Two Notions of Flux in Biochemical Reaction Networks

J. F. Lynch

Workshop on Logic and Systems Biology
2016
Biochemical Reaction Networks
Each reaction has a rate or probability.
Assume there are chemical species (compounds) C_1, \ldots, C_m and n reactions. For $j = 1, \ldots, n$, reaction j has the general form

$$\sum_{i=1}^{m} a_{i,j} C_i \rightarrow \sum_{i=1}^{m} b_{i,j} C_i$$

The reactants consist of $a_{i,j}$ instances of each species C_i. The products consist of $b_{i,j}$ instances of each species C_i. When the reaction occurs (instantaneously), the reactants are replaced by the products.
The effect of each reaction on each species is summarized by the stoichiometric matrix:

$$S = \begin{bmatrix} b_{11} - a_{11} & \ldots & b_{1n} - a_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} - a_{m1} & \ldots & b_{mn} - a_{mn} \end{bmatrix}$$

Let p_i be the population size of species C_i for $i = 1, \ldots, m$. For any $j = 1, \ldots, n$, let $e_j = 1$ and $e_k = 0$ for $k \neq j$. Then

$$\begin{bmatrix} p_1 \\ \vdots \\ p_m \end{bmatrix} + S \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$$

is the vector of population sizes after one occurrence of reaction j.
It follows that for any $r_1, \ldots, r_n \in \mathbb{N}$

\[
\begin{bmatrix}
p_1 \\
\vdots \\
p_m
\end{bmatrix} + S
\begin{bmatrix}
r_1 \\
\vdots \\
r_n
\end{bmatrix}
\]

is the vector of population sizes after r_j occurrences of reaction j for $j = 1, \ldots, n$.
Two Models of Mass-Action Kinetics
States are vectors \([p_1, \ldots, p_m]^T\) over \(\mathbb{N}\).
Each \(p_i\) is the population size of species \(C_i\).
Each reaction \(j\) has a base rate \(\rho_j \in [0, \infty)\):

Let \(k_j = \sum_{i=1}^{m} a_i\) be the total number of reactants of reaction \(j\),

\[V = \text{volume of container} \]
For any choice of reactants for reaction j, in the absence of any other reaction, the time t until they participate in reaction j is an exponential rv with rate parameter $\frac{\rho_j}{V^{k_j-1}}$:

1. The probability that reaction j occurs once within time Δt is $\left(\frac{\rho_j}{V^{k_j-1}}\right)\Delta t + o(\Delta t)$ as $\Delta t \to 0$.

2. The pdf of t is

$$
\left(\frac{\rho_j}{V^{k_j-1}}\right)e^{-\left(\frac{\rho_j}{V^{k_j-1}}\right)t}
$$

3. The cdf of t is

$$
1 - e^{-\left(\frac{\rho_j}{V^{k_j-1}}\right)t}
$$
Let μ_j be the number of ways of choosing the reactants for reaction j. Then **in the absence of any other reaction**, the time t until reaction j occurs is an exponential rv with rate parameter $\mu_j \rho_j / V^{k_j-1}$ (sometimes called the **propensity** of the reaction).

Examples

- Suppose reaction j is $C_5 \longrightarrow 3C_1 + C_4$. Then the propensity is $p_5 \rho_j$.
- If reaction j is $C_5 + C_7 \longrightarrow 3C_1 + C_4$ then the propensity is $p_5 p_7 \rho_j / V$.
- If reaction j is $2C_5 \longrightarrow 3C_1 + C_4$ then the propensity is $p_5 (p_5 - 1) \rho_j / (2V)$.
We approximate the stochastic dynamics by its average behavior.
Let $\pi_j = \mu_j \rho_j / V^{k_j-1}$ be the propensity of reaction j.
Since the probability that reaction j occurs once within time Δt
is $\pi_j \Delta t + o(\Delta t)$ as $\Delta t \to 0$, the average rate of reaction j is π_j.
We also replace the population sizes p_1, \ldots, p_m by concentrations c_1, \ldots, c_m:

$$c_i = p_i / V \text{ for } i = 1, \ldots, m$$

This accomplishes two things:

1. It scales the state variables to more manageable ranges.
2. It removes the dependency of reaction rates on V (when V is large).
Example

If reaction \(j \) is \(2C_5 \rightarrow 3C_1 + C_4 \), then \(\pi_j = \frac{p_5(p_5 - 1)\rho_j}{2V} \).

Each occurrence of reaction \(j \) increases \(c_1 \) by \(3/V \).

