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Research in my Laboratory: 
Computer Science ∩ Molecular Biology

[1/45]

“The purpose of this paper is to discuss a possible mechanism by which the 

genes of a zygote may determine the anatomical structure of the resulting 

organism. The theory does not make any new hypotheses; it merely suggests 

that certain well-known physical laws are sufficient to account for many of 

the facts. The full understanding of the paper requires a good knowledge of 

mathematics, some biology, and some elementary chemistry. ”

Turing, AM. (1952) Chemical basis of morphogenesis. 

Philosophical Transactions of the Royal Society of London. 

Series B, Biological Sciences 237(641):37-72. 

Sir Alan Turing identified one of the fundamental problems in science:

How do biological forms give rise to biological function?
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An Overly Simplified but Useful View of 
Computational Structural Biology

[2/45]

What does the part look like?

Mechanistic view is foundation of 
computational treatment for

sequence-structure-dynamics-
function relationship in 

macromolecules

How do the parts move? How do the parts come together?
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All Processes that Maintain and Replicate a 
Living Cell Involve Moving Biomolecules

“At the most basic level, charged atoms push and 
pull on one another to control the inner workings 
of every living thing. Cellular machines called 
ribosomes use ratchets and springs to translate 
coded messages into the workhorses of the cell: 
proteins. And small movements made by these 
proteins act as cellular signals that give 
directionality and function to developing tissues. 
Combinations of tissues then produce appendages 
designed to carry entire organisms, including 
humans, through the natural environment.”

“… a meta-community of scientists with a 
common interest in understanding how matter 
moves, and how that motion can be simulated in 
computers“

Altman, R. (2013) Biomed Comput Review.

Any enquiry into how form determines function 
needs to consider how matter changes form
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> 16Å motion
potent virucidal protein     
against HIV-I and influenza

Calmodulin

Adenylate Kinase

> 13Å open-closed motions
accommodating different binding partners
regulating cascade of signals in living cell

Protein Conformational Switching 
Harnessed into Productive Events in Cell

H-Ras

2.5Å on <- -> off switching
regulating cell growth

Cyanovirin-N
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Of (Biomolecular) Forms and Transitions

 Objective: Understand the dynamic interplay across disparate spatio-
temporal scales, link it to the atomic-scale physicochemical basis of 
dynamical behavior of single molecules and their interactions, and, 
ultimately, relate it to cellular function

 Protein structural transitions regulate allosteric signaling, catalysis, and 
more, and occur on 0.1-10Å length scales and ns-s timescales.

 Challenge: Currently, no wet- or dry-laboratory technique can bridge 
such disparate spatio-temporal scales
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Sample-based, Discrete Models of Protein 
Structure and Dynamics

 Growing realization of algorithmic impasse

 Paradigm shift needed over hallmark Molecular Dynamics and 
Monte Carlo approaches

 Premise: Inspiration may come from a combination of biology and 
other science and engineering fields that model dynamic systems

 Insight: Discrete kinetic models to capture structural transitions 
with reasonable detail and computational budget

[6/45]

Shehu, Nussinov PLoS Comput Biol 2016
Maximova et al. PLoS Comput Biol 2016
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 Energy landscape underscores inherent nature of biomolecules as dynamic 
systems interconverting between structures with varying energies.

Schematic illustration of 
H-Ras structures on energy landscape

H-Ras switching between its GTP-bound 
(red) and GDP-bound (blue) structures

Models of Structural Dynamics Leverage 
Energy Landscape View
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Roadmap of this Talk

Variable 
selection

Sampling coupled to search 
structure (structured 

representation)

Sampling decoupled from 
search structure (unstructured 

representation)

Tree-based

•RRT

•EST

•Projection-guded …

Samples under umbrella 
of evolutionary 

computation

Roadmap-based
umbrella of robot 
motion planning

Sample-based representation 
of variable space
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Embed samples 
in nearest-

neighbor graph
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Robot Motions and Protein Motions:
Similar Systems, Similar Problems

[9/45]

 Insight: Mechanistic treatment of an uncomplexed protein as a 
modular system composed of heterogeneous and highly-coupled 
building blocks

 Tree-based approach: samples obtained as part of growing tree in 
variable space
 Can answer only single startgoal query

 Roadmap-based approach: samples obtained first and then 
embedded in a nearest-neighbor graph (roadmap)
 Can potentially answer many queries, provided high exploration capability
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 Dihedral angles as variables of interest for fast kinematics (Latombe, Amato, Kavraki, Cortes, Haspel, 
Thomas, Tapia, Shehu, and other labs)

