





Abu Ali al-Husayn ibn Abd Allah ibn Sina (Luw )
Avicenna (980-1037)

DOCZIA DOlSKA

R Commonly known as Ibn Sina, or
by his Latinized name Avicenna,
was a Persian polymath.

R Ibn Sina wrote almost 450 works
on a wide range of subjects, of
which around 240 have survived.

R In particular, 150 of his surviving
works concentrate on philosophy
and 40 of them concentrate on
medicine.
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&R Ibn Sina’s “Canon of
Medicine” (al Qanun fi-al-
Tibb), written soon after
the end of the first
millennium...

R Brought systematic
experimentation and
quantification into the
study of physiology,

« Discovered and elucidated
the contagious nature of
infectious disease and

R Laid the foundations of
experimental medicine.
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R Inductive logic and
computation...

« Foundational framework for

38 Model checking in
computer science,

©3 Machine learning and
inductive reasoning in
artificial intelligence and

3 Causality theory in
philosophy.




Causality

&R Problematic:
3 Sources of many paradoxes: E.g., Goodman’s Grue Paradox.

3 Regularity: Statistical Inference.
©3 Computational Complexity.

R [bn Sina (Avicenna), Al Ghazali, Ibn Rushd (Averroes),

&R Pietro Pomponazzi, Giordano Bruno, Niccolo Machavelli, Galileo Galilei

(chronological vs. causal effects), Francis Bacon, John Stuart Mill
(Mill's Method), David Hume (Regularity),

&R Robert Koch (4 postulates), .L. Mackie (INUS condition), David Lewis
(Counter-factuals), Hans Reichenbach (D-Separation),

&R Patrick Suppes (Probabilistic Causality), John Dupre, Nancy
Cartwright, et al.

R STANFORD DISUNITY MAFIA!







David Hume

R Starting point for all
contemporary theories
of Causation

R Empirical, descriptive
inquiry
©3 To replace
unintelligible

theoretical
explanations




David Hume

“[Two Billiard Balls] strike; and the ball, which was formerly at rest,
now acquires a motion..

“Contiguity in time and place is therefore a requisite circumstance to the
operation of all causes. “Tis evident likewise, that the motion, which
was the cause, is prior to the motion, which was the effect.

“Priority in time, is therefore another requisite circumstance in every
cause. But this is not all. Let us try any other balls of the same kind in a
like situation, and we shall always find, that the impulse of one
produces motion in the other.

“Here, therefore is a third circumstance, viz. that of a constant
conjunction betwixt the cause and effect. Every object like the cause,
produces always some object like the effect.

“Beyond these three circumstances of contiguity, priority, and constant
conjunction, I can discover nothing in this cause...”



Probabilistic Causality: Suppes

"

R Causes are temporally prior to their effects.

R Causes raise probability of their effects.

R Relationships are between events.

R C is a prima facie cause of E if it is earlier than
ErancP(EECE=RP(E):

R C, a prima facie cause of E, is a spurious cause
of E if there is an S, earlier than C s.t.:

GRS (=R RO E0 =R RS (R e el8/E (=4 HER -85} E=RIR((E S )

&R A non-spurious prima facie cause is a

genuine cause



PCTL Formulas

® Atomic propositions a in A
R Boolean connectives (—,")

R State formulas:
3 Atomic propositions
AT
3 [h]zp and [h]>p, 0<p<1
Rk Path formulas:
o3 fU= g, f W= ¢, where t is non-negative or infinity

(*) f and g are state formulas, h is a path formula



Derived Operator: “Leads to”

fi S8 fo = AG((fi — FS! f2)]

«"“for all paths, at every state, if f, then
eventually f, within t time units with
probability at least p”

3 Means that there can be any number of
transitions between f, and f, .

3 Transitions must happen within ¢ time units.



Types of causes: Summary

&R Prima facie
3 Positively associated with effect
«8 TP (Temporal Priority Condition) + PR (Probability Raising Condition)
&R Spurious
©3 No (or little) influence on effect
©3 Other causes account better for the effect
xR Genuine
©3 Non-spurious prima facie causes
&R Probabilistic Propositional Temporal Logic (PCTL):
3 Next, define these in terms of PCTL
©3 Use Model Checking to find Prima Facie Causes
«3 Use Empirical Bayes Methods to Classify causes.



Examples From Neuro S.

R Synthetic MEA data

3 Set of 26 neurons, 100,000 firings
©3 5 embedded patterns

3 Neuron can fire randomly (with probability according
to noise level), or be triggered by cause neuron

3 Neurons cause eachother to fire in 20-40 time units
(and have a 20 time unit refractory period



MEA data patterns
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Stats

R b patterns, 2 noise levels

3 For each pattern, 2 runs at each noise level

Rk FDR = # false positives / # total positives

R FNR = # false negatives / # all negatives

Algorithm  [FDR FNR Intersection
Temporal | 5193 0.0005 0.9583
Logic

Granger 0.5079 0.0026 0.7530

PC 0.9608 0.0159 0.0671
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MEDICINE
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Figure 7.6.: Relationships found in one year of actual market data.



POLITICS
3

«® No genuine causes with z>0...

