Bio-curation for cellular signalling
the KAMI project

Russ HARMER*, Yves-Stan LE CORNEC,
Sébastien LEGARE and Ievgeniia OSHURKO

LIP, Université de Lyon — CNRS — ENS Lyon — Université Claude Bernard Lyon 1

Abstract. The general question of what constitutes bio-curation for
rule-based modelling of cellular signalling is posed. A general approach
to the problem is presented, based on rewriting in hierarchies of graphs,
together with a specific instantiation of the methodology that addresses
our particular bio-curation problem. The current state of the ongoing
development of the KAMIE| bio-curation tool, based on this approach, is
detailed along with our plans for future development.

1 The bio-curation problem

In multi-cellular organisms, tissue development, maintenance and repair
are largely coordinated via decentralized signalling: cells send signals—
usually small proteins such as hormones, growth factors or cytokines—
to be received by other cells through the agency of dedicated receptor
proteins embedded in their external membranes. Reception of a signal is
typically transduced across the external membrane by a conformational
change of the receptor protein which, in consequence, triggers various
intra-cellular signalling ‘pathways’ [9].

Despite their name, these latter do not exist physically, as actual
pathways in the cell, but rather as metaphors for the cascaded activation
of enzymes that perform post-translational modifications (PTMs)—most
commonly phosphorylation and dephosphorylation—in order to control
the assembly and disassembly of protein complexes. The metaphorical
‘destination’ of a pathway is the cell’s DNA and the ‘journey’ ends in the
modulation of gene expression as effected by the assembly or disassembly
of complexes of transcription factors that bind directly to the DNA.

This intrinsic signalling system can be perturbed by modifications to a
cell’s DNA—mutations or gene ablation, duplication or rearrangement—
that ‘reroute’, ‘block’ or ‘short-cut’ its pathways; and by pharmacological
interventions intended to counteract such pathological changes.

* Corresponding author: russell.harmer@ens-1lyon.fr
! Knowledge Aggregator & Model Instantiator

Even in the absence of such extrinsic perturbations, different cells may
respond differently to the same signal. In particular, different cell types—
which express different repertoires of proteins—mneed not express the same
receptors so that the ‘starting point’ of a pathway may be present in some
cases yet absent in others. More generally, the intricate choreography of
protein-protein interactions (PPIs)—bindings, unbindings and PTMs—
that we conceptualize as pathways clearly depends on the gene expression
profile of the cell (including its expression levels): a ‘highway’ in one cell
may be a ‘country lane’ in another.

1.1 Modelling pathways

Considerable work has been done, e.g. [I4JT918], to determine statistical
‘models from data’, highly specific to the context of a particular cell type.
Although able to recapitulate successfully the principal highways known
to operate in that context, such models (unsurprisingly) tend to have
limited predictive power in other contexts. Indeed, this kind of work never
intended, nor claimed, to seek such predictive power; on the contrary, it
was exploiting extreme contextuality to provide deeper insight into the
workings of particular cells. However, it also illustrates very clearly the
difficulty of trying to model directly in terms of pathways: such models
have an inherently holistic nature and, realistically, can only be built by
unbiased, statistical learning methods.

Our approach, as initially advocated in [], adopts a different stance:
we step down a level, instead seeking a de-contextualized representation of
the PPIs that underlie pathways; then provide the means to re-instantiate
automatically that knowledge in any context in the form of an executable
model [2]. We then attempt to reconstruct the biologist’s notion of path-
way either by the extraction of a (suitably post-processed) causal trace
from a (stochastic) simulation of the model [54]; or by direct construction
of such a causal trace through static analysis of the model [15].

This factorization of the modelling process allows us to focus attention
on bio-curation: the construction of the de-contextualized representation
of PPIs. The consequences of this knowledge in any particular cell context
will be revealed by the automatic generation of an executable model and
subsequent analysis. This contrasts with most modelling methodologies
that require the modeller first to understand sufficiently the very system
they are seeking to model; instead, we aim to enable an exploratory form
of modelling as ‘tool for discovery’ in order to investigate how a single
‘roadmap’ of PPIs can be deployed, in varying (normal or pathological)
contexts, to exhibit distinct cell type-specific signalling.

