Null Events

- This is a generalization of null events
- An event can be intrinsically null, e.g., it corresponds to a non-injective mapping
- Or can be "probabilistically" null, e.g., a rejected 'blue' event

- Total activity, in this system, is $k_r \cdot |\Phi_r| + k_b \cdot \frac{k_b}{k_r} \cdot |\Phi_b|$

 (where Φ_r is the set of mappings into $A(s=red)$ and Φ_b into $A(s=blue)$)

 i.e. $k_r \cdot |\Phi_r| + k_b \cdot |\Phi_b|$ as desired

- This can be used for ambiguous molecularity

 - $\text{red} = \text{uni-molecular}$
 - $\text{blue} = \text{bi-molecular}$

 but can be very inefficient

Ambiguos Molecularity

- If we can count the number of instances $A \neq A(s)$, $B(s)$ where A and B are connected, we can improve on the generic oversampling approach:

 - We know the actual activity of the system $k_r \cdot |\Phi_r| + k_b \cdot |\Phi_b|$

 - But selecting events uniformly at random will disfavor red (uni-) events and only favor the (bi-) events

 - Use a more complex event selection protocol:

 1. Select an event uniformly at random
 2. If 'red' go it
 3. Otherwise, accept the 'blue' event with probability $\frac{k_b}{k_r}$

 and start over [return to (i)] otherwise:

$$P(\text{red}) = \frac{k_r \cdot |\Phi_r|}{k_r \cdot |\Phi_r| + k_b \cdot |\Phi_b|}$$