R Counter-Factual Causes:

©3 For example “had President Bush NOT said homes, his rating would have
gone down”

25,
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Discrimnation




Social Influence
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SECURITY

In this case the analyst

decided to start with
202,20, %, Oy this story of node
1207670734 (R -r linking a set of 5
703-659-2317 phone numbers to

718-352-847 g
names, locations and

date.

It turns out that this
odd group is central
24 April, 2003 to communication
and coordination
between the cells and

01 1207670734 21 ;\p(ll.‘:OjB
7103-659.2317 A
718-352-8479 serves as an eff1c1ent

804-759-6302 starting point for

804-774-8920 analysis.
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Cancer, Causality and
Complexity

Patient data without explicit time information
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Evolution & Causality

OO
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cell population clonal expansion caused‘ mutation survival of the fittest
observatlons " mpotect
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Complex Causes:
Synthetic Lethality

Simpson's paradox and synthetic lethality

observed frequency

observations =
M * 10 *e . | =
é )IITT‘T’ ?TT E *> %
' 10 W5 : | =
S
only X is present e
*ir o *‘2.}f@"m".--_-;f{?}_-_-,-_::::::: 2

= ottt A



Cyclin-dependent
kinase inhibitors

EGFR
inhibitors
. . Sustaining Evading —
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling suppressors anti-CTLA4 mADb

Prospopiotc ™)., P et
. . r 1V 0 s
BH3 mimetics Foisros immortality Inhibitors
Genome aTun\or-
instability & _promoting
mutation inflammation
PARP Inducing Activating Selective anti-
inhibitors angiogenesis invasion & inflammatory drugs
metastasis

Inhibitors of
VEGF signaling
Ce" Cell 2011 144, 646-674DOI: (10.1016/j.cell.2011.02.013)

Copyright © 2011 Elsevier Inc.

Inhibitors of
HGF/c-Met



http://www.elsevier.com/termsandconditions

Modeling Cancer

R Understand and act on the mutations and their
accumulation

&R Model of Progression: Based on a set of cross-sectional
genetic alterations. Determine causal-structures.

4 L W F E3 |

-
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R The ultimate goal is to define progression-specific
treatments using a derived causal model.



A Recent Article

& T,

¥ % Leading Edge

40
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Coming Full Circle—From Endless
Complexity to Simplicity and Back Again

Robert A. Weinberg'-+*"

"Whitehead Institute for Blomedical Research
2Lucwig/MIT Center for Molecular Oncology
IMIT Departmant of Blology

Cambridge, MA 02142, USA
*Comresponcences: wainbarg@wimit.edu
nttpu//dx.dol.org/10,1016/.0aIL 2014,03,004

v

“Sovore

Cell has celebrated the powers of reductionist molecular biology and its major successes for four
decades. Those who have participated in cancer research during this period have witnessed wild
fluctuations from times where endless inexplicable phenomenology reigned supreme to periods
of reductionist triumphalism and, in recent years, to a move back to confronting the endless
complexity of this disease.

Cell



Cancer for Next Generation

R “How will all this play out?

® “I wouldn’t pretend to know. It’s a job, as one says on
these occasions, for the next generation. Passing the
buck like this is an enormously liberating experience,
and so I'll keep on doing it! “

-Bob Weinberg, Cell March 2014



Big Data
VS
Big Mechanisms

(A

Can DARJPPA cure cancer?




Data

Big (but not Long)

* Most cancer data currently available is cross-sectional
(rather than “longitudinal”)
- It is collected from biopsies at time of diagnosis

- Little follow up, time-stamped data (maybe collected, but not
quite available)

* Inferring temporal information from cross-sectional
data is challenging

* The problem has been studied in several fields, and in
the context of cancer research since the late 90s

36



Short & Fat Data

Lung cancer mutational profiles (cross-sectional)
cfr., M. Imielinski et al., Cell 150, 2012
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Many Facets

Pathway-level causality

Input ) e
ABCD
Tumorl @1 0 @ ‘ V
Tumor2 1110 4
Tumor3 1101 -rem
infer nppleu!on ,
Tumor4 1110
TumorS 1111 Halimarks (bhen
Tumoré 1 10 1 B3 mﬂ‘ a‘ otypes)
Tumor? (1)1 1 1
I
nih i BEED &Q
matation ‘A’ Is In 'A&B' cause 'D" m ‘I u
mumlmounoun
il " e ,‘ Sy

(adapted from) Gerstung et al., PLoS ONE, 6(11), 2011
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History

Models of Progression

Tree models
* Desper, Papadimitriou Schiffer et al, 1999, 2000

Conjunctive Models
e Beerenwinkel, Sturmfelds et al, 2005, 2006, 2007

Directed Acyclic Graph Models

Correlation based models
* Desper
Bayesian models

¢ Beerenwinkel

50



The CAPRI Algorithm
3

P(bla)/P(bla) > P(a|b)/P(alb)|
if

Prima Facie

Temporal Probability
Priority Raising
Pla) > P(b)
Positive
-------------------- Statistical |- - - -
Dependency

Temporal

Priority Probability |

P(b) > P(a) Raising

if
Plal|b)/P(a]b) > ‘P(bla)/1’(b|6)]
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e CAPRI's performance
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Trees Forests Connected DAGs Disconnected DAGs

Hamming distance (v = 0)
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Datasets Types
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Selective advantage relations for TCGA MSI colorectal tumors

G
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aCML
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Cox Regression
3

Hazard function for some feature vector X defined by baseline hazard and function of
covariates.

h(X,t) = hyo(t) -exp 8X

Regression coefficients 3 can be learned by maximizing the log partial likelihood, ig-
noring the baseline hazard function.

pl(3) = D o) (XiB" —log Y  expX;B")

Jit; 2t

0 censored

{ 1 observed

48



Fisher Kernel
(3

The progression network defines a factorized form of the joint distribution in terms of
conditional probabilities of features given their immediate parents in the graph.

Pr(X) = HPT(XJPG(XJ)

The practical Fisher kernel defines the similarity of two feature vectors with respect to
a probability distribution.

K(X,Y) = (Vglog(Pr(X)))" (Vglog(Pr(X)))

We use the progression network to define a practical Fisher kernel for the Kernel form
of Cox’s model.

K(X.Y) = (Vg log(H Pr(X;|Pa(X;))))" (Ve log(H Pr(Y:|Pa(Y))))



Fisher Kernel

L2 Cox

study ID mean standard error study ID mean standard error
brca tega 0.59 =+ 0.02 brea tega 0.5 =+ 0.03
coadread tega | 0.56 £ 0.07*" coadread tega | 0.51 =+ 0.02
gbm tcga 0.55 =+ 0.02 gbm tcga 0.5 =+ 0.06
lgg tega 0.67 =+ 0.05 lgg tega 0.67 =+ 0.06
lihe tega 0.58 =+ 0.02 lihe tega 045 = 0.03
ov tega 0.53 = 0.03 ov tega 050 =% 0.04
skem tega 0.48 = 0.05° skem tega 045 = 0.02

50



Future:
Progression & Therapy



Challenges and Opportunities

R Single Molecule/Single Cell

Technology:

©3 Optical Mapping (OpGen,
BioNano, etc.); Transcriptomics
(MMC, Nanostrings, MRTech,
etes)Eluidics,; 53

® Accurate Variant Calling:

©3 Point-Mutations, Indels, Copy-
Number, Rearrangements

(Translocations, Inversions, etc.),
Ploidy;...

&R Heterogeneity:

©3 Topological Data Analysis
(Moduli-spaces & CAT(0),
Persistent Homology, Modal
Logic in Topological Spaces...)

® Temporality:

«3 (Temporal Logic, Model
Inference from CTCs & Cellfree
DNA, Tissues of Origin,...)

& Therapy Design:

©3 Supervisory Control, Games
against Nature, Epistemological
models
& Models of Cancer:

3 Signaling Games, Evolution
Multi-cellularity;,...



Technical Definition of Timed CHA

A timed state is a pair (v,val) € V x RIXI.
There are two types of transitions between timed states:

@ Delay transitions, in symbols (v, val) LN (v, val’), where
e 0 € Ry represents the (real) time delay,
o C € 2P denotes the cocktail active during that time,
o val'(x) = val(x) + dp(v, C, x) for all x, and
o val'(x) < I(v, x) for all x with /(v, x) defined.
@ State transitions, in symbols (v,val) — (v/,0), where
o there is an edge (v, ¢, Vv') € E with val = ¢

A therapy maps finite runs to cocktails:

7 : Runsg(H) — 2P



Supervisory Control for CHAs

Therapeutic regimens can be generated to ensure :

e avoidance of bad states (safety)

o general temporal goals (specified using variants of Computation Tree
Logic - CTL)

@ optimal cost

Therapies can be generated using algorithms from supervisory control.

Controller synthesis for untimed CHAs can be solved in (single)
exponential time for CTL goals. For times CHAs, this problem is
undecidable in the general case.

D S. Jiang and R. Kumar. Supervisory control of discrete event systems with CTL* temporal
logic specifications, SIAM Journal on Control and Optimization, 44(6):2079-2103, January
2006.

D T. Henzinger et al. What's decidable about hybrid automata?, STOC 1995,



Thank you!

R Daniele Ramazzotti
(University Milano-Bicocca)

R Ilya Korsunsky (NYU)
R Justin Lee (NYU)

R Loes Olde Loohuis (UCLA)
R Andi Witzel (Google)

&R Samantha Kleinberg
(Stevens Institute)

R Naren Ramakrishnan
(Virginia Tech)

R Marco Antoniotti
(University Milano-Bicocca)

&R Giancarlo Mauri (University
Milano-Bicocca)

R Giulio Caravagna
(University Milano-Bicocca)

R Alex Graudenzi (University
Milano-Bicocca)
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David Hume

R “Abstruse thought and profound
researches I [nature] prohibit and
will severely punish by the pensive
melancholy which they introduce,
by the endless uncertainty in
which they involve you and by the
cold reception which your
pretended discoveries shall meet
with, when communicated.

&R “Be a philosopher, but, amid all
your philosophy, be still a man.”
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