However, our approach poses certain constraints on what constitutes
an appropriate executable model. The principal requirement is that the
model provides a notion of execution trace based on discrete events,
i.e. occurrences of PPIs, from which causal traces can be extracted,
cf. Mazurkiewicz traces [I7]. This immediately rules out ODE models.
More subtly, although Mazurkiewicz’s theory applies to reaction-based
models—formulated either in terms of Petri nets or multi-set rewriting—
the resulting causal traces contain a great deal of spurious causality since
a single PPI is typically encoded as a family of reactions.

For example, suppose a protein B can independently bind proteins A
and C to form a complex ABC via intermediates AB or BC. In the event
that an A and B first react to form AB, via the reaction A, B — AB, a
spurious causality would be identified to the subsequent AB,C — ABC
event. Indeed, the independence of B’s bindings to A and C' are expressed
by the fact that the system also admits A, BC — ABC and B,C —
BC'. If these latter reactions were removed from the system, this would
imply a sequential assembly of ABC and the above causality would no
longer be spurious. This mismatch between the level of representation
and the desired notion of causality vastly complicates—and compromises
the scalability of—the use of reaction-based models for our purposes.

This mismatch can be alleviated through the use of models based on
graph rewriting, an approach known as rule-based modelling, exemplified
by the BioNetGenﬂ [13] and Kappaﬂ [5] languages. In this setting, a PPI is
represented by a single graph rewriting rule and the above issue of spuri-
ous causality no longer arises: the protein B would have two binding sites,
one for A and one for C', and the rule ‘A binds B’ would not mention the
binding site for C' (and vice versa). More generally, Mazurkiewicz traces
can be generalized to such graph rewriting settings [1J412] although ques-
tions still remain as to the most appropriate notion(s) of causal trace in
the context of reversible systemsﬁ

Kappa provides three notions of causal trace: an uncompressed trace
that may contain many uninformative ‘do-undo’ event pairs; a weakly
compressed trace that employs heuristics to eliminate such ‘do-undo’s;
and a strongly compressed trace that further quotients by conflating all
instances, i.e. individual proteins, of each agent, i.e. type of protein [4J15].
The latter two notions correspond closely, in many cases, to the intuitive
notions of pathway employed by biologists.

2 http://bionetgen.org/index.php/Main_Page
3 http://dev.executableknowledge.org
4 Toana Cristescu, private communication

1.2 Representing PPIs

The protein-centric representation of Kappa—as opposed to the complex-
centric representation of reaction-based models—fixes, at least to a good
first approximation, the mismatch with the desired notion of causality.
However, for the purposes of providing a de-contextualized representation
of PPIs, it has some serious shortcomings. The principal difficulty comes
from the fact that, although one Kappa rule corresponds to one PPI,
in practice many PPIs share a single mechanism. If we wish to update
our knowledge about such a mechanism, this necessitates identifying, and
then making ‘the same’ change to, every Kappa rule corresponding to that
mechanism. The significance of this problem became apparent during the
first author’s development (in 2007-08) of a Kappa model of the erbB
signalling network, as partially documented in [5], and led directly to the
work on MetaKappa [6/11].

MetaKappa provided a partial solution to this problem by enabling
the definition of mechanisms as generic rules—that were automatically
expanded into sets of underlying Kappa rules—shared by splice variants,
loss-of-function mutants and even related genes. However, it was unable
to treat the important case of gain-of-function mutants and, critically, the
fact that mechanisms had to be defined in MetaKappa implicitly required
the modeller to have already in mind an intended set of underlying Kappa
rules. In other words, a choice of generic rules expressed only one possible
way of compressing a known, contextualized set of Kappa rules.

Let us now state explicitly our bio-curation problem for signalling. We
are seeking to enable the de-contextualized representation of knowledge
about PPIs: specifically, the known necessary conditions under which a
PPI may take place. Furthermore, we need to be able to express this
knowledge in such a way that a single mechanism corresponds to a single
‘element’ of our knowledge representation in order to avoid the ‘update
problem’ above. In particular, a mechanism that is potentially shared by a
family of splice variants and /or mutants of a given gene should correspond
to a single element.

