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Biochemical Reaction Networks
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Classical Chemical Kinetics

A Collection of Molecules

 

Reactions
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Each reaction has a rate
or probability.
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Algebraic Representation of Chemical Kinetics

Assume there are chemical species (compounds) C1, . . . ,Cm
and n reactions.
For j = 1, . . . ,n, reaction j has the general form

m∑
i=1

ai,jCi︸ ︷︷ ︸
reactants

−→
m∑

i=1

bi,jCi︸ ︷︷ ︸
products

The reactants consist of ai,j instances of each species Ci .
The products consist of bi,j instances of each species Ci .

When the reaction occurs (instantaneously), the reactants are
replaced by the products.
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The Stoichiometric Matrix

The effect of each reaction on each species is summarized by
the stoichiometric matrix:

S =

 b11 − a11 . . . b1n − a1n
...

. . .
...

bm1 − am1 . . . bmn − amn


Let pi be the population size of species Ci for i = 1, . . . ,m.
For any j = 1, . . . ,n, let ej = 1 and ek = 0 for k 6= j . Thenp1

...
pm

+ S

e1
...

en


is the vector of population sizes after one occurence of reaction
j .
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The Stoichiometric Matrix

It follows that for any r1, . . . , rn ∈ Np1
...

pm

+ S

r1
...
rn


is the vector of population sizes after rj occurrences of reaction
j for j = 1, . . . ,n.
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Two Models of Mass-Action Kinetics
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A Stochastic Discrete State Model

States are vectors [p1, . . . ,pm]T over N.
Each pi is the population size of species Ci .

Each reaction j has a base rate ρj ∈ [0,∞):

Let kj =
m∑

i=1

ai be the total number of reactants of reaction j ,

V = volume of container
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A Stochastic Discrete State Model

For any choice of reactants for reaction j , in the absence of any
other reaction, the time t until they participate in reaction j is an
exponential rv with rate parameter ρj/V kj−1:

1 The probability that reaction j occurs once within time ∆t is
(ρj/V kj−1)∆t + o(∆t) as ∆t → 0.

2 The pdf of t is
(ρj/V kj−1)e−(ρj/V kj−1

)t

3 The cdf of t is
1− e−(ρj/V kj−1

)t
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A Stochastic Discrete State Model

Let µj be the number of ways of choosing the reactants for
reaction j .
Then in the absence of any other reaction, the time t until
reaction j occurs is an exponential rv with rate parameter
µjρj/V kj−1 (sometimes called the propensity of the reaction).

Examples
Suppose reaction j is C5 −→ 3C1 + C4.
Then the propensity is p5ρj .
If reaction j is C5 + C7 −→ 3C1 + C4
then the propensity is p5p7ρj/V .
If reaction j is 2C5 −→ 3C1 + C4
then the propensity is p5(p5 − 1)ρj/(2V ).
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A Deterministic Continuous State Model

We approximate the stochastic dynamics by its average
behavior.
Let πj = µjρj/V kj−1 be the propensity of reaction j .
Since the probability that reaction j occurs once within time ∆t
is πj∆t + o(∆t) as ∆t → 0, the average rate of reaction j is πj .
We also replace the population sizes p1, . . . ,pm by
concentrations c1, . . . , cm:

ci = pi/V for i = 1, . . . ,m

This accomplishes two things:
1 It scales the state variables to more manageable ranges.
2 It removes the dependency of reaction rates on V (when V

is large).
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A Deterministic Continuous State Model

Example

If reaction j is 2C5 −→ 3C1 + C4, then πj = p5(p5 − 1)ρj/(2V ).
Each occurrence of reaction j increases c1 by 3/V .
Therefore the rate of change of c1 due to reaction j is

p5(p5 − 1)ρj

2V
× 3

V
→

3p2
5ρj

2V 2 as V →∞

=
3c2

5ρj

2
.

