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About Me

Mission: Trick people into writing code
with (nice) guarantees by demonstrating
that we can build useful systems in
(surprisingly) clean ways.

Toolbox Application Domains

Logics for reasoning about P
programs and fromZas )
specifications

Solvers for program
verification and synthesis

Security Biological
and privacy | modeling

This talk




My Understanding of Cellular
Signaling
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Goal: understand mechanism of
— Pathway cellular signaling pathways.




Problem: Cell Signaling
Involves Many Interactions
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- Understanding cell
signaling would
help with curing
disease.

- Without more
structure, hard to
scale existing
models.

- Left with heuristic
approaches.




Programming Languages vs.

Chemistry
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Approach: Use Rewrite Rules

Over Graphs
Initial mixture One step Final state
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Mechanistic (Kappa) rules
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Two Ways to “Run” Kappa
Programs

Simulation to Analyzing rule
approximate structure via program
differential semantics analysis

aaaaaaa

Continuous-time Determine properties
stochastic Monte Carlo such as reachability, rule

simulation allows .
investigation of runtime symmetries, and model

behavior. coarse-graining.




Kappa Benefits

Compact rules Precise semantics
facilitate model allows sound analysis
creation

Rules allow reasoning
about causality




As Opposed To...
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Systems of
differential
equations

Boolean networks,
Petr1 nets, etc.




Kappa 1n Context

two axes of evil

number of instances combinatorial wall
per molecular species
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This Talk

1. The difficulty of

generating mechanistic
models.

2. Syndra, a logical
deduction framework for
exploring models.

3. Ongoing and future work.




Problems: Kappa Models
Daifficult to Generate

'"EGF.EGFR' EGF(r), EGFR(L,CR) -> EGF(xr!1), EGFR(L!1,CR) @ 'k_on'

'EGF/EGFR' EGF(r!1), EGFR(L!1,CR) -> EGF(r), EGFR(L,CR) @ 'k_off'

'She.Grb2' She(Y~p), Grb2(SH2) -> She(Y~p!1), Grb2(SH2!1) @ 5*'k_on'

'She/Grb2' She(Y~p!1), Grb2(SH2!1) -> She(Y~p), Grb2(SH2) @ 'k_off'

"EGFR.Grb2' EGFR(Y1092~p), Grb2(SH2) -> EGFR(Y1092~p!1), Grb2(SH2!1) @ 'k_on’'
"EGFR/Grb2' EGFR(Y1092~p!1), Grb2(SH2!1) -> EGFR(Y1092~p), Grb2(SH2) @ k_off"
"EGFR.Shc' EGFR(Y1172~p), She(PTB) -> EGFR(Y1172~p!1), Shc(PTB!1) @ 'k_on'

"EGFR/Shc' EGFR(Y1172~p!1), She(PTB!1) -> EGFR(Y1172~p), She(PTB) @ 'k_off'

'Grb2.S08' Grb2(SH3n), SoS(PR,S~u) -> Grb2(SH3n!1), SoS(PR!1,S~u) @ 'k_on'

'Grb2/SoS' Grb2(SH3n!1), SoS(PR!1) -> Grb2(SH3n), SoS(PR) @ 'k _off'

"EGFR.int' EGFR(CR!1,N,C), EGFR(CR!1,N,C) -> EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) @ 'k_on’
"EGFR/int' EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) -> EGFR(CR!1,N,C), EGFR(CR!1,N,C) @ 'k_off
'pY1092@EGFR' EGFR(N!1), EGFR(C!1,Y1092~u) -> EGFR(N!1), EGFR(C!1,Y1092~p) @ 'k_cat'
'pY1172@EGFR' EGFR(N!1), EGFR(C!1,Y1172~u) -> EGFR(N!1), EGFR(C!1,Y1172~p) @ 'k_cat’
uY1092@EGFR' EGFR(Y1092~p) -> EGFR(Y1092~u) @ 'k_cat'

'uY1172@EGFR' EGFR(Y1172~p) -> EGFR(Y1172~u) @ 'k_cat'

From the SOS model




The Dream of Big Mechanism
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Requires precise
mechanistic
reasoning!




Obstacle: Natural Language 1s

Ambiguous

Imprecision of
natural language
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Can use logical deduction to
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Our Solution: A Logical Tool
for Inference

@ Technique for

using logical
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Running Non-Biology
Example

Billy has a ] Billy’s Family Tree

sibling.
Billy’s Billy’s
mother father
| ]
Billy has a ]

sister.
: Billy’s Billy’s
[ Billy ] [ sister J [sibling




Using Domain Facts to Clean
up Model

e . h . :
Domain fact: A Billy’s Family Tree
sister 1s a kind
of sibling. y Billy’s Billy’s

mother father
| ]

Specificity

Hierarchy { Billy } [B}llys]

sister
L Family
sibling member type

Gendered

family member
type

sister




Things Get Harder with

Implication
r ~N 1 . .
If we trust the Billy’s Family Tree, if
neighbor, Billy we trust the neighbor
has a sibling. | Billy's Billy's
mother father

g If we trust the A
neighbor, Billy [ Billy ] [Bﬂly’s] [Bﬂly’s]

. sister sibling
%a sister. )




Deducible Facts

@ Y

Facts from

trust (neighbor) = has (Billy, Sibling) literature

é Y

Doma
VYa.has(a,sister) = has(a, sibling) fact

\ y

Deducible
[trust(neighbor) = has(Billy, sibling) ] fact

Fact f 1s deducible (and thus redundant) if
—f 1s inconsistent with previous facts.




What About Specificity and
Implication?

-

neighbor, Billy has a

If we trust the A

sibling. )
Z— ¢ \

If we trust anybody,
Billy has a sibling.

Sk




Relative Fact Specificity as
Subtyping

Subtyping Atomic Statements

[ Vaq,a,. genderedFamilyMember(al@‘amilyMember(az) ]

Subtyping symbol

Subtyping Implications

. Pt <:Ds Want Ps = (qs to be R
pe F qs <:qy consistent with any
P set of formulas p; = q;

\_ Ps = Gs =Pt = At {5 consistent with. P

trust(neighbor) = has(Billy,sister) <:trust(neighbor) = has(Billy, sibling)
trust(anybody) = has(Billy, sibling) <:trust(neighbor) = has(Billy, sibling)




Domain Facts 1n Biology

@horylaws BJ Can determine
these are

Phosphorylation ] redundant, where
implies activity “A phosphorylates

B” 1s the more

| specific
A activates B ~ gstatement.




Hierarchy of Specificity

r

If Cor D are
present, A

/

g If Cor D are A

present, A

worylates B

N

If C 1s present, A

Vactwates B D

phosphorylates B

~

J

Z—




Design and Implementation of
Syndra

Syndra 1is

1mplemented in

Python and

contains:

1. Translation of
L/Iota to Z3.

2. Translation of

" higher-level
\aew'lﬁl;lz 1gner-ieve

statements to
/ modds )y

Image by Chelsea Voss.




Translating Statements to
Graph Logic

Phosphorylation
et | | iy
Q’civates B J

Iota rules [Husson & Krivine]

preconditions (G a ) postconditions

Set of allowable graphs Actlons over graphs




Phosphorylation in Terms of
Iota Graph Predicates

“A phosphorylates B”

Precondition: A Postcondition:

1s active. A 1s active.
Precondition: B a Postcondition:
1s not phosphory- ’ B is

lated. phosphorylated.

Every model in the set of allowable
osraphs G must have one rule
prescribing that A may phosphorylate
B.




Phosphorylation as First-
Order Logic

VA, B. PreLabeled (A, active)

A PreUnlabeled (B, phosphorylated)
A PostLabeled (A, active)

N PostLabeled (B, Phosphorylated)

(declare-fun preLabeled (Int Int)
& Bool)
(declare-fun preUnlabeled (Int Int)

Bool)




Ongoing Work

- Encoding more high-level
properties.

- Finding more examples that
Iintegrate semantic/ontological
reasoning with reasoning
about graphs.

- Expanding engine capabilities
to support queries of interest.




The Multiple Uses of a
Knowledge Representation
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knowledge possible models
from
biologist’s
minds
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Rule-based models

It looks like you’re
1mplementing a
signaling pathway.

(But with better Ul
design, obviously.)




Oh, The Places You'll Go!

Reasoning about Structural Properties
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[ — should be reachable

Reasoning about Causality

This causal graph
1s called a story.
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Big Question: Should We Go to
the Dark Side?

If LRP5/6 1s next to
Axin, then it is likely
to have been
phosphorylated by
CK1-alpha and
GSK3-beta.

Note! It 1s still possible to
get strong mathematical
guarantees.




The Grand Plan

SClence
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Rule-based models
Space of
possible models

N §

Experiments, Analyses
diagnoses, involving rule
and structures and

discoveries rates




Some Open Questions

- What does the space of models from
the literature actually look like?

- What are some examples where
deep mechanistic reasoning 1s
useful?

- What kinds of algorithms do we
need to explore this space
efficiently?




Talk to Us!

- Tell us about the kinds of domain
knowledge you use when reading
papers.

- Tell us your about the tricky
mechanistic reasoning you do in
your head.

- Try out Syndra for your own
purposes and give us feedback!




Conclusions... So far

Logical deduction with mechanism is a promising
missing piece 1n producing precise models. But logic
alone won’t answer all the questions!

) . . v Demonstrate
’ p p feasibility on small

examples ° °

[} ([} L]
\ \ ', Test on examples e * v
" e vy o1~ of more realistic

[ ] ®
. . o scale \ \
LY ‘ ‘
A Y A Y LY

rd » 4 »
ey oy oo Extend theory and "o o\ v

1mplementation
[ ] [ o .
Y \ Y techniques
.' ﬁ‘. .' ~~. " §~.
Expand to
probabilistic
reasoning?

http://github.com/csvoss/syndra