We also need to provide the means to deploy this knowledge in context
via the automatic determination of which mechanisms give rise to which
specific PPIs: a mechanism may not apply to a particular splice variant
that lacks, for example, the necessary binding site; or a mutated protein
may lose, or gain, the ability to participate in a given mechanism. Finally,
this contextualized knowledge should then be automatically transformed
into an executable model for detailed analysis.

1.3 Plan of the paper

In §2, we present briefly our ReGraphE] Python library which provides the
underlying graph rewriting machinery necessary for our bio-curation tool
KAMIE] and discuss its use to support a de-contextualized representation
of PPIs. In §3, we discuss the front-end—which performs semi-automatic
update of this knowledge—and back-end of KAMI—which automatically
instantiates this knowledge into an executable Kappa model. We conclude
with a discussion of perspectives for future development of KAMI in §4.

Acknowledgements. This work was sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Research Office
under grant numbers W911NF-14-1-0367 and W911NF-15-1-0544. The
views, opinions, and/or findings contained in this report are those of the
authors and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

The first author thanks specially Walter Fontana for many discussions
over the years related to this work. Thanks also to Pierre Boutillier, John
Bachman and Ben Gyori; and to Adrien Basso-Blandin and Ismail Lahkim
Bennani who worked on prototypes of KAMI and ReGraph respectively.

2 KAMI’s knowledge representation

2.1 The ReGraph library

In previous work [2], the first author presented a theoretical framework for
graph-based knowledge representation specifically tailored to the needs of
representing PPIs for the purposes of rule-based modelling. In this setting,
one first defines a so-called meta-model, a particular graph intended to
define the kinds of entities that can exist: genes, features of genes (regions,
key residues, modifiable states) and actions (binding, unbinding and state
modification). The meta-model is then used to type a second graph called
the ‘pre-model’, but which we rename as action graph in this paper, which
defines the specific genes, features and actions that occur in a model. By
typing, we mean the existence of a homomorphism from the action graph
to the meta-model [7/12]. Finally, the action graph types a collection of
nuggets that represent the PPIs in the model. A model thus comprises an
action graph typing a collection of nuggets.

® https://github.com/Kappa-Dev/ReGraph
% https://github.com/Kappa-Dev/KAMI

This framework supports sesqui-push-out graph rewriting [3/12] so it
can express adding, deleting, cloning and merging of nodes and edges. An
update of knowledge about a PPI can thus be expressed as an appropriate
step of graph rewriting. An important technical point in this approach is
that PPIs—themselves graph rewriting rules—are reified as graphs. This
enables updates of PPIs to be written as ordinary graph rewriting rules
even though, conceptually, they should be thought of as second-order rules
that rewrite rules, cf. [16]. This is a particularity of our meta-model and
clearly the generic framework could also be used in completely different
domains—with or without the need to ‘reduce’ second-order to first-order
rewriting. However, the rather ad hoc nature of the graphs used—simple
graphs with two kinds of directed edges where nodes can have attributes—
imposes unnecessary limitations on applicability of the framework.

We address this by adopting a more general theoretical framework
based on simple directed graphs where nodes and edges have attributes
that can be assigned sets of values. This still provides all the structure
necessary to support sesqui-push-out rewriting but provides greater flex-
ibility; in particular, different kinds of edges can be expressed by the use
of edge attributes.

The well-known Python library networkxﬂ provides exactly this class
of graphs; as such, we chose to build our ReGraph library for (sesqui-
push-out) graph rewriting on top of networkX. The ReGraph library also
provides support for typing hierarchies: collections of graphs connected
by (i) typing homomorphisms that form a forest or, more generally, a
DAG (provided all typing paths between two graphs coincide); and (ii)
binary relations in the form of spans of typing homomorphisms.

The notion of typing immediately extends to rewriting rules and, given
a rule and a graph G typed by T, the result of rewriting G remains typed
by T' [12]. Conversely, if we rewrite T, we can restore typing by propagating
the rewrite to G: if a node/edge is deleted or cloned in T', we delete or clone
all nodes/edges typed by it in G [12]. This allows us to update an entire
hierarchy upon rewriting of one of its constituent graphs: we propagate
the rewrite to all other graphs typed—directly or transitively—by the
rewritten graph and restore all typing homomorphisms. This is exploited
by the back-end of KAMI for knowledge instantiation; see §3.2.

