
Markov jump processes

Russ Harmer

A random variable X(t) is memoryless i↵ Pr(X > t1 + t2 | X > t1) =
Pr(X > t2). Equivalently, Pr(X > t1+ t2) = Pr(X > t1) ·Pr(X > t2) which
makes it clear that Pr(X > t2) is independent of t1.

What form can such an X take? Well, Pr(X > t+dt) can be written in
the form Pr(X > t) · (1� ↵ · dt), for some positive ↵, and so

Pr(X > t+ dt)� Pr(X > t)

dt
= �↵ · Pr(X > t)

and therefore Pr(X > t) = e�↵t. The exponential random variable exp(↵),
where ↵ 2 [0,1), is therefore the only memoryless (continuous) random
variable. Its pdf is ↵ · e�↵t and cdf is Pr(exp(↵) 6 t) = 1� e�↵t.

For our purposes, a Markov jump process is just a finite, directed (simple)
graph with positive real number weights on its edges. A state of the process
is thus characterized by a finite set of outgoing transitions ⌧j . The fact that
each transition is equipped with a rate ↵j necessarily means that that rate is
time-independent, i.e. memoryless, and so our process is time-homogeneous.

The choice of next state s0 and of time advance �t is decided by the ‘race’
between the ⌧js to make the first transition: given n exponential random
variables Tj ⇠ exp(↵j), the probability that ‘Ti has the smallest value and
that this is in [ti, ti + dt)’ is

Y

j 6=i

Pr(Tj > ti) · Pr(Ti 2 [ti, ti + dt)) =
Y

j 6=i

e�↵jti · ↵ie
�↵iti dt

= ↵i

Y

j

e�↵jti dt

= ↵ie
�↵ti dt

where ↵ :=
P

j ↵j .
The probability that ‘Ti has the smallest value’ is therefore

↵i

Z 1

0
e�↵t dt =

↵i

↵
(1)

while the probability that ‘the smallest value is in [t, t+ dt)’ is
X

j

↵je
�↵t dt = ↵e�↵t dt. (2)

1



Equations (1) and (2) tell us that we do not strictly need to generate the
n individual samples tj . It is enough (i) to sample [0,↵] uniformly to select
the ‘winning’ i; and (ii) to sample exp(↵) to generate the time advance �t
which is, morally, the phantom sample ti of the ‘winning’ Ti. However, the
net e↵ect would be the same as the pedestrian approach of generating all
tjs at each step and simply selecting the ‘winning’ ti.

An alternative alternative to the pedestrian approach is to try to keep
the same tjs (for all j 6= i; we have no choice but to generate a new ti)
after the transition to the new state s0. However, we also need to take into
account any changes to our parameters, i.e. those js for which ↵j 6= ↵0

j .
[This means that transitions must be labeled by the js as well.] For any
such j, the memoryless-ness of Tj means that it is distributed according to

Pr(Tj > ti + (t� ti) | Tj > ti) = Pr(Tj > t� ti)

= e�↵j(t�ti) (3)

and so, by (a shift and) rescaling, t0j :=
↵j

↵0
j
· (tj � ti) is distributed according

to

e
�↵jt/

↵j
↵0
j = e�↵0

jt (4)

and the final new absolute timer t0j := t0j + ti is distributed according to

e�↵0
j(t�ti) as required.

Chemical kinetics

Consider a system of reactions R = r1, . . . rn acting on molecular species

S = s1, . . . sm.
A state of the system is a function s : S ! Z+

0 . Each ri has (i) a rate

constant �i 2 R+; (ii) a propensity function ⇡i : (S ! Z+
0 ) ! Z+

0 ; and an
update vector ⌫i : S ! Z.

The propensity function ⇡i tells us how many instances of ri exist in
a state. Its definition is obvious in the case of mono-molecular reactions
A ! · · · or hetero-bi-molecular reactions A+B ! · · ·: in the first case, we
set ⇡(s) := s(A) whereas, in the second case, we set ⇡(s) := s(A) · s(B).

What about the case of homo-bi-molecular reactions A+A ! · · ·? The
answer depends on whether we wish to assert a symmetric or an asymmetric

reaction mechanism: in the first case, each unordered pair of As gives rise to
an instance of the reaction; whereas, in the second case, each ordered pair
gives rise to an instance. We have no way to represent this di↵erence; it
must be encoded in the numerical value of the rate constant once we have
chosen between ⇡(s) := s(A)(s(A)� 1) and ⇡(s) := 1

2s(A)(s(A)� 1).
We transform state s by firing reaction ri by setting s0(sj) := s(sj) +

⌫i(sj). This defines the transition ⌧s,i i↵ s0(sj) 2 Z+
0 for all sj 2 S, i.e. s0 is

a state; we assign ⌧s,i the rate ↵i(s) := �i · ⇡i(s).

2



Gillespie’s ‘first reaction’ method

Requires n random numbers per iteration:

• the timer ti in state s for each ri is distributed according to exp(↵i(s));

• the next reaction to fire is the ri with the smallest timer.

Gillespie’s ‘direct’ method

Requires two random numbers per iteration:

• the time advance in state s is distributed according to exp(↵(s)) where
↵(s) :=

P
i ↵i(s);

• the next reaction to fire is ri with probability ↵i(s)
↵(s) .

This is equivalent to the ‘first reaction’ method by (2) and (1) above.

Gibson-Bruck’s ‘next reaction’ method

Uses absolute timers. Requires n random numbers for initialization; then
one per iteration:

• the next reaction to fire is the ri with the smallest timer;

• for j 6= i, update t0j :=
⇡j(s)
⇡j(s0)

(tj � ti) + ti;

• generate a new timer t0i for ri according to exp(↵i(s0)).

This is equivalent to the ‘first reaction’ method by (3) and (4) above. In
practice, only those tjs for which ⇡j(s) 6= ⇡j(s0) need be updated; identifying
these js is the role of Gibson-Bruck’s ‘dependency graph’.

The ‘next event’ method

Exploits the decomposition of ↵j(s) as �j · ⇡j(s) to consider each instance

of a reaction (or event) as a transition in its own right with rate �j .
Requires ⇡(◆) :=

P
j ⇡j(◆) random numbers for initialization (where ◆ is

the initial state); and a few more at each iteration.

• the next event to fire is the one with the smallest timer;

• remove (uniformly at random) the appropriate number of conflicting
events;

• add the appropriate number of caused events with their appropriate
timers.

3



This is equivalent to the ‘next reaction’ method:
In state s, each rj has ⇡j(s) events whose ‘winner’ has timer tj therefore

distributed according to exp(�j · ⇡j(s)). After an ri event with overall win-
ning timer ti taking the system to state s0, we now have ⇡j(s0) events whose
winner has timer t0j : this could be the same winner as before—if there is
no conflict between ri and rj or, more generally, if there is conflict but that
winning event was lucky enough not to be removed—and could even be a
particularly fast newly-created rj event—if ri causes rj events.

In any case, ⇡j(s0) = p+c where p is the number of preserved events and
c is the number of newly-created events. The winner of the preserved events
has timer tp ⇠ exp(�j · p) =: Tp and the winner of the newly-created events
has timer tc ⇠ exp(�j · c). Since Tp is memoryless, t0j ⇠ exp(�j · (p+ c)).

We see here that the rescaling step in the ‘next reaction’ method is an
artifact of coalescing all rj events into a single timer; the ‘correction’ e↵ected

by the factor ⇡j(s)
⇡j(s0)

occurs in an immanent fashion in the ‘next event ’ method

by the overall loss or gain of rj events after an ri transition.

4