The factor c2
5ρj/2 is the flux of reaction j .
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A Deterministic Continuous State Model

In general, the propensity πj = µjρj/V kj−1 is a polynomial of
degree kj in the variables p1, . . . ,pm with only one term of
degree kj .
Therefore

lim
V→∞

πj/V = ϕj

is a monomial in c1, . . . , cm of degree kj .

ϕj is the flux of reaction j ,
the average rate of the reaction in a unit of volume (for large V ).
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A Deterministic Continuous State Model

Since bij − aij is the net effect of reaction j on the population of
species Ci , (bij − aij)ϕj is the average rate of change of ci due
to reaction j .
Therefore

∑n
j=1(bij − aij)ϕj(t) is the average rate of change of

ci .
It can be shown that for large V , with high probability the
stochastic dynamics is close to its average behavior1.
So we can approximate the discrete stochastic model with a
deterministic continuous model:

dc1
dt
...

dcm
dt

 = S

ϕ1
...
ϕn


1T. G. Kurtz, Limit Theorems for Sequences of Jump Markov Processes

Approximating Ordinary Differential Processes, J. App. Prob. 8 (1971)
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Flux Plays a Central Role in Systems
Biology2

2B. Ø. Palsson, Systems Biology, Cambridge (2007)
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Constraint-Based Flux Analysis

Flux Space

 

ϕ1 

ϕ2 

ϕ3 

Capacity Constraints

 

ϕ1 

ϕ2 

ϕ3 

minj ≤ ϕj ≤ maxj 
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Constraint-Based Flux Analysis

Mass Balance Constraint

 

ϕ1 

ϕ2 

ϕ3 

minj ≤ ϕj ≤ maxj 

ϕ1 

ϕ2 

ϕ3 

S =0 

Optimize Objective Function

 

ϕ1 

ϕ2 

ϕ3 

minj ≤ ϕj ≤ maxj 

ϕ1 

ϕ2 

ϕ3 

S =0 

ϕ1 

ϕ2 

ϕ3 

F = [ w1 w2 w3 ]  
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Heuristic Applications

Finding dominant fluxes

Large ϕj =⇒ reaction j is “important.”

Sometimes a reaction network can be simplified by removing all
“unimportant” reactions.
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Heuristic Applications

Analyzing causality

For i ∈ {1, . . . ,m} and j , k ∈ {1, . . . ,n}, let

φi,j,k = bi,jϕj ×
ai,kϕk∑n
l=1 ai,lϕl

,

the flow rate of species i from reaction j to k .

High flow rates =⇒ strong influences.

Groups of reactions with large mutual flow rates are evidence of
“modules” within reaction networks.
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Flux in Discrete Stochastic Systems
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Flux in Discrete Stochastic Models

Recall that the flux ϕj of reaction j is its average rate in a unit of
volume (for large V ):

ϕj = lim
∆t→0
V→∞

E
(

Nj [t , t + ∆t ]
V ∆t

)
,

where Nj [t , t + ∆t ] is the number of times that reaction j occurs
in the interval [t , t + ∆t ].

So a possible definition of discrete stochastic flux is

E
(

Nj [t , t + ∆t ]
V ∆t

)
=

E(Nj [t , t + ∆t ])
V ∆t

.
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Flux in Discrete Stochastic Systems

In general, analytic expressions for E(Nj [t , t + ∆t ]) are not
known.

It can be estimated by averaging Nj [t , t + ∆t ] over repeated
simulations.

Nj [t , t + ∆t ] can be computed in real time during simulation, or
in linear time from the simulation trajectory
(the log of the simulation events).
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Analyzing the Trajectory

Kahramanoğulları: More information can be obtained by further
processing of the trajectory.

Fi,j,k [t , t + ∆t ] is the number of molecules of species i produced
by reaction j and consumed by reaction k in the interval
[t , t + ∆t ].