The notion of typing can be refined by placing constraints on the in-
or out-degree of certain nodes: a constraint in 7" must be satisfied by all
graphs G typed—directly or transitively—by 7T'. This is used to express
domain-specific semantic constraints in the front-end of KAMI; see §3.1.

" https://networkx.github.io

2.2 The meta-model

The heart of KAMI is an instance of ReGraph with a particular hierarchy;,
rooted in a meta-model, that includes—in addition to the action graph and
nugget graphs—background knowledge in the form of (i) domain-specific
PPI templates, e.g. ‘phosphorylation’; used to perform semantic checks or
auto-completion; and (ii) definitions of gene products, e.g. splice variants
and mutants, used to instantiate knowledge into specific contexts.

The meta-model, shown in Fig. [I| remains more or less unchanged
from that originally proposed in [2]. The principal difference lies in two
new nodes, defining tests of binding status, that were previously encoded
in a rather opaque fashion; these allow nuggets to express conditions
that are tested, but not modified, by the graph rewriting rules they reify.
The ‘source’ and ‘target’ nodes, which played a purely formal réle in
[2], have been replaced by a single kind of site which should be thought
of as representing a template of a physical binding site that can occur in
multiple genes. As before, there are two kinds of arrows—distinguished by
attributes: dotted arrows represent a belongs to relation, i.e. hierarchical
structuring of actors; while solid arrows relate actions and actors.

Fig. 1. The meta-model of KAMI

The meta-model also defines some standard meta-data as attributes:

— for genes, a string-valued attribute for the UniProtﬂ accession number;

— for residues, an attribute aa with values in the set of twenty one-letter
codes for amino acids;

— for the dotted arrow from residues to genes, a positive integer-valued
attribute pos for its position in the sequence;

— for all actions, a positive real-valued attribute rc for its rate constant;

— for MOD actions, a {0,1}-valued attribute val specifying the value
written by the modification.

Note that a state is simply an attribute whose value can be modified by
actions from within the system; as such, in order to be able to express
such a MOD action, it must be reified explicitly as a node.

2.3 Action graphs

An instance of KAMI’s hierarchy contains two action graphs: one that is
built up during the development of a model; and a second that frames
the built-in domain-specific background knowledge. In ontological terms,
where the meta-model defines general concepts—genes, actions, &c.—the
action graphs define which entities actually exist: the specific genes, ac-
tions, &c. under consideration; and the entities—binding domains, PTM
states, &c.—for which the system has background knowledge.

<
pos:{272,317,427} / aaY 4 phos:(0,1}
J

Fig. 2. An example of action graph

8 http://www.uniprot.org/uniprot/

Fig. [2shows a typical (small) example of the first kind of action graph.
It defines five actual genes, in the sense that those five nodes are typed
by the gene node of the meta-model, each of which defines a type—=Shc1,
Grb2, EGFR, EGF and Sosl—that can be used by nugget graphs. The
other nodes also have this dual typing aspect which occurs in any graph
which is neither a sink nor a source node of its hierarchy.

The current semantic action graph of KAMI is shown in Fig. [l It
defines three types of regions—=kinase domains, phosphatase domains
and SH2 domains—and other associated entities that will be referenced
by semantic nuggets. These four domains participate in three kinds of
actions—phosphorylation, dephosphorylation and SH2-phospho-tyrosine
motif binding.

val:1

phos:{0,1}

DEPHOS
MOD

aa:{S,T,Y}

Fig. 3. The semantic action graph

The constraints state that (i) kinase (resp. phosphatase) domains have
at most one associated phosphorylation (resp. dephosphorylation) action;
and (ii) SH2 domains have at most one binding site for, and mechanism
of binding to, phospho-tyrosine motifs. These statements correspond to
real physical constraints but, more importantly for our purposes, also
allow KAMI to identify whether or not an incoming input corresponds to
a pre-existing action; see §3.1 for a detailed discussion.

This semantic action graph is clearly very incomplete as it stands;
our approach has been to develop the ideas—and the code—in a small
number of illustrative cases that should generalize broadly with little or
no complication. We return to this in §4 on future work.

Fig. 4 shows the hierarchy introduced so far. The dotted line between
the action graph (AG) and the semantic action graph (SAG) represents a
relation between the two graphs which, internally, corresponds to a span
from the graph e to AG and SAG: the typing from e to AG picks out those
nodes of AG that have been assigned a semantic attribution in SAG; and
the typing from e to SAG specifies that assignment. Note that, in order
to be a valid hierarchy, the two paths from e to the meta-model (MM)
must commute.