Therefore the rate of change of \(c_1 \) due to reaction \(j \) is

\[
\frac{p_5(p_5 - 1)\rho_j}{2V} \times \frac{3}{V} \rightarrow \frac{3p_5^2\rho_j}{2V^2} \quad \text{as} \quad V \rightarrow \infty
\]

\[
= \frac{3c_5^2\rho_j}{2}
\]

The factor \(c_5^2\rho_j/2 \) is the flux of reaction \(j \).
In general, the propensity $\pi_j = \mu_j \rho_j / V^{k_j - 1}$ is a polynomial of degree k_j in the variables p_1, \ldots, p_m with only one term of degree k_j.

Therefore

$$\lim_{V \to \infty} \frac{\pi_j}{V} = \phi_j$$

is a monomial in c_1, \ldots, c_m of degree k_j.

ϕ_j is the flux of reaction j,
the average rate of the reaction in a unit of volume (for large V).
Since $b_{ij} - a_{ij}$ is the net effect of reaction j on the population of species C_i, $(b_{ij} - a_{ij})\varphi_j$ is the average rate of change of c_i due to reaction j.

Therefore $\sum_{j=1}^{n}(b_{ij} - a_{ij})\varphi_j(t)$ is the average rate of change of c_i.

It can be shown that for large V, with high probability the stochastic dynamics is close to its average behavior\(^1\). So we can approximate the discrete stochastic model with a deterministic continuous model:

$$\begin{bmatrix}
\frac{dc_1}{dt} \\
\vdots \\
\frac{dc_m}{dt}
\end{bmatrix} = S
\begin{bmatrix}
\varphi_1 \\
\vdots \\
\varphi_n
\end{bmatrix}$$

Flux Plays a Central Role in Systems Biology²

Constraint-Based Flux Analysis

Flux Space

Capacity Constraints

\[
\begin{align*}
\varphi_1 & \\
\varphi_2 & \\
\varphi_3 & \\
\end{align*}
\]

\[
\begin{align*}
\min_j & \leq \varphi_j \leq \max_j
\end{align*}
\]
Constraint-Based Flux Analysis

Mass Balance Constraint

\[\min_j \leq \phi_j \leq \max_j \]

\[\sum \phi_j = 0 \]

Optimize Objective Function

\[F = [w_1 \ w_2 \ w_3] \]

J. F. Lynch

Two Notions of Flux in Biochemical Reaction Networks
Finding dominant fluxes

Large $\phi_j \implies$ reaction j is “important.”

Sometimes a reaction network can be simplified by removing all “unimportant” reactions.
Analyzing causality

For $i \in \{1, \ldots, m\}$ and $j, k \in \{1, \ldots, n\}$, let

$$\phi_{i,j,k} = b_{i,j} \phi_j \times \frac{a_{i,k} \phi_k}{\sum_{l=1}^{n} a_{i,l} \phi_l},$$

the flow rate of species i from reaction j to k.

High flow rates \implies strong influences.

Groups of reactions with large mutual flow rates are evidence of “modules” within reaction networks.
Flux in Discrete Stochastic Systems
Recall that the flux φ_j of reaction j is its average rate in a unit of volume (for large V):

$$\varphi_j = \lim_{\Delta t \to 0} \lim_{V \to \infty} \mathbb{E} \left(\frac{N_j[t, t + \Delta t]}{V \Delta t} \right),$$

where $N_j[t, t + \Delta t]$ is the number of times that reaction j occurs in the interval $[t, t + \Delta t]$.

So a possible definition of discrete stochastic flux is

$$\mathbb{E} \left(\frac{N_j[t, t + \Delta t]}{V \Delta t} \right) = \frac{\mathbb{E}(N_j[t, t + \Delta t])}{V \Delta t}.$$
In general, analytic expressions for $E(N_j[t, t + \Delta t])$ are not known.

It can be estimated by averaging $N_j[t, t + \Delta t]$ over repeated simulations.

$N_j[t, t + \Delta t]$ can be computed in real time during simulation, or in linear time from the simulation trajectory (the log of the simulation events).
Kahramanoğulları: More information can be obtained by further processing of the trajectory.

\[F_{i,j,k}[t, t + \Delta t] \] is the number of molecules of species \(i \) produced by reaction \(j \) and consumed by reaction \(k \) in the interval \([t, t + \Delta t] \).

Just as \(N_j \) is analogous to \(\varphi_j \), \(F_{i,j,k} \) is analogous to \(\phi_{i,j,k} \), the flow rate of species \(i \) from reaction \(j \) to \(k \).
Analyzing the Trajectory

Data structures constructed from the simulation:

Simulation trajectory \implies simulation trace
Simulation trace \implies simulation configuration

F can be extracted in linear time from the simulation configuration.
At any time, the state of the system is a finite collection of molecules. Each molecule belongs to a species. There are finitely many species A, B, C, \ldots

Each molecule has a unique id $\in \mathbb{N}$.

Ex.: $A(k)$ is the molecule belonging to species A with id k.

