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About Me

Security 

and privacy

Biological 

modeling

Toolbox Application Domains

• Logics for reasoning about 

programs and 

specifications

• Solvers for program 

verification and synthesis 

This talk

Mission: Trick people into writing code 
with (nice) guarantees by demonstrating 
that we can build useful systems in 
(surprisingly) clean ways.



My Understanding of Cellular 
Signaling

Cell

Proteins

Post-translational 

modification
Pathway

Attention!

Goal: understand mechanism of 

cellular signaling pathways.



Problem: Cell Signaling 
Involves Many Interactions

• Understanding cell 
signaling would 
help with curing 
disease.

• Without more 
structure, hard to 
scale existing 
models.

• Left with heuristic 
approaches.



Programming Languages vs. 
Chemistry

Programming language 
semantics

Chemical reaction 
semantics



+      @ (0.8)

+      @ (0.5)

Approach: Use Rewrite Rules 
Over Graphs

Mechanistic (Kappa) rules

+     @ (0.2)

Initial mixture One step Final state



Two Ways to “Run” Kappa 
Programs

Simulation to 
approximate 

differential semantics

Analyzing rule 
structure via program 

analysis

Continuous-time 
stochastic Monte Carlo 
simulation allows 
investigation of runtime 
behavior.

Determine properties 
such as reachability, rule 
symmetries, and model 
coarse-graining.



Kappa Benefits

Compact rules 
facilitate model 

creation

Rules allow reasoning 
about causality

Precise semantics 
allows sound analysis



As Opposed To…

Systems of 
differential 
equations

Boolean networks, 
Petri nets, etc.



Kappa in Context

Courtesy of Walter Fontana



This Talk

1. The difficulty of 
generating mechanistic 
models.

2. Syndra, a logical 
deduction framework for 
exploring models.

3. Ongoing and future work.



Problems: Kappa Models 
Difficult to Generate
'EGF.EGFR' EGF(r), EGFR(L,CR) -> EGF(r!1), EGFR(L!1,CR) @ 'k_on'

'EGF/EGFR' EGF(r!1), EGFR(L!1,CR) -> EGF(r), EGFR(L,CR) @ 'k_off'

'Shc.Grb2' Shc(Y~p), Grb2(SH2) -> Shc(Y~p!1), Grb2(SH2!1) @ 5*'k_on'

'Shc/Grb2' Shc(Y~p!1), Grb2(SH2!1) -> Shc(Y~p), Grb2(SH2) @ 'k_off'

'EGFR.Grb2' EGFR(Y1092~p), Grb2(SH2) -> EGFR(Y1092~p!1), Grb2(SH2!1) @ 'k_on'

'EGFR/Grb2' EGFR(Y1092~p!1), Grb2(SH2!1) -> EGFR(Y1092~p), Grb2(SH2) @ 'k_off'

'EGFR.Shc' EGFR(Y1172~p), Shc(PTB) -> EGFR(Y1172~p!1), Shc(PTB!1) @ 'k_on'

'EGFR/Shc' EGFR(Y1172~p!1), Shc(PTB!1) -> EGFR(Y1172~p), Shc(PTB) @ 'k_off'

'Grb2.SoS' Grb2(SH3n), SoS(PR,S~u) -> Grb2(SH3n!1), SoS(PR!1,S~u) @ 'k_on'

'Grb2/SoS' Grb2(SH3n!1), SoS(PR!1) -> Grb2(SH3n), SoS(PR) @ 'k_off'

'EGFR.int' EGFR(CR!1,N,C), EGFR(CR!1,N,C) -> EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) @ 'k_on'

'EGFR/int' EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) -> EGFR(CR!1,N,C), EGFR(CR!1,N,C) @ 'k_off'

'pY1092@EGFR' EGFR(N!1), EGFR(C!1,Y1092~u) -> EGFR(N!1), EGFR(C!1,Y1092~p) @ 'k_cat'

'pY1172@EGFR' EGFR(N!1), EGFR(C!1,Y1172~u) -> EGFR(N!1), EGFR(C!1,Y1172~p) @ 'k_cat'

'uY1092@EGFR' EGFR(Y1092~p) -> EGFR(Y1092~u) @ 'k_cat'

'uY1172@EGFR' EGFR(Y1172~p) -> EGFR(Y1172~u) @ 'k_cat'

From the SOS model



The Dream of Big Mechanism

+      @ (0.8)

+      @ (0.5)

+     @ (0.2)

︙

Requires precise 

mechanistic 

reasoning!



Obstacle: Natural Language is 
Ambiguous

NLP

Can use logical deduction to 

navigate this space.

Scientific 

literature 

and 

databases

Imprecision of 

natural language

+      @ (0.8)

+      @ (0.5)

+     @ (0.2)

︙



Our Solution: A Logical Tool 
for Inference

1 Technique for 

using logical 

deduction for 

reducing space of 

possible models.

TRIPS 

parser

INDRA
Tool implemented in Python 

using the Z3 SMT solver in 

the backend.

+      @ (0.5)

+     @ (0.2)

︙

+      @ (0.8)2

Rule-based 

mechanistic 

model



Running Non-Biology 
Example

Billy has a 

sibling.

Billy has a 

sister.

Billy’s Family Tree

Billy’s 

father

Billy’s 

mother

Billy
Billy’s 

sibling
Billy’s 

sister



Using Domain Facts to Clean 
up Model

Billy’s Family Tree

Billy’s 

father

Billy’s 

mother

Billy
Billy’s 

sister

Domain fact: A 

sister is a kind 

of sibling.

Specificity 

Hierarchy

sibling

sister

Family 

member type

Gendered 

family member 

type



Things Get Harder with 
Implication

Billy’s Family Tree, if 

we trust the neighbor

Billy’s 

father

Billy’s 

mother

Billy
Billy’s 

sibling
Billy’s 

sister

If we trust the 

neighbor, Billy 

has a sibling. 

If we trust the 

neighbor, Billy 

has a sister.



Deducible Facts

Facts from 
literature

∀𝑎. ℎ𝑎𝑠(𝑎, 𝑠𝑖𝑠𝑡𝑒𝑟) ⇒ ℎ𝑎𝑠(𝑎, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)

𝑡𝑟𝑢𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⇒ ℎ𝑎𝑠(𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)

Domain 
fact

𝑡𝑟𝑢𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⇒ ℎ𝑎𝑠(𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)
Deducible 
fact

Fact 𝑓 is deducible (and thus redundant) if 

¬𝑓 is inconsistent with previous facts.



What About Specificity and 
Implication?

If we trust the 

neighbor, Billy has a 

sibling. 

If we trust anybody, 

Billy has a sibling.



Relative Fact Specificity as 
Subtyping

Subtyping Atomic Statements

∀𝑎1, 𝑎2. 𝑔𝑒𝑛𝑑𝑒𝑟𝑒𝑑𝐹𝑎𝑚𝑖𝑙𝑦𝑀𝑒𝑚𝑏𝑒𝑟(𝑎1) <: 𝑓𝑎𝑚𝑖𝑙𝑦𝑀𝑒𝑚𝑏𝑒𝑟 𝑎2

Subtyping Implications

𝑝𝑠 ⇒ 𝑞𝑠 <: 𝑝𝑡 ⇒ 𝑞𝑡

Subtyping symbol

𝑡𝑟𝑢𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⇒ ℎ𝑎𝑠 𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑠𝑡𝑒𝑟 <: 𝑡𝑟𝑢𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⇒ ℎ𝑎𝑠(𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)

𝑡𝑟𝑢𝑠𝑡 𝑎𝑛𝑦𝑏𝑜𝑑𝑦 ⇒ ℎ𝑎𝑠 𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 <: 𝑡𝑟𝑢𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⇒ ℎ𝑎𝑠(𝐵𝑖𝑙𝑙𝑦, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)

Want 𝑝𝑠 ⇒ 𝑞𝑠 to be 

consistent with any 

set of formulas 𝑝𝑡 ⇒ 𝑞𝑡
is consistent with.

𝑝𝑡 <: 𝑝𝑠
𝑝𝑡 ⊢ 𝑞𝑠 <: 𝑞𝑡



Domain Facts in Biology

Phosphorylation 

implies activity

A activates B

A phosphorylates B
Can determine 

these are 

redundant, where 

“A phosphorylates 

B” is the more 

specific 

statement.



Hierarchy of Specificity

If C or D are 

present, A 

phosphorylates B

If C or D are 

present, A 

activates B

If C is present, A 

phosphorylates B



Design and Implementation of 
Syndra

Image by Chelsea Voss.

Syndra is 

implemented in 

Python and 

contains:

1. Translation of 

L/Iota to Z3.

2. Translation of 

higher-level 

statements to 

L/Iota.



Translating Statements to 
Graph Logic

A phosphorylates B
Phosphorylation 

implies activity

A activates B

〈𝐺, 𝛼〉
Set of allowable graphs

Iota rules [Husson & Krivine]

Actions over graphs

preconditions postconditions



Phosphorylation in Terms of 
Iota Graph Predicates

〈𝐺, 𝛼〉
“A phosphorylates B”

Every model in the set of allowable 

graphs 𝐺 must have one rule 

prescribing that A may phosphorylate 

B.

Precondition: A 

is active.

Precondition: B 

is not phosphory-

lated.

Postcondition: 

A is active.

Postcondition: 

B is 

phosphorylated.



Phosphorylation as First-
Order Logic

∀𝐴, 𝐵. 𝑃𝑟𝑒𝐿𝑎𝑏𝑒𝑙𝑒𝑑 𝐴, 𝑎𝑐𝑡𝑖𝑣𝑒
∧ 𝑃𝑟𝑒𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐵, 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑
∧ 𝑃𝑜𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑒𝑑 𝐴, 𝑎𝑐𝑡𝑖𝑣𝑒
∧ 𝑃𝑜𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑒𝑑(𝐵, 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑)

(declare-fun preLabeled (Int Int) 

Bool)

(declare-fun preUnlabeled (Int Int) 

Bool)

︙



Ongoing Work

•Encoding more high-level 
properties.

•Finding more examples that 
integrate semantic/ontological 
reasoning with reasoning 
about graphs.

•Expanding engine capabilities 
to support queries of interest.



The Multiple Uses of a 
Knowledge Representation

+      @ (0.8)

+      @ (0.5)

+     @ (0.2)

︙

Space of 

possible models

Rule-based models

Mechanistic 

knowledge 

from 

biologist’s 

minds

It looks like you’re 

implementing a 

signaling pathway.

(But with better UI 

design, obviously.)



Oh, The Places You’ll Go!
Reasoning about Structural Properties

+      @ (0.5)

+     @ (0.2)

1

2

Reasoning about Causality

1

2

+      @ (0.8)

+      @ (0.5)
should be reachable

Ongoing work: 

relative frequency 

analysis for stories. 

This causal graph 

is called a story.



Big Question: Should We Go to 
the Dark Side?

If LRP5/6 is next to 

Axin, then it is likely 

to have been 

phosphorylated by 

CK1-alpha and 

GSK3-beta.

Note! It is still possible to 

get strong mathematical 

guarantees.



The Grand Plan

+      @ (0.8)

+      @ (0.5)

+     @ (0.2)

︙

Space of 

possible models

Rule-based models

Experiments, 

diagnoses, 

and 

discoveries

Analyses 

involving rule 

structures and 

rates



Some Open Questions

• What does the space of models from 
the literature actually look like?

• What are some examples where 
deep mechanistic reasoning is 
useful?

• What kinds of algorithms do we 
need to explore this space 
efficiently?



Talk to Us!

• Tell us about the kinds of domain 
knowledge you use when reading 
papers.

• Tell us your about the tricky 
mechanistic reasoning you do in 
your head.

• Try out Syndra for your own 
purposes and give us feedback!



Conclusions… So far

Demonstrate 

feasibility on small 

examples

Test on examples 

of more realistic 

scale

Extend theory and 

implementation 

techniques

Logical deduction with mechanism is a promising 

missing piece in producing precise models. But logic 

alone won’t answer all the questions!

Expand to 

probabilistic 

reasoning?

http://github.com/csvoss/syndra