/ * \
AG SAG
MM
Fig. 4. The (partial) hierarchy of KAMI

In our example, the node #3 of the AG is assigned to the PHOS
node of the SAG and the (unique) state of EGFR is assigned to the phos
state of the SAG; FGFR is also assigned to the geme node of the SAG.
This means that node #3 is a phosphorylation and any domain-specific
constraints—expressed in the SAG—of phosphorylation therefore apply.
Additionally, node #/4 of the AG is assigned to the SH2-pY node of the
SAG and the region sh2 of Grb2 is assigned to the SH2 node of the SAG;
Grb2 is also assigned to the gene node of the SAG. This means that node
sh2 is an SH2 domain and node #/ is an SH2 domain—phospho-tyrosine
binding.

2.4 Nuggets

An instance of KAMI’s hierarchy may contain many nuggets, representing
specific (families of) PPIs, typed by the action graph. It also contains
a built-in—but modifiable—collection of semantic nuggets, typed by the
semantic action graph, that provide templates for certain generic PPIs
such as domain-domain or domain-motif bindings. These enable us to
perform semantic checks that can reject non-sense nuggets.

Fig. [5] shows an example of a nugget typed by the action graph of
Fig. 2l Note how the nugget specifies all and only the (known) context—
in this case, the test that a state of EGFR called phos has value 1 and
that Grb2 has a region sh2—necessary for this PPI to occur.

eeeeeeeeeeeeeeeeeee -

Fig. 5. An example of nugget

A nugget N matches a semantic nugget SN iff there is a span of
injective homomorphisms N «~ e — SN. A matching is complete iff
the right leg @ — SN of the span is an isomorphism, i.e. there is an
injective homomorphism SN — N. For example, the nugget in Fig.
matches the semantic nugget in Fig. [(F—which defines a template for SH2
domain—phospho-tyrosine binding—via the evident complete matching.

Fig. 6. An example of semantic nugget

A given semantic action may have several associated semantic nuggets,
e.g. Fig.[7]shows a more refined semantic nugget for SH2 domain—phospho-
tyrosine binding. These two semantic nuggets are related by a span which
also serves as a rewriting rule that can be applied to a nugget—provided
(i) there is a complete matching to the LHS semantic nugget; and (ii)
we supply a typing of the RHS into the action graph. This allows us to
upgrade nuggets systematically once we have all extra needed details.

phos:1

-8

¥

Fig. 7. Another example of semantic nugget

2.5 Protein definitions

We represent geme products, i.e. proteins, as rewriting rules typed by
the meta-model whose LHSs are injectively typed by the action graph, cf.
complete matchings. A LHS comprises one gene and all features belonging
to it; the RHS can have multiple gene products, each of which must
resolve all disjunctive aspects of those features: a residue that has several
admissible values of its aa or pos attributes—due to mutations or different
sequence numbering due to splice variants or truncations—must here be
assigned ezactly one for each. Moreover, each feature may be removed,
e.g. a region of a gene may not occur in some splice variants.

posiaiz Y phos:(0,1}

A
PTB
reg.

Fig. 8. Definition of a gene product

The gene Shel has a residue with three admissible values for pos. We
represent the p52 splice variant, where pos=317, of Shc! as in Fig.[§] We
use these rewriting rules in §3.2 in the back-end of KAMI that generates
Kappa models. The full current hierarchy of KAMI is shown in Fig. [9]

N
|
\\MM/

Fig. 9. The full ‘hierarchy type’ of KAMI including (semantic) nuggets and proteins

P

3 The KAMI bio-curation tool

In the previous section, we have seen how the generic framework of graph
hierarchies, as provided by ReGraph, can be exploited to build a knowledge
representation (KR) suitable for PPIs. Importantly, an update of the KR
is defined by a step of graph rewriting defined in the terms of the KR’s
meta-model and, as such, has an intrinsic semantic character: an update
expresses more than just a ‘diff’; it is stated in terms of a meaningful
change in an expert’s knowledge about something in the KR.