Reactions create and remove molecules. Each new molecule has an id that has never occurred before during the simulation.
Analyzing the Trajectory

The effect of a reaction can be described by a pair \((L, R)\):

\[
L = \text{set of molecules removed by the reaction.} \\
R = \text{set of molecules created by the reaction.}
\]

Example

\((\{B(3), C(2)\}, \{D(1)\})\)

\(B(3)\) and \(C(2)\) are destroyed, \(D(1)\) is created.
Analyzing the Trajectory

Definition

The trajectory of a simulation is a list of discrete events numbered 1, \ldots, T:

\[\langle (j_t, L_t, R_t, \tau_t) | t = 1, \ldots, T \rangle \]

where

\(j_t = \) the reaction at event \(t \).

\((L_t, R_t) = \) the effect of the reaction.

\(\tau_t = \) the time at which event \(t \) occurred.

The initial state is event 0.
Analyzing the Trajectory

Definition

The trace of a simulation is a directed acyclic graph.

Each vertex has a label of the form $A(k, j, \tau)$ where $A(k)$ is a molecule of species A and id k, created by reaction j at time τ.

There are edges $(A(k, j, \tau), B(k', j', \tau'))$ for every pair of vertices such that $A(k)$ is consumed by reaction j' at time τ'.
The simulation configuration is a directed acyclic multigraph.

Each vertex has a label of the form \((j, \tau)\) where

- \(j\) is a reaction
- \(\tau\) is a time when reaction \(j\) occurred.

There is an edge from vertex \((j, \tau)\) to vertex \((j', \tau')\) labeled with \(A\) if

- a molecule belonging to species \(A\) is produced by reaction \(j\) at time \(\tau\) and consumed by reaction \(j'\) at time \(\tau'\).
Example

Initial state: {A(1), A(2), A(3), A(4)}

Simulation trajectory:

$\langle 1, \{A(4)\}, \{P(5), P(6)\}, 0.36 \rangle; \langle 2, \{P(5)\}, \{B(7)\}, 0.40 \rangle; \ldots; \langle 4, \{B(16), C(19)\}, \{D(23)\}, 2.14 \rangle$

Figure 2 The simulation trace of a simulation with the network in Example 1. The initial state is $\{A(1), A(2), A(3), A(4)\}$. In the simulation trace, each vertex is additionally decorated with its species for illustration purposes. Here, we first apply Definition 10 to obtain the simulation configuration, and then Definition 17 to obtain the flux configuration for this trace.
Construction of the Data Structures

Simulation Trajectory \implies Simulation Trace

The trace is extended after each event $T = 0, 1, \ldots$

- After event 0, trace consists of vertices $A(i, 0, 0, 0)$ for all $A(i)$ in the initial state.
- Assume vertices and edges of trace have been constructed for events $0, \ldots, T$

and event $T + 1$ is $(j_{T+1}, L_{T+1}, R_{T+1}, \tau_{T+1})$.

For each $A(i) \in R_{T+1}$, add new vertex $A(i, j_{T+1}, \tau_{T+1})$.

From each vertex $B(k, j_t, \tau_t)$ where $B(k) \in L_{t+1}$, add an edge to all the new vertices.

(Total new edges = $|L_{T+1} \times R_{T+1}|$.)
Simulation Trace \implies Simulation Configuration

- Project trace vertices to configuration vertices:
 \[A(i, j, \tau) \mapsto (j, \tau) \]

- Project trace edges:
 \[(A(i, j, \tau), B(i', j', \tau')) \mapsto ((j, \tau), (j', \tau')) \text{ with label } A \]
Case Study: A Molecular Switch

Two Notions of Flux in Biochemical Reaction Networks

Figure 3 The structure of the Rho GTP-binding proteins network given in [10] and the dominant fluxes obtained by stochastic flux analysis on this network. Left: The arrows denote the reactions of the network. R denotes the Rho GTP-binding protein, whereas RD and RT denote its GDP and GTP bound forms. A and E denote GAP and GEF. Thus, RDE, for example, denotes the protein complex formed by RD and E. The thick arrows denote the dominant fluxes obtained by the analysis in [10]. Right: The dominant fluxes obtained by stochastic flux analysis include the fluxes marked with * and excludes the ones marked with # on the left. This analysis indicates also the fluxes due to the enzymes A and E.

Figure 4 The GTPase chemical reaction network and their rates as in [10] and [11].

