Effectiveness and aperiodicity of subshifts

Sebastián Barbieri
LIP, ENS de Lyon
Based on works with Nathalie Aubrun, Mathieu Sablik and Stephan Thomassé

Journées GT Calculabilités 2015
Outline

1 Background

2 Effectiveness in groups

3 Aperiodicity
G-Subshifts

- G is a (finitely generated) group.
- A is a finite alphabet.
- A^G is the set of functions from G to A.
- $\sigma : G \times A^G \to A^G$ is the left shift action given by:

$$\sigma_g(x)_h = x_{g^{-1}h}$$
G-Subshifts

- G is a (finitely generated) group.
- \mathcal{A} is a finite alphabet.
- \mathcal{A}^G is the set of functions from G to \mathcal{A}
- $\sigma : G \times \mathcal{A}^G \rightarrow \mathcal{A}^G$ is the left shift action given by:
 \[
 \sigma_g(x)_h = x_{g^{-1}h}
 \]

Definition: G-subshift

$X \subset \mathcal{A}^G$ is a **G-subshift** if it invariant under the action of σ and closed for the product topology on \mathcal{A}^G.
G-Subshifts

- G is a (finitely generated) group.
- \mathcal{A} is a finite alphabet.
- \mathcal{A}^G is the set of functions from G to \mathcal{A}
- $\sigma : G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:
 \[
 \sigma_g(x)_h = x_{g^{-1}h}
 \]

Definition: G-subshift

$X \subset \mathcal{A}^G$ is a **G-subshift** if it invariant under the action of σ and closed for the product topology on \mathcal{A}^G.

Equivalently, X is a G-subshift if it can be defined by a set of forbidden patterns: $\exists \mathcal{F} \subset \bigcup_{F \subset G, |F| < \infty} \mathcal{A}^F$ such that

\[
X = X_{\mathcal{F}} := \{x \in \mathcal{A}^G | \forall P \in \mathcal{F} : P \nsubseteq x\}
\]
Z-Subshift examples

Example: full shift. Let $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \emptyset$. Then $X_\mathcal{F} = \mathcal{A}_\mathbb{Z}$ is the set of all bi-infinite words.
Z-Subshift examples

Example : full shift. Let $A = \{0, 1\}$ and $F = \emptyset$. Then $X_F = A^\mathbb{Z}$ is the set of all bi-infinite words.

Example : Fibonacci shift. Let $A = \{0, 1\}$ and $F = \{11\}$. Then X_F is the set of all bi-infinite words which have no pairs of consecutive 1’s.

$x = \ldots 010100010100100100100 \ldots \in X_F$
Z-Subshift examples

Example : full shift. Let $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \emptyset$. Then $X_\mathcal{F} = \mathcal{A}^\mathbb{Z}$ is the set of all bi-infinite words.

Example : Fibonacci shift. Let $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}$. Then $X_\mathcal{F}$ is the set of all bi-infinite words which have no pairs of consecutive 1’s.

$$x = \ldots 010100010100100100100 \ldots \in X_\mathcal{F}$$

Example : one-or-less subshift

$$X_{\leq 1} := \{ x \in \{0, 1\}^\mathbb{Z} \mid |\{ n \in \mathbb{Z} : x_n = 1 \}| \leq 1 \}.$$

Is a \mathbb{Z}-subshift as it is defined by the set $\mathcal{F} = \{10^n1 \mid n \in \mathbb{N}_0\}$.

$$x = \ldots 0000000000100000000 \ldots \in X_{\leq 1}$$
Example in \mathbb{Z}^2 : Fibonacci shift

Example : Fibonacci shift. X_{fib} is the set of assignments of \mathbb{Z}^2 to \{0, 1\} such that there are no two adjacent ones.
Example in \mathbb{Z}^2: Fibonacci shift

Example: Fibonacci shift. X_{fib} is the set of assignments of \mathbb{Z}^2 to \{0, 1\} such that there are no two adjacent ones.

X_{fib} can be represented as a grid where each cell can be assigned a 0 or 1, subject to the condition that no two adjacent cells can both be 1.

The image shows a grid with assignments, where the pattern is repeated periodically, demonstrating the concept of Fibonacci shift in the context of \mathbb{Z}^2.
Example: one-or-less subshift

\[X \leq 1 := \{ x \in \{0, 1\}^\mathbb{Z}^d \mid \| \{ z \in \mathbb{Z}^d : x_z = 1 \} \| \leq 1 \} . \]
Example: S-Fibonacci shift for $G = F_2$

$$F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
Interesting classes

G-SFTs

A G-subshift X is said to be of finite type (G-SFT) if there exists a finite set of patterns \mathcal{F} such that $X = X_\mathcal{F}$.