 Bundles of consecutive angles to reduce number of variables and design effective variation operators 
via fragment replacement (Shehu)

 Rigidity and other structure analysis to reduce number of dihedral angles or prioritize which ones 
modified most (Thomas, Tapia, Amato, and Haspel)

 Collective variables via Normal Mode Analysis (Cortes) and Principal Component Analysis (Shehu)

Selecting Few Variables to Capture Couplings

PC3

PC1

PC

𝑀

PC2

PC4
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Reach goal from start
 Objective:

Projection-guided Tree-based Approach

Start structure

0
Short MMC trajectory
Conformation

Pr
o
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es

s 
C

o
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)

Goal structure Molloy, Shehu. BMC Struct Biol 2013
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Tree, rooted at start grows in iterations 
until region near goal reached
 @ iteration, (parent) vertex selected 

and subjected to variation operator 
to obtain new (child) vertex

 Use of discretization layer to bias 
growth of tree

 Key idea:



[LICS-LSB 2016]

1d grid over energies to bias tree 
away from high-energy samples

1d grid over progress coordinate to 
bias tree towards goal

3d grid over shape-based features to 
bias tree away from already-
populated regions of variable space

 Discretization/Projection layers:

Projection-guided Tree-based Approach

Start structure

0
Short MMC trajectory
Conformation

Pr
o

gr
es

s 
C

o
o

rd
in

at
e 

(Å
)

Goal structure

Molloy, Shehu. IEEE/ACM Trans 
Comput Biol and Bioinf 2013
Molloy, Shehu. BMC Struct Biol 2013
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Closed -> Open 3.62

Open -> Closed 1.97

Intermediate AdK state captured!
Adk Motion              lRMSD to 2rh5 (Å)

Representative Results

Sampled motion from closed to calcium-
binding state of CaM: 13Å  < 1Å

Sampled motion from closed to open 
state of AdK): 7Å  < 2.7Å

Molloy, Shehu. BMC Struct Biol 2013
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Discrete (Kinetic) Models of Connectivity: 
Roadmap

Variable 
selection

Sampling coupled to search 
structure (structured 

representation)

Sampling decoupled from 
search structure (unstructured 

representation)

Tree-based

•RRT

•EST

•Projection-guded …

Samples under umbrella 
of evolutionary 

computation

Roadmap-based
umbrella of robot 
motion planning

Sample-based representation 
of variable space

Embed samples 
in nearest-

neighbor graph
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Roadmap-based Approach

[15/45]

❑ Samples embedded in nearest-neighbor graph
❑ Roadmap = compact discrete connectivity model 
❑ Efficient, trivial algorithms for extracting optimal paths

Success relies on 
whether samples capture 
relevant variable space
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Structure-guided Roadmap-based Approach

[16/45]

❑ Initial population of samples: use as many experimentally-available structures of 
the same protein as available

❑ Grow population of samples, in selection-variation process
❑ Employ menu of variation operators over different variables

Molloy, Shehu. BICoB 2014.
Molloy, Shehu. ISBRA 2015.
Molloy, Shehu. IEEE Trans 
NanoBioScience 2016.

Maximova et al. IEEE BIBM 2015.
Maximova et al. IEEE/ACM Trans 
Comput Biol and Bioinf 2016.

❑ Use experimentally-available structures to additionally extract collective variables
❑ Expand focus to lowest-cost path and tours to investigate specific hypotheses 

regarding role of particular structures as on-path intermediates in 
conformational switching events of interest
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Samples in the conformational 
space of a given protein, projected 
on PC1, PC2.

Cstart and Cgoal , plus an ensemble of 
relevant experimental structures 
projected on PC1, PC2.

Leveraging Experimental Structures to Define 
Underlying Space of Collective Variables

Initial 
population

Final 
population

[17/45]

Maximova et al. IEEE/ACM Trans 
Comput Biol and Bioinf 2016.
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Ensemble Ω

Si’ : complete Ci’
and minimize

CA 
trace

If (E(Si’) < threshold) 
Ω {Ω, Si’}

Ci’Ci varyselect

PC1

PC𝑀

PC2

PC4

Ci’
Ci
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Sampling of Variable Space

Maximova et al. IEEE/ACM Trans 
Comput Biol and Bioinf 2016.
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Ensemble Ω mapped onto grid of top two PCs
Two-level selection: 

o pick some cell γ from grid G --- w(y)
o pick some conformation c from cell γ --- w(c).  