Just as Nj is analogous to ϕj , Fi,j,k is analogous to φi,j,k ,
the flow rate of species i from reaction j to k .
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Analyzing the Trajectory

Data structures constructed from the simulation:

Simulation trajectory =⇒ simulation trace
Simulation trace =⇒ simulation configuration

F can be extracted in linear time from the simulation
configuration.
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Analyzing the Trajectory

At any time, the state of the system is a finite collection of
molecules.
Each molecule belongs to a species.
There are finitely many species A,B,C, . . . .

Each molecule has a unique id ∈ N.

Ex.: A(k) is the molecule belonging to species A with id k .

Reactions create and remove molecules.
Each new molecule has an id that has never occurred before
during the simulation.
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Analyzing the Trajectory

The effect of a reaction can be described by a pair (L,R):

L = set of molecules removed by the reaction.
R = set of molecules created by the reaction.

Example

({B(3),C(2)}, {D(1)})

B(3) and C(2) are destroyed, D(1) is created.
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Analyzing the Trajectory

Definition
The trajectory of a simulation is a list of discrete events
numbered 1, . . . ,T :

〈(jt ,Lt ,Rt , τt )|t = 1, . . . ,T 〉

where

jt = the reaction at event t .
(Lt ,Rt ) = the effect of the reaction.

τt = the time at which event t occurred.

The initial state is event 0.
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Analyzing the Trajectory

Definition
The trace of a simulation is a directed acyclic graph.

Each vertex has a label of the form A(k , j , τ) where
A(k) is a molecule of species A and id k ,
created by reaction j at time τ .

There are edges (A(k , j , τ),B(k ′, j ′, τ ′)) for every pair of vertices
such that A(k) is consumed by reaction j ′ at time τ ′.
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Analyzing the Trajectory

Definition
The simulation configuration is a directed acyclic multigraph.

Each vertex has a label of the form (j , τ) where

j is a reaction
τ is a time when reaction j occurred.

There is an edge from vertex (j , τ) to vertex (j ′, τ ′) labeled with
A if
a molecule belonging to species A is produced by reaction j at
time τ and consumed by reaction j ′ at time τ ′.
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Example

Rules: 1 : A→ P + P, 2 : P → B, 3 : P → C, 4 : B + C → D
Initial state: {A(1),A(2),A(3),A(4)}
Simulation trajectory:
〈(1, {A(4)}, {P(5),P(6)},0.36); (2, {P(5)}, {B(7)},0.40); . . . ;
(4, {B(16),C(19)}, {D(23)},2.14)〉
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Construction of the Data Structures

Simulation Trajectory =⇒ Simulation Trace

The trace is extended after each event T = 0,1, . . . .

After event 0, trace consists of vertices A(i ,0,0.0) for all
A(i) in the initial state.
Assume vertices and edges of trace have been
constructed for events 0, . . . ,T
and event T + 1 is (jT +1,LT +1,RT +1, τT +1).

For each A(i) ∈ RT +1, add new vertex A(i , jT +1, τT +1).

From each vertex B(k , jt , τt ) where B(k) ∈ Lt+1, add an
edge to all the new vertices.
(Total new edges = |LT +1 × RT +1|.)
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Construction of the Data Structures

Simulation Trace =⇒ Simulation Configuration

Project trace vertices to configuration vertices:

A(i , j , τ) 7→ (j , τ)

Project trace edges :

(A(i , j , τ),B(i ′, j ′, τ ′)) 7→ ((j , τ), (j ′, τ ′)) with label A
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Case Study: A Molecular Switch
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Case Study: A Molecular Switch

Cycling in the absence of regulatory molecules.
R = Rho GTP-binding protein
RD = GDP-bound R
RT = GTP-bound R
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Case Study: A Molecular Switch

Inhibition by GAP
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Case Study: A Molecular Switch

Activation by GEF
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Some Possibilities for Future Work

Integrate with statistical methods
Confidence intervals for flux values
Determining how many repetitions of a simulation are
needed to get a given level of accuracy and confidence.

Extend flux to networks with binding/unbinding reactions
(Kappa, BNG)
General question: For a given range of population sizes,
how accurate is the ODE approximation?
Where is the combinatorial wall?
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