Example: S-Fibonacci shift. For every group G generated by a finite set S, the S-Fibonacci shift is a G-SFT.

Sofic G-subshifts

A G-subshift Y over A is said to be a sofic G-subshift if there exists a G-SFT X and a surjective cellular automaton $\phi: X \to Y$. That is, we have a G-SFT where we allow to delete some information.

Example: $X_{\leq 1}$ is a sofic G-subshift if G is \mathbb{Z}^d or a finitely generated free group F_k.

5/26
Interesting classes

G-SFTs

A G-subshift X is said to be of finite type (G-SFT) if there exists a finite set of patterns \mathcal{F} such that $X = X_\mathcal{F}$.

Example : S-Fibonacci shift. For every group G generated by a finite set S the S-Fibonacci shift is a G-SFT.
Interesting classes

G-SFTs

A G-subshift X is said to be of **finite type** (G-SFT) if there exists a finite set of patterns \mathcal{F} such that $X = X_\mathcal{F}$.

Example: S-Fibonacci shift. For every group G generated by a finite set S the S-Fibonacci shift is a G-SFT.

Sofic G-subshifts

A G-subshift Y over A is said to be a **sofic G-subshift** if there exists a G-SFT X and a surjective cellular automaton $\phi : X \to Y$. That is, we have a G-SFT where we allow to delete some information.

Example: $X_{\leq 1}$ is a sofic G-subshift if G is \mathbb{Z}^d or a finitely generated free group F_k.
Remark: These classes are interesting from a computational perspective because they can be defined with a finite amount of data. How far can we take this idea?
Interesting classes

Remark: These classes are interesting from a computational perspective because they can be defined with a *finite amount of data*. How far can we take this idea?

Definition: Effectiveness in \(\mathbb{Z} \)

A \(\mathbb{Z} \)-subshift \(X \subset \mathcal{A}^\mathbb{Z} \) is said to be *effective* if there is a recognizable set \(\mathcal{F} \subset \mathcal{A}^* \) such that \(X = X_{\mathcal{F}} \).
Interesting classes

Remark: These classes are interesting from a computational perspective because they can be defined with a finite amount of data. How far can we take this idea?

Definition: Effectiveness in \mathbb{Z}

A \mathbb{Z}-subshift $X \subset \mathcal{A}^\mathbb{Z}$ is said to be effective if there is a recognizable set $\mathcal{F} \subset \mathcal{A}^*$ such that $X = X_\mathcal{F}$.

Question: How can the idea of effectiveness be translated into general groups?
Outline

1 Background

2 Effectiveness in groups

3 Aperiodicity
First approach: \mathbb{Z}-effectiveness

Let G be a finitely generated group and $S \subset G$ a finite generator.
First approach: \mathbb{Z}-effectiveness

Let G be a finitely generated group and $S \subseteq G$ a finite generator.

Definition: \mathbb{Z}-effectiveness

A G-subshift $X \subset \mathcal{A}^G$ is **\mathbb{Z}-effective** if there is a Turing machine which enumerates a set of pattern codings such that the set of consistent pattern codings defines a set \mathcal{F} such that $X = X_\mathcal{F}$.
First approach: \mathbb{Z}-effectiveness

Let G be a finitely generated group and $S \subset G$ a finite generator.

Definition: \mathbb{Z}-effectiveness

A G-subshift $X \subset A^G$ is **\mathbb{Z}-effective** if there is a Turing machine which enumerates a set of pattern codings such that the set of consistent pattern codings defines a set \mathcal{F} such that $X = X_{\mathcal{F}}$.

Question: Is it always possible to recognize if a pattern coding is inconsistent?
Example: the Baumslag-Solitar group $BS(1, 2)$

Consider the group $BS(1, 2) = \langle a, b \mid ab = ba^2 \rangle$.

$\epsilon, 0$

$\langle a, b \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 0 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$

$\langle a, 1 \rangle$

$\langle ba, 1 \rangle$

$\langle ab, 0 \rangle$

$\langle ba, 2 \rangle$

$\langle ba, 1 \rangle$
Example: the Baumslag-Solitar group $BS(1, 2)$

Consider the group $BS(1, 2) = \langle a, b \mid ab = ba^2 \rangle$.

