)’ is

Zaje_o‘t dt = ae " dt. (2)
J



Equations (1) and (2) tell us that we do not strictly need to generate the
n individual samples t;. It is enough (i) to sample [0, a uniformly to select
the ‘winning’ ¢; and (ii) to sample exp(«) to generate the time advance dt
which is, morally, the phantom sample ¢; of the ‘winning’ T;. However, the
net effect would be the same as the pedestrian approach of generating all
t;s at each step and simply selecting the ‘winning’ ¢;.

An alternative alternative to the pedestrian approach is to try to keep
the same tjs (for all j # i; we have no choice but to generate a new t;)
after the transition to the new state s’. However, we also need to take into
account any changes to our parameters, i.e. those js for which o; # a;..
[This means that transitions must be labeled by the js as well.] For any
such j, the memoryless-ness of T; means that it is distributed according to

PI‘(Tj >ti+<t—ti)‘Tj >t) = PI‘(Tj >t —t;)
e—a]'(t—ti) (3)
and so, by (a shift and) rescaling, t} := 7 - (t; — t;) is distributed according
to

- t/afg /
e %G = e %! (4)
and the final new absolute timer t;- = t;- + t; is distributed according to

7&3- (tfti)

e as required.

Chemical kinetics

Consider a system of reactions R = ry,...7, acting on molecular species
S = S1y++-Sm-

A state of the system is a function s : S — Z§. Each r; has (i) a rate
constant v; € RT; (ii) a propensity function m; : (S — Z¢) — Z§; and an
update vector v; : S — 7.

The propensity function 7; tells us how many instances of r; exist in
a state. Its definition is obvious in the case of mono-molecular reactions
A — --- or hetero-bi-molecular reactions A + B — ---: in the first case, we
set 7(s) := s(A) whereas, in the second case, we set 7(s) := s(A) - s(B).

What about the case of homo-bi-molecular reactions A+ A — ---7 The
answer depends on whether we wish to assert a symmetric or an asymmetric
reaction mechanism: in the first case, each unordered pair of As gives rise to
an instance of the reaction; whereas, in the second case, each ordered pair
gives rise to an instance. We have no way to represent this difference; it
must be encoded in the numerical value of the rate constant once we have
chosen between 7(s) 1= s(A)(s(4) — 1) and 7(s) := 2s(A)(s(A) — 1).

We transform state s by firing reaction r; by setting s'(s;) := s(s;) +
vi(s;). This defines the transition 75, iff s'(s;) € Z§ for all s; € S, i.e. s is
a state; we assign 7,; the rate o;(s) 1= ;- mi(s).



Gillespie’s ‘first reaction’ method

Requires n random numbers per iteration:
e the timer t; in state s for each r; is distributed according to exp(c;(s));

e the next reaction to fire is the r; with the smallest timer.

Gillespie’s ‘direct’ method
Requires two random numbers per iteration:

e the time advance in state s is distributed according to exp(a(s)) where

a(s) =2 i(s);
a;(s)

e the next reaction to fire is r; with probability OR

This is equivalent to the ‘first reaction’ method by (2) and (1) above.

Gibson-Bruck’s ‘next reaction’ method

Uses absolute timers. Requires n random numbers for initialization; then
one per iteration:

e the next reaction to fire is the r; with the smallest timer;

e for j # i, update t;- = mil®) (tj —t;) + ts;

m;(s’)

e generate a new timer ¢, for r; according to exp(c;i(s’)).

This is equivalent to the ‘first reaction” method by (3) and (4) above. In
practice, only those ¢;s for which 7;(s) # m;(s") need be updated; identifying
these js is the role of Gibson-Bruck’s ‘dependency graph’.

The ‘next event’ method

Exploits the decomposition of «;(s) as v; - m;(s) to consider each instance
of a reaction (or event) as a transition in its own right with rate ;.

Requires 7(¢) := _, m;(¢) random numbers for initialization (where ¢ is
the initial state); and a few more at each iteration.

e the next event to fire is the one with the smallest timer;

e remove (uniformly at random) the appropriate number of conflicting
events;

e add the appropriate number of caused events with their appropriate
timers.



This is equivalent to the ‘next reaction’ method:

In state s, each r; has m;(s) events whose ‘winner’ has timer ¢; therefore
distributed according to exp(v; - m;(s)). After an r; event with overall win-
ning timer ¢; taking the system to state s’, we now have m;(s’) events whose
winner has timer t;-: this could be the same winner as before—if there is
no conflict between r; and r; or, more generally, if there is conflict but that
winning event was lucky enough not to be removed—and could even be a
particularly fast newly-created r; event—if r; causes r; events.

In any case, 7;(s’) = p+c where p is the number of preserved events and
¢ is the number of newly-created events. The winner of the preserved events
has timer ¢, ~ exp(v; - p) =: T, and the winner of the newly-created events
has timer t. ~ exp(y; - ¢). Since T}, is memoryless, t; ~ exp(7; - (p + ¢)).

We see here that the rescaling step in the ‘next reaction’ method is an

artifact of coalescing all r; events into a single timer; the ‘correction’ effected

by the factor 22 ((j,))
J

by the overall loss or gain of r; events after an r; transition.

occurs in an immanent fashion in the ‘next event’ method