𝑤 𝑐 =
𝑒−𝐸(𝑐)∙𝛼

(𝑛𝑟𝑆𝑒𝑙 𝑐 ∙ 𝑛𝑟𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑐))2

𝑤 𝛾 =
𝑒−𝑚𝑖𝑛𝐸(𝛾)∙𝛼

(𝑛𝑟𝐶𝑛𝑓𝑠 𝛾 ∙ 𝑛𝑟𝑆𝑒𝑙 𝛾 ∙ 𝑛𝑟𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝛾))2

𝒎𝒊𝒏𝑬 - minimum potential energy sample in γ
𝒏𝒓𝑪𝒏𝒇𝒔 - number of samples in γ
𝒏𝒓𝑺𝒆𝒍 - number of times γ has been selected 
𝒏𝒓𝑭𝒂𝒊𝒍𝒖𝒓𝒆𝒔 - tries that failed to generate a new sample
Weighting functions inspired by related work (Shehu, Olson IJRR 2010, 
Molloy,Shehu BMC Struct. Biol 2013, Le-Plaku IROS 2014, Plaku TRO 2015)

[19/45]

PC1-PC2 projections of 697 
experimental CaM structures

Biased Selection
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T' is obtained from some sample T as in:
T’ = T + d
d = <d1 … dM > - displacements along each of PCs

Displacements d are proportionate to the variance
captured by each PC 

d1 ∈ [-δ, δ],  δ – user-defined maximum size of perturbation
𝑑𝑖

𝑑1
=

λ𝑖
λ1

, where λi is eigenvalue of PCi

𝑇′ = 𝑇 +  

𝑖=1

𝑀

𝑑𝑖 ∙ 𝑃𝐶𝑖

Preservations of relative variances inspired by prior work in Shehu lab and others in robot 
motion planning (Li, Yanbo, and Kostas E. Bekris., ICRA, IEEE, 2010).

Displacement along 
PC1 for CaM

[20/45]

Variation Operator

Maximova et al. IEEE/ACM Trans 
Comput Biol and Bioinf 2016.
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Result: computed ensemble of structures is a discrete, sample-based representation of 
AMBER ff14SB energy surface

CA trace

Backbone All-atom 
structure

BBQ [1]

SCWRL4 [2]
AMBER 
minimization

[1] Gront et al. J Comput Chem 2007 
[2] Krivov et al. Proteins: Struct Funct Bioinf 2009

Multiscale Improvement Operator: From 
Variable Space to Structure Space

From variable instantiations/samples to CA-traces to all-atom structures in local minima
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Nearest-neighbor Graph Querying

[22/45]

 Each C ϵ Ω is connected to at most k of its 
nearest neighbors 

 Distance function:  Euclidean  distance in PC 
space

 Additional criterion: threshold on maximum 
distance between C and its neighbor

Minimum work: calculates only amount of extra energy 
(uphill moves) needed for the transition to occur

∆𝐸 < 0 :  0 ∆𝐸 > 0 : ∆𝐸

𝑐𝑡

𝑐𝑡+1 𝑐𝑡

𝑐𝑡+1

Minimum Work Cost =  ∆𝐸𝑘
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CaM degradation in Alzheimer's; disruption of calcium signaling main cause of neuronal dysfunction

CaM bound to 
calcium ions
(PDB ID 1CLL)

Apo-state
(PDB ID 1CFD)

CaM bound to proteins 
and peptides 
(PDB ID 2F3Y)

Apo-state 
(PDB ID 1DMO)
Apo-state 
(PDB ID 2KOE)

CaM bound to proteins 
and peptides 
(PDB ID 1NWD)

Representative Results:
Roadmap-based Study of CaM

CaM is used as Ca2+ sensor by protein kinase, involved in a process that regulate RAS 
signaling – subject of intensive cancer studies

[23/45]
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Mapping Energy Landscape of CaM

Apo-state 
PDB ID 
1CFD

CaM bound 
to protein 
(PDB ID 
1NWD)

CaM bound 
to protein 
(PDB ID 2F3Y)

Ca ions 
bound 
PDB ID 
1CLL

[24/45]
Maximova et al. IEEE/ACM Trans Comput Biol and Bioinf 2016.
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Modeling Transition Routes in CaM

Start: Ca ions 
bound

Goal2: 
protein 
bound

Goal1: 
protein 
bound

 Lowest-cost path compared to lowest-
cost tours going through specific apo-
states as candidates for intermediates 
(PDB ids 2KOE, 1DMO)

 Paths reconcile findings: wet-lab 
findings that suggest transitions from 
Ca-bound to protein-bound states 
depend on the target-binding protein; 
in-silico work by Dobson and colleagues 
that suggests transitions follow a 
general, common functioning scenario

[25/45]
Maximova et al. IEEE/ACM Trans Comput Biol and Bioinf 2016.
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Sampling via Evolutionary Algorithms

[26/45]

 Challenges:

 Exploration limited by what can be maintained in memory
 Selection operator increasingly less effective if all samples 

maintained in memory

 What if some samples are left off to die?
 Inspiration: natural selection 
 Population of samples evolves over generations
 Only current population in memory + archive of hall of famers

 Evolutionary Computation: rich algorithmic toolbox with long history of 
investigating exploration versus exploitation trade-off
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Discrete (Kinetic) Models of Connectivity: 
Roadmap

Variable 
selection

Sampling coupled to search 
structure (structured 

representation)

Sampling decoupled from 
search structure (unstructured 

representation)

Tree-based

•RRT

•EST

•Projection-guded …

Samples under umbrella 
of evolutionary 

computation

Roadmap-based
umbrella of robot 
motion planning

Sample-based representation 
of variable space

Embed samples 
in nearest-

neighbor graph
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Nearest-neighbor Embedding of EA-obtained 
Map of Multi-basin Protein Energy Landscape
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Parent Population Parent + Child
Population

Variation 
Operator(s)

EvaluationSelection

New Population

R
ep

la
ce

 P
ar

en
ts

 
(N

ex
t 

G
en

er
at

io
n

)

Parent + Child Population (scored)

Improvement

Sampling via (Memetic) EAs Mapping Multi-
basin Protein Energy Landscapes
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Sampling via (Memetic) EAs Mapping Multi-
basin Protein Energy Landscapes

[29/45]

 Every parent subjected to 
variation operator

 Non-redundant, fitness-
biased map via dynamically-
updated hall of fame 

 Novel improvement 
operator improves 
exploration-exploitation 
trade-off
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Map of Landscape via Hall of Fame Mechanism
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Lineage- and Neighborhood-aware 
Improvement Operator

[31/45]

 Insight: Improvement 
operators implement 
exploitation and gobble up 
computational budget from 
exploration in an EA

 Solution: apportion budget by 
only spending improvement 
iterations on promising 
individuals
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Improvement Operator in Exploration-
Exploitation Trade-off

[32/45]

Product of two 5D spheres with multiplicative moderate noise uniformly at random in [0,1] 

f(x) =  1
5 𝑥𝑖 − 200

2 *  1
5 𝑥𝑖 + 200

2 + noise(x)

Hall of fame projected onto first two 
coordinates and color-coded by fitness

Local improvement 
operator

Sapin et al. ACM GECCO 2016

Aware improvement 
operator
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Improvement Operator in Exploration-
Exploitation Trade-off

[33/45]

Structures in hall of fame obtained for SOD1 
enzyme projected onto first two coordinates 
and color-coded by Rosetta score12 energies.

Hall of fame obtained with neighborhood- and 
lineage-aware local improvement operator

Sapin et al. ACM GECCO 2016
Sapin et al. IEEE/ACM Trans Comput Biol & Bioinf 2016
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Study of H-Ras
Wildtype and Oncogenic Variants

H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures

[34/45]
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Mapping Energy Landscape of H-Ras WT

[35/45]

Structures in hall of fame obtained from 
PelMap-EA projected onto first two coordinates 
and color-coded by Rosetta score12 energies.

Hall of fame obtained by PelMap-EA with neighborhood-
and lineage-aware local improvement operator

Sapin et al. BMC Genomics 2016
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Uncovering New Basins in H-Ras

[36/45]

 Lowest-energy structures in hall of fame 
(blue to pink for low to high energy color 
scheme) projected onto top three 
coordinates/PCs.

 Projections of experimentally-known 
structures of WT and variants are in red.

 On and off states of H-Ras reproduced in 
greater detail.

 Two new basins, named Conf1 and Conf2 
emerge.

Clausen et al. PLOS Comput Biol 2015
Sapin et al. BMC Genomics 2016
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Uncovering New Basins in H-Ras

[37/45]

 Hall of fame conditioned on PC3 
and PC4 and shown on PC1-PC2
hexagonal bin plots.

 Color scheme of {dark blue, light 
blue, gray, pink} for quantiles of 
{0, 20, 60, 99, 100}% of Rosetta 
score12 energies.

 On basin wider and deeper than 
Off basin; Conf1 and Conf2 less 
stable.

 Large region of On basin not 
populated in wet laboratory

Sapin et al. BMC Genomics 2016
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Energy Landscape and Low-Cost Paths of 
On  Off Switching in H-Ras WT

[38/45]
Sapin et al. BMC Genomics 2016

 Comparison of H-Ras WT and 7 
disease-related variants.

 Maps queried for low-cost paths 
connecting PDB id 1QRA 
(representative of On) to PDB id 
4Q21 (representative of Off).

 Single-mutant variants (except for 
Q61L and G12V) incur 
significantly higher On Off 
energetic costs than the WT.

 Most oncogenic mutations 
rigidify H-Ras. 
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Energy Landscape and Low-Cost Paths of 
On  Off Switching in H-Ras G12C Variant

[39/45]
Sapin et al. BMC Genomics 2016

 Significantly elevated barrier 
separates On from Off basins in 
G12C oncogenic variant.

 Result of structural rigidification: 
constitutive activation (always on).

 This mechanism observed, to 
lesser extent, in many other 
oncogenic variants.

 Off-pathway Conf1 and Conf2 
basins more prominent in G12C, 
informative for possible molecular 
interventions.
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Energy Landscape and Low-Cost Paths of 
On  Off Switching in H-Ras Y32CC118S

[40/45]
Sapin et al. BMC Genomics 2016

 Higher On  Off costs than in 
the WT in this double mutant.

 Off-pathway Conf1 and Conf2 
basins more prominent than in 
WT and in G12C, informative 
for possible molecular 
interventions.

 Conf1 broader and deeper 
than in WT, indicative of a third 
equally-stable emerging basin 
separated by high-energy 
barrier from On basin.
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Thermodynamic Hypothesis for Impact of 
Single- and Double-point Mutations

[41/45]

Sequence (μ, σ)Cost (REU) (μ, σ)HighestEnergy (REU) (μ, σ)Nr. Edges

WT (127.6, 7.90) (-277.3, 15.2) (64.2, 15.6)

G12S (143, 40.9) (-259.0, 92.0) (73.0, 22.1)

G12C (266.4, 18.2) (-139.3, 24.4) (60.0, 9.8)

G12D (140.4, 15.5) (-253.9, 15.9) (54.6, 8.6)

G12V (132.3, 13.5) (-236.3, 83.4) 64.6, 13.1)

Q61L (161.3, 45.2) (-240.7, 21.8) (64.1, 9.2)

Y32CC118S (158.2, 18.9) (-257.5, 18.1) (63.9, 10.2)

R164AQ165V (159.7, 21.3) (-245.6, 23.8) (65.9, 7.1)

Sapin et al. BMC Genomics 2016

Most mutations directly impact conformational switching in H-Ras and some introduce 
additional semi-stable or stable off-path basins
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Future Algorithmic Work

[42/45]

Markov State Models (MSMs) as discrete kinetics 
models that additionally permit calculation of 
summary statistics

 Issues to address: definition of states 
and state-to-state transition probabilities

 Preliminary investigation uses clustering 
for states and Boltzmann-like 
probabilities

 Promising preliminary results on 
comparison of expected number of 
edges from any vertex vi to an vj in A

ti =1+ Pij ·0+ Pij ·t j
v jÏA

å
v jÎA

å

H-Ras
Sequence

Transition Expected Nr. Of 
Edges

WT Off On 3.4 x 108

On  Off 3.9 x 1010

Q61L Off On 1.9 x 1012

On  Off 3.8 x 1014

Direct positive correlation between expected nr. of edges 
and physical transition time

Molloy et al. Robotica 2015
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Rethinking Role of Mapping-driven EAs

[43/45]

 A map of samples corresponding to structures will 
be dominated by basins 

 Energy barriers connecting basins important to 
map when goal is to enrich landscape with kinetics

 Barriers typically more sparsely sampled then 
basins with stochastic optimization frameworks

 Change objective: evolve paths

 Many issues to address:

 A carefully-designed initial population

 Variation operators to yield path offspring from path parents

 Path fitness function that does not hamper path diversity
Sapin et al. IEEE BIBM 2016, in preparation
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Integrative Approaches: Human Biology is 
Exceptionally Complex

[44/45]

Advancement 
of Knowledge

Formulation of 
Hypotheses

Wet 
Laboratory

Research

Advancement 
of Knowledge

Formulation of 
Hypotheses

(Novel, More Powerful)

Algorithmic Frameworks 
for the Dry Laboratory
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Thank you for your attention!
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