- The pattern coding

$$
\begin{align*}
(\epsilon, 0) & \quad (b, 1) & \quad (a, 1) \\
(ab, 0) & \quad (ba^2, 0) & \quad (ba, 1)
\end{align*}
$$
Example: the Baumslag-Solitar group $BS(1, 2)$

Consider the group $BS(1, 2) = \langle a, b \mid ab = ba^2 \rangle$.

The pattern coding

$$(\epsilon, 0) \quad (b, 1) \quad (a, 1)$$
$$(ab, 0) \quad (ba^2, 0) \quad (ba, 1)$$

is consistent and defines the pattern

$$\Pi_{1_{G}} = 0 \quad \Pi_{a} = 1$$
$$\Pi_{b} = 1 \quad \Pi_{ba} = 1 \quad \Pi_{ba^2} = \Pi_{ab} = 0$$
Example: the Baumslag-Solitar group $BS(1, 2)$

Consider the group $BS(1, 2) = \langle a, b \mid ab = ba^2 \rangle$.

- The pattern coding

$\begin{align*}
(\epsilon, 0) & \quad (b, 1) & \quad (a, 1) \\
(ab, 0) & \quad (ba^2, 0) & \quad (ba, 1)
\end{align*}$

is consistent and defines the pattern

$\begin{align*}
\Pi_{1G} &= 0 \\
\Pi_a &= 1 \\
\Pi_b &= 1 \\
\Pi_{ba} &= 1 \\
\Pi_{ba^2} &= \Pi_{ab} = 0
\end{align*}$

- The pattern coding

$\begin{align*}
(\epsilon, 0) & \quad (a^2, 1) & \quad (bab^{-1}a, 1) \\
(a, 1) & \quad (ba, 1) & \quad (abab^{-1}, 0)
\end{align*}$
Example: the Baumslag-Solitar group $BS(1,2)$

Consider the group $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$.

- The pattern coding

$$
(\epsilon, 0) \quad (b, 1) \quad (a, 1) \\
(ab, 0) \quad (ba^2, 0) \quad (ba, 1)
$$

is **consistent** and defines the pattern

$$
\Pi_{1g} = 0 \quad \Pi_a = 1 \\
\Pi_b = 1 \quad \Pi_{ba} = 1 \quad \Pi_{ba^2} = \Pi_{ab} = 0
$$

- The pattern coding

$$
(\epsilon, 0) \quad (a^2, 1) \quad (bab^{-1}a, 1) \\
(a, 1) \quad (ba, 1) \quad (abab^{-1}, 0)
$$

is **inconsistent** since $abab^{-1}$ and $bab^{-1}a$ represent the same element.

$$abab^{-1} = ba^3b^{-1} = ba(b^{-1}b)a^{-1}b^{-1} = bab^{-1}abb^{-1} = bab^{-1}a$$
Limitations of \(\mathbb{Z} \)-effectiveness

Definition : Word problem

Let \(S \subset G \) be a finite generator of \(G \). The **word problem** of \(G \) asks whether two words on \(S \cup S^{-1} \) are equivalent in \(G \). Formally:

\[
WP(G) = \left\{ w \in (S \cup S^{-1})^* \mid w =_G 1_G \right\}.
\]
Limitations of \mathbb{Z}-effectiveness

Definition : Word problem

Let $S \subseteq G$ be a finite generator of G. The word problem of G asks whether two words on $S \cup S^{-1}$ are equivalent in G. Formally:

$$ WP(G) = \left\{ w \in (S \cup S^{-1})^* \mid w =_G 1 \right\}. $$

Example : Decidable word problem. The word problem for $\mathbb{Z}^2 \simeq \langle a, b \mid ab = ba \rangle$ is:

$$ WP(\mathbb{Z}^2) = \left\{ w \in \{a, b, a^{-1}, b^{-1}\}^* \mid |w|_a = |w|_{a^{-1}} \land |w|_b = |w|_{b^{-1}} \right\}. $$
Limitations of \(\mathbb{Z} \)-effectiveness

Definition : Word problem

Let \(S \subset G \) be a finite generator of \(G \). The word problem of \(G \) asks whether two words on \(S \cup S^{-1} \) are equivalent in \(G \). Formally:

\[
WP(G) = \left\{ w \in \left(S \cup S^{-1} \right)^* \mid w =_G 1_G \right\}.
\]

Example : Decidable word problem. The word problem for \(\mathbb{Z}^2 \cong \langle a, b \mid ab = ba \rangle \) is:

\[
WP(\mathbb{Z}^2) = \left\{ w \in \{a, b, a^{-1}, b^{-1}\}^* \mid w|_a = w|_{a^{-1}} \land w|_b = w|_{b^{-1}} \right\}
\]

Example : Undecidable word problem. If \(f : \mathbb{N} \to \{0, 1\} \) is non-computable the group \(G = \langle a, b, c, d \mid ab^n = c^n d, n \in f^{-1}(1) \rangle \) has undecidable word problem.
Limitations of \(\mathbb{Z} \)-effectiveness

Remark: If \(G \) is not recursively presented, it is not possible to recognize whether a pattern coding is consistent!
Limitations of \mathbb{Z}-effectiveness

Remark: If G is not recursively presented, it is not possible to recognize whether a pattern coding is consistent!

Remark: Even if G is finitely presented, there are simple subshifts which are not \mathbb{Z}-effective!
Limitations of \mathbb{Z}-effectiveness

Remark: If G is not recursively presented, it is not possible to recognize whether a pattern coding is consistent!

Remark: Even if G is finitely presented, there are simple subshifts which are not \mathbb{Z}-effective!

Remark [Theorem: Novikov(55), Boone(58)]

There are finitely presented groups with undecidable word problem!

Theorem

For a recursively presented group the one-or-less subshift:

$$X_{\leq 1} := \{ x \in \{0, 1\}^G | |\{g \in G : x_g = 1\}| \leq 1 \}.$$

is not \mathbb{Z}-effective if $WP(G)$ is undecidable.
Another approach: Don’t codify anything!
Another approach: Don’t codify anything!

Definition: G-machine

A **G-machine** is a Turing machine whose tape has been replaced by the group G. The transition function is

$$
\delta : Q \times \Sigma \rightarrow Q \times \Sigma \times (S \cup S^{-1} \cup \{1_G\})
$$

where S is a finite set of generators of G.

Remark: Computation is over patterns instead of words.
Another approach: Don’t codify anything!

Definition: G-machine

A **G-machine** is a Turing machine whose tape has been replaced by the group G. The transition function is

$$\delta : Q \times \Sigma \rightarrow Q \times \Sigma \times (S \cup S^{-1} \cup \{1_G\})$$

where S is a finite set of generators of G.

Remark: Computation is over patterns instead of words.
Example: Transition in a F_2-machine

$$\delta(q_1, \bullet) = (q_2, \bullet, s_1)$$
G-effectiveness

Definition:
- A set of patterns \(\mathcal{P} \) is said to be **recognizable** if there is a \(G \)-machine which accepts if and only if \(P \in \mathcal{P} \).
- A set of patterns \(\mathcal{P} \) is said to be **decidable** if there is a \(G \)-machine which accepts if \(P \in \mathcal{P} \) and rejects otherwise.
G-effectiveness

Definition:
- A set of patterns \mathcal{P} is said to be **recognizable** if there is a G-machine which accepts if and only if $P \in \mathcal{P}$.
- A set of patterns \mathcal{P} is said to be **decidable** if there is a G-machine which accepts if $P \in \mathcal{P}$ and rejects otherwise.

G-effectiveness

A G-subshift $X \subset A^G$ is **G-effective** if there exists a set of forbidden patterns \mathcal{F} such that $X = X_\mathcal{F}$ and \mathcal{F} is G-recognizable.
What can we say about G-effectiveness?

Remark: The one-or-less subshift $X_{\leq 1}$ is G-effective for every finitely generated group G.
What can we say about \(G \)-effectiveness?

Remark: The one-or-less subshift \(X_{\leq 1} \) is \(G \)-effective for every finitely generated group \(G \).

Theorem

Let \(G \) be an infinite, finitely generated group, then every \(\mathbb{Z} \)-effective subshift is \(G \)-effective.
What can we say about G-effectiveness?

Remark: The one-or-less subshift $X_{\leq 1}$ is G-effective for every finitely generated group G.

Theorem

Let G be an infinite, finitely generated group, then every \mathbb{Z}-effective subshift is G-effective.

Theorem

Let G be finitely generated group with decidable word problem then every G-effective subshift is \mathbb{Z}-effective.
Some results about G-effectiveness?

Theorem

A subshift is G-effective if and only if it satisfies the conditions of \mathbb{Z}-effectiveness with a Turing machine which has access to an oracle of $WP(G)$.
Some results about G-effectiveness?

Theorem

A subshift is G-effective if and only if it satisfies the conditions of \mathbb{Z}-effectiveness with a Turing machine which has access to an oracle of $WP(G)$.

- We have also shown that the class of G-effective subshifts contains every G-SFT, every sofic and every \mathