If we have \(G_i \) and \(\Lambda \xrightarrow{r} L^+ \),

\[
\begin{align*}
L & \xrightarrow{r} L^+ \\
\text{intuition: } L' & \text{ specifies the subgraph of } L^+ \\
\text{that can already be typed by } G_2
\end{align*}
\]

[expensive instance]

A factorization of \(r \) is an object \(L' \)

arrows \(r': L \rightarrow L' \) and \(r^+: L' \rightarrow L^+ \) s.t.

\(r = r^+ \circ r' \) and an arrow \(x: L' \rightarrow G_2 \)

s.t. \(x \circ r' = h_{nm} \circ m \):

\[
\begin{align*}
L & \xrightarrow{r} L^+ \\
\Lambda & \xrightarrow{\Lambda} L^+ \\
h_{nm} & \circ m = \circ r^+ \circ r' \\
G_2 & \xrightarrow{h_{nm}} G_2^+
\end{align*}
\]

[(this is a bona fide rule application)]

NB: as written, this is not a rule application as \(x \) is not a mono [we will return to this]

However, \(G_i \) is still typed by \(G_2^+ \):

\[
\begin{align*}
G_i & \xrightarrow{h_{nm}} G_2^+ \\
h_{nm} & \circ m = \circ r^+ \circ r' \\
G_2 & \xrightarrow{r^+} G_2^+
\end{align*}
\]

We obtain a canonical re-typing of \(G_i^+ \) by \(G_2^+ \)

\[
\begin{align*}
\Lambda & \xrightarrow{\Lambda} L^+ \\
r & \xrightarrow{r} L^+ \\
m & \xrightarrow{m} G_2^+ \\
h_{nm} & \circ m = \circ r^+ \circ r'
\end{align*}
\]

We obtain a canonical re-typing of \(G_i^+ \) by \(G_2^+ \)

\[h_{nm}: G_i \rightarrow G_2 \]

\[L' \]

\[L^+ \]

\[x \]

\[G_2 \]

\[G_2^+ \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

[expensive instance]

\[
\begin{align*}
G_i & \xrightarrow{h_{nm}} G_2^+ \\
h_{nm} & \circ m = \circ r^+ \circ r' \\
G_2 & \xrightarrow{r^+} G_2^+
\end{align*}
\]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]

\[\Lambda \]

\[L \]

\[r \]

\[x \]

\[G_i \]

\[G_2 \]

\[G_2^+ \]

\[h_{nm} \]

\[m \]

\[r^+ \]

\[\circ r^+ \circ r' \]

\[\circ x \circ r' \]
FORWARD PROPAGATION (II)

1. G_i remains unchanged [it already types $L^+]$

2. $L_{n-1} \xrightarrow{r_{n-1}} L^+$ Computes G_{n-1}^+ with the 'last stage' of the factorization

3. $L \xrightarrow{r_{n-1}} L^+$ and $L \xrightarrow{r} L^+$

4. Retyping works as before and we obtain

v_i \rightarrow v_i^+ \rightarrow v_i^{++} \rightarrow v_i^{+++} \rightarrow v_i^{++++}

5. \[G_i \xrightarrow{r} G_i^+ \]

6. \[G_i^+ \xrightarrow{r} G_i^{++} \]

7. \[G_i^{++} \xrightarrow{r} G_i^{+++} \]

8. \[G_i^{+++} \xrightarrow{r} G_i^{++++} \]

This generalizes immediately to any hierarchy that is a phytree, i.e., a DAG whose underlying undirected graph is acyclic.

is not a phytree but the same idea still works: we factorize r like

$L \xrightarrow{r_i} L_2 \xrightarrow{r_3} L_5 \xrightarrow{r_4} L^+$

and rewrite

- G_i with r_i
- G_i with $r_i \cdot r_i$
- G_i with r

NB: unlike G_i, when there are G_2, G_3, G_4, two independent factorizations of r — one for G_2, the other for G_3 — the (undirected) cyclic case imposes the constraint that the factorizing r_2 and r_3 are compatible — just as in the case of...
Backward Propagation

- If we have \(G_i \) and \(L \), and \(L \leftarrow L' \),

 \[\begin{array}{c}
 \xrightarrow{\text{restrictive instance}} \\
 \end{array} \]

 we take the pull-back

 \[\begin{array}{c}
 L_1 \xrightarrow{\text{PB}} L \\
 \xrightarrow{\text{m}} \\
 L_1 \xrightarrow{\text{m}} G_1 \\
 \end{array} \]

 and define a factorization of \(r \) as:

 \[\begin{array}{c}
 r \leftarrow L_1 \xleftarrow{L} L' \\
 \xrightarrow{\text{m}} \\
 r' = \hat{r} \leftarrow \hat{L}_1 \xleftarrow{\hat{L}} \hat{L}' \\
 \end{array} \]

 \[\text{NB: } L_1 \text{ is the largest sub-graph of } G_i \]

 \[\text{whose typing is modified by } r \]

\[\text{[Note that } G_i \text{ is still typed by } G_i \text{]} \]

(i) Compute the pull-back

\[\begin{array}{c}
 \xrightarrow{\text{in}} \\
 \xrightarrow{\text{PB}} \\
 \xrightarrow{\text{m}} \\
 L_1 \xrightarrow{\text{m}} L_1' \\
 \text{to define the rule lifting:} \\
 L_1' \leftarrow L_1' \\
 \end{array} \]

(ii) Compute the pull-back complement

\[\begin{array}{c}
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 L_1 \xrightarrow{\text{m}} L_1' \\
 \text{to } G_i \leftarrow G_i' \\
 \end{array} \]

\[\text{[Note that } G_i \text{ is still typed by } G_i \text{]} \]

(iii) Compute the pull-back complement

\[\begin{array}{c}
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 L \xrightarrow{\text{m}} L \xrightarrow{\text{m}} L' \\
 \text{to } G_i \leftarrow G_i' \\
 \end{array} \]

\[\text{can we still type } G_i \text{ by } G_i' ? \]

\[\text{by the pasting lemma for PBs, the outer rectangle of} \]

\[\begin{array}{c}
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 L \xrightarrow{\text{m}} L_1 \xrightarrow{\text{m}} L_1' \\
 \text{is a PB;} \text{ moreover,} \\
 \lambda_{h_2} \circ r_1 = r_1 \circ \lambda_{h_2} \\
 \lambda_{h_2} = r_1 \circ \lambda_{h_2} \quad \text{by (5)} \\
 \end{array} \]

\[\text{So, by the UP of (8),} \]

\[\begin{array}{c}
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 \xrightarrow{\text{m}} \\
 L \xrightarrow{\text{m}} L_1 \xrightarrow{\text{m}} L_1' \\
 \text{We obtain a canonical retyping of} \\
 G_i \text{ by } G_i' \\
 \text{by (8)} \\
 \end{array} \]

\[\text{We obtain a canonical retyping of} \]

\[\lambda_{h_2} : G_i \rightarrow G_i' \]