1: A + R $\xrightarrow{1.0}$ RA
2: A + RD $\xrightarrow{1.0}$ RDA
3: A + RT $\xrightarrow{1.0}$ RTA
4: E + R $\xrightarrow{0.43}$ RE
5: E + RD $\xrightarrow{0.0054}$ RDE
6: E + RT $\xrightarrow{0.0075}$ RTE
7: R $\xrightarrow{0.033}$ RD
8: R $\xrightarrow{0.1}$ RT
9: RA $\xrightarrow{500}$ A + R
10: RD $\xrightarrow{0.02}$ R
11: RDA $\xrightarrow{500}$ A + RD
12: RDE $\xrightarrow{0.136}$ E + RD
13: RDE $\xrightarrow{0.6}$ RE
14: RE $\xrightarrow{1.074}$ E + R
15: RE $\xrightarrow{0.033}$ RDE
16: RE $\xrightarrow{0.1}$ RTE
17: RT $\xrightarrow{0.02}$ R
18: RT $\xrightarrow{0.02}$ RD
19: RTA $\xrightarrow{3.0}$ A + RT
20: RTA $\xrightarrow{21.04}$ RDA
21: RTE $\xrightarrow{7.68}$ E + RT
22: RTE $\xrightarrow{0.02}$ RDE
23: RTE $\xrightarrow{0.02}$ RE

$D = 50, T = 500$
Case Study: A Molecular Switch

Cycling in the absence of regulatory molecules.

\[R = \text{Rho GTP-binding protein} \]

\[RD = \text{GDP-bound R} \]

\[RT = \text{GTP-bound R} \]

Figure 4 The GTPase chemical reaction network and their rates as in [10] and [11].
Case Study: A Molecular Switch

Inhibition by GAP

1: \(A + R \xrightarrow{1.0} RA \)
2: \(A + RD \xrightarrow{1.0} RDA \)
3: \(A + RT \xrightarrow{1.0} RTA \)
4: \(E + R \xrightarrow{0.43} RE \)
5: \(E + RD \xrightarrow{0.0054} RDE \)
6: \(E + RT \xrightarrow{0.0075} RTE \)
7: \(R \xrightarrow{0.033 \times D} RD \)
8: \(R \xrightarrow{0.1 \times T} RT \)
9: \(RA \xrightarrow{500} A + R \)
10: \(RD \xrightarrow{0.02} R \)
11: \(RDA \xrightarrow{500} A + RD \)
12: \(RDE \xrightarrow{1.36} E + RD \)
13: \(RDE \xrightarrow{6.0} RE \)
14: \(RE \xrightarrow{1.074} E + R \)
15: \(RE \xrightarrow{0.033 \times D} RDE \)
16: \(RE \xrightarrow{0.1 \times T} RTE \)
17: \(RT \xrightarrow{0.02} R \)
18: \(RT \xrightarrow{0.02} RD \)
19: \(RTA \xrightarrow{3.0} A + RT \)
20: \(RTA \xrightarrow{2.104} RDA \)
21: \(RTE \xrightarrow{76.8} E + RT \)
22: \(RTE \xrightarrow{0.02} RDE \)
23: \(RTE \xrightarrow{0.02} RE \)

\[D = 50, \ T = 500 \]

Figure 4 The GTPase chemical reaction network and their rates as in [10] and [11].

Figure 3 The structure of the Rho GTP-binding proteins network given in [10] and the dominant fluxes obtained by stochastic flux analysis on this network. **Left:** The arrows denote the reactions of the network. R denotes the Rho GTP-binding protein, whereas RD and RT denote its GDP and GTP bound forms. A and E denote GAP and GEF. Thus, RDE, for example, denotes the protein complex formed by RD and E. The thick arrows denote the dominant fluxes obtained by the analysis in [10]. **Right:** The dominant fluxes obtained by stochastic flux analysis include the fluxes marked with * and excludes the one marked with # on the left. This analysis indicates also the flux due to the enzymes A and E.
Case Study: A Molecular Switch

Activation by GEF

Figure 4 The GTPase chemical reaction network and their rates as in [10] and [11].

Figure 3 The structure of the Rho GTP-binding proteins network given in [10] and the dominant fluxes obtained by stochastic flux analysis on this network. **Left:** The arrows denote the reactions of the network. R denotes the Rho GTP-binding protein, whereas RD and RT denote its GDP and GTP bound forms. A and E denote GAP and GEF. Thus, RDE, for example, denotes the protein complex formed by RD and E. The thick arrows denote the dominant fluxes obtained by the analysis in [10]. **Right:** The dominant fluxes obtained by stochastic flux analysis include the fluxes marked with $+$ and excludes the ones marked with \times on the left. This analysis indicates also the flux due to the enzymes A and E.
Some Possibilities for Future Work

- Integrate with statistical methods
 - Confidence intervals for flux values
 - Determining how many repetitions of a simulation are needed to get a given level of accuracy and confidence.
- Extend flux to networks with binding/unbinding reactions (Kappa, BNG)
- General question: For a given range of population sizes, how accurate is the ODE approximation? Where is the combinatorial wall?