The history of updates thus provides an audit trail that recapitulates,
in properly semantic, domain-specific terms, the modelling process itself.
In particular, it maintains a record of how knowledge was aggregated
from various sources—principally scientific papers but also potentially
from databases—thus providing some transparency and clarity—as well
as support for model maintenance and future update—in the face of the
fragmentary, dispersed nature of the primary bio-medical literature.

In this section, we describe the current front- and back-end to the
KAMI bio-curation tool: the front-end takes input—either directly from
the user via a GUT or through INDRA|statement{™|—and constructs, then
applies, the appropriate step of graph rewriting. As we will explain, the
system can exploit domain-specific background knowledge—in the form
of semantic nuggets—to identify whether or not the input speaks of an
interaction that already exists in the KR. We also very briefly describe
the back-end of KAMI which takes a collection of protein definitions and
calculates the instantiation of nuggets to that collection of gene products,
i.e. the contextualization of our representation to the ‘cell type’ defined
by the given collection of proteins.

3.1 Knowledge input and aggregation

Given an (INDRA) input such as ‘EGFR phosphorylates Shcl on Y317’
or ‘Grb2’s SH2 domain binds Shcl phosphorylated on Y317, we need
to compute the rewriting rule(s) required to insert this knowledge into
KAMI’s hierarchy. This problem is an instance of the standard problem in
semantics—given an input, calculate its denotation—with a slight twist:
the computed rules depend on the current state of the hierarchy. Indeed,
given such an incoming input, depending on the current state, we may
need to perform a significant update or there may be nothing to do at all
as the input is subsumed by what the KR already contains.

9 https://github.com/sorgerlab/indra
10 http://indra.readthedocs.io/en/latest/modules/statements.html

The key task in computing update rules concerns identifying whether,
or not, (i) each entity mentioned in the input already exists in the KR;
and (ii) the (inter)action in question already exists in the KR. The first
question can be resolved fairly easily using grounding: several standard
names/IDs exist for genes (UniProt, HGNC, &c.) and regions/domains
(PFAM, InterPro, &c.). The current version of KAMI takes inputs in the
form of INDRA statementﬂ which include such grounding information—
at least for genes—as meta-data; however, it should be a straightforward
task to obtain grounding in cases where INDRA does not provide it or, in
the future, where we intend to use less pre-processed input formats.

KAMI contains a module, called the gene anatomizer, which takes a
UniProt ID (or similar) and interrogates various databases (principally
InterPro) to construct a representation of the gene and all its (signifi-
cant) regions, including grounding information. By including all regions,
not just those mentioned in an input, we often enable stronger inference
during the construction of a rewriting rule: knowing that Grb2 has only
one SH2 domain means that it must be the one referred to in the above
input. Moreover, the anatomizer need only be run once on any given gene;
the results are maintained in the action graph and can be reused freely.

The second identification problem, for interactions, has sharper teeth:
to the best of our knowledge, no system of grounding for PPIs exists to
datﬂ This problem cannot be solved automatically in general: even if
an input speaks of ‘A binds B’ and we already have a binding action
between A and B, we cannot immediately infer that they refer to the
same action as A and B may be able to bind in multiple ways. However,
we can exploit background knowledge in some cases to establish that an
input speaks of an existing interaction.

For example, given an input of the form ‘Grb2’s SH2 domain binds
Shecl phosphorylated on Y317’, KAMI would first construct a proto-nugget:

' We chose to use INDRA for now as it also provides us with import from BioPAX [8]
and a number of NLP systems. However, there is no obstacle to providing direct
import to KAMI from such sources; indeed, doing so would avoid losing certain kinds
of information that are not represented in the current version of INDRA, e.g. regions.

12 A notable side-effect of the KAMI project will be precisely to provide such a grounding.

http://www.uniprot.org
http://www.genenames.org
http://pfam.xfam.org
https://www.ebi.ac.uk/interpro/

It would then use grounding meta-data to resolve Shcl, its residue Y317,
the phos state of Y317, Grb2 and its SH2 domain to existing nodes in
the action graph. What about the remaining nodes—the two binding sites
and the action? Given that the proto-nugget matches the semantic nugget
of Fig. [7] its action is identified as an SH2-pY binding. The constraints
imposed by the semantic action graph now require that the binding site of
the SH2 domain and the SH2-pY actiorﬂ be identified with those in the
action graph already, giving rise to the following updated action graph.

posi2r2,817,427) /2 phos:{0,1)

v
#4 #8 C Grb2 O Sost
-------- BND ' a ' BND ' 9

Fig. 10. The updated action graph

Moreover, the two nuggets for Grb2’s SH2 domain will also be merged,
giving rise to a disjunctive nugget expressing ‘Grb2’s SH2 domain binds
phosphorylated EGFR or Shcl phosphorylated on Y317’

phos:1

‘\:ﬁﬁ:;@@}@'

S TTs |<---
‘mﬂwQ {:}
@& phos:1

13 This also implies that the second binding site must be identified with that belonging
to EGFR as binding actions have at most two binding sites—a constraint, elided
until now, enforced by the meta-model—i.e. this site is a template with an instance
in EGFR and another in Shcl.

The ability to express such disjunctive statements means that a nugget
corresponds to a shared mechanism—a family of PPIs—so any update,
concerning Grb2, of a family member of this nugget—for example, that
some mutation in the SH2 domain abrogates binding to FGFR—would
apply at the level of the mechanism: Grb2 binds Shcl in the same way as
it binds FGFR; therefore the mutation also abrogates Grb2’s binding to
Shc1. This solution of the update problem, discussed in the introduction,
is a special case of what biologists call by similarity inference; but it occurs
in KAMI not through logical ‘inference’ but by the merging of nodes.

3.2 Model instantiation and output

The back-end of KAMI performs two tasks. Firstly, given a collection
of nuggets and their action graph, and given a collection of rewriting
rules defining gene products, it applies those rewriting rules to the action
graphlEL This rewriting step is then propagated to all nuggets from which
we can easily determine, for each gene product and each nugget, whether
or not the nugget still applies. For example, a nugget testing for a certain
value of an aa attribute of a residue would not apply to an instance of
that gene that assigns a different value to that attribute. We detect this
because the original nugget no longer matches the transformed one.

This effects a transformation from a gene- and mechanism-based level
of representation to a protein- and PPI-based level: it contextualizes the
knowledge with respect to the given collection of gene products. The
second step now amounts to a standard parsing task: the contextualized
knowledge is translated into Kappa. Each gene product defines a distinct
agent type and the rules are read off by ‘multiplying out’ disjunctions,
e.g. ‘Aj or Ay binds Bj or By’ gives rise to four distinct rules.

4 Current and future work

We have presented an overview of the aims and functionality of our bio-
curation tool KAMI with particular focus on the importance of capturing
mechanisms, not just individual PPIs, together with a curation procedure
which exploits domain-specific background knowledge and intrinsically
provides an audit trail documenting the curation process. The tool is
based on solid theoretical foundations, discussed to some extent in [2/12],
that will be further developed in the long version of the present paper.

14 Unlike normal updates, this does not rewrite the action graph in-place; instead, it
copies the relevant part of the action graph and rewrites that in-place.

The development of KAMI continues in earnest. The most immediate
goals concern providing additional background knowledge, principally for
the binding domains—PTB, SH3, WW, PDZ, &c.—and other enzymatic
domains commonly implicated in signalling. This additional knowledge
will already substantially increase the ability of the front-end to aggregate
effectively through the merging of nodes. However, a further powerful
source of background knowledge concerns closely related genes or, better,
conserved regions of genes that typically share mechanisms. This could
be captured by the merging of region nodes; in this way, we would extend
the power of the system to identify automatically potential merging to a
far wider class of (binding) actions.

In the longer term, we intend to broaden KAMI’s current, very much
mechanistically-oriented representation to incorporate phenomenological
aspects. These will come in essentially two kinds: phenomenological states,
such as ‘activation’ of an enzymatic domain; and actions that typically
express the overall effect of an entire cascade of mechanistic actions. In
a way somewhat analogous to the refinement of semantic templates out-
lined above, the tool must be able to support the gradual refinement of
phenomenological knowledge about signalling—of which there is a great
deal in the bio-medical literature—into its mechanistic ‘implementation’.

In this way, we hope that KAMI can become an authentic ‘tool for
discovery’ that provides automated support for the book-keeping aspects
of curation, allowing the expert user to focus on hypothesis testing and
investigating the consequences of curated knowledge in various contexts.

Related work. Our work bears a superficial similarity to the INDRA project
developed in the Sorger Lab at Harvard Medical School [10]. However,
the level of representation employed by INDRA corresponds to that of rule-
based modelling—their agents are specific gene products, so mutants must
be treated as distinct agents; and statements have none of the disjunctive
flavour of nuggets—and therefore fails to solve the ‘update problem’.

Indeed, INDRA sets out to solve a different problem: its aim is not the
decontextualization of knowledge but the (semi-)automation of model
construction. In line with this, INDRA does not seek a transparent and
semantically rigorous curation procedure; instead it invests in a battery of
techniques—some based on background knowledge, others on heuristics—
to infer conflicts and other relationships between INDRA statements. The
outcome of this assembly procedure is an executable model, either ODEs
or rule-based, but whose provenance and built-in assumptions remain
rather opaque since no meaningful audit trail can be provided.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Paolo Baldan. Modelling concurrent computations: from contextual Petri nets to
graph grammars. PhD thesis, Department of Computer Science, University of Pisa,
2000.

. Adrien Basso-Blandin, Walter Fontana, and Russ Harmer. A knowledge repre-

sentation meta-model for rule-based modelling of signalling networks. EPTCS,
204:47-59, 2016.

Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara Konig. Sesqui-
pushout rewriting. In International Conference on Graph Transformation, pages
30-45. Springer, 2006.

Vincent Danos, Jérome Feret, Walter Fontana, Russ Harmer, Jonathan Hayman,
Jean Krivine, Chris Thompson-Walsh, and Glynn Winskel. Graphs, rewriting
and pathway reconstruction for rule-based models. In Foundations of Software
Technology and Theoretical Computer Science, 2012.

Vincent Danos, Jérome Feret, Walter Fontana, Russ Harmer, and Jean Krivine.
Rule-based modelling of cellular signalling. In CONCUR 2007 — Concurrency
Theory: 18th International Conference, pages 17—41. Springer, 2007.

Vincent Danos, Jérome Feret, Walter Fontana, Russ Harmer, and Jean Krivine.
Rule-based modelling and model perturbation. In Transactions on Computational
Systems Biology XI, pages 116—137. Springer Berlin Heidelberg, 2009.

Vincent Danos, Russ Harmer, and Glynn Winskel. Constraining rule-based dy-
namics with types. MSCS, 23(2):272-289, 2013.

Emek Demir et al. The BioPAX community standard for pathway data sharing.
Nature biotechnology, 28(9):935-942, 2010.

John Gerhart. 1998 Warkany lecture: Signaling Pathways in Development. Tera-
tology, 60(4):226-239, 1999.

Benjamin M. Gyori, John A. Bachman, et al. From word models to executable
models of signaling networks using automated assembly. bioRxiv, 2017.

Russ Harmer. Rule-based modelling and tunable resolution. EPTCS, 9:65-72,
20009.

Russ Harmer. Rule-based meta-modelling for bio-curation. Habilitation a Diriger
des Recherches, ENS Lyon, France, 2017.

Leonard A. Harris et al. BioNetGen 2.2: advances in rule-based modeling. Bioin-
formatics, 32(21):3366-3368, 2016.

Kevin A. Janes et al. A systems model of signaling identifies a molecular basis set
for cytokine-induced apoptosis. Science, 310(5754):1646-1653, 2005.

Jonathan Laurent. Causal analysis of rule-based models of signaling pathways.
Master’s thesis, Ecole Normale Supérieure, Paris, France, 2015.

Rodrigo Machado, Leila Ribeiro, and Reiko Heckel. Rule-based transformation of
graph rewriting rules: towards higher-order graph grammars. Theoretical Computer
Science, 594:1-23, 2015.

Antoni Mazurkiewicz. Introduction to trace theory. The Book of Traces, pages
3-41, 1995.

Evan J. Molinelli et al. Perturbation biology: inferring signaling networks in cellular
systems. PLoS Computational Biology, 9(12):¢1003290, 2013.

Sven Nelander et al. Models from experiments: combinatorial drug perturbations
of cancer cells. Molecular Systems Biology, 4(1):216, 2008.

	Bio-curation for cellular signallingthe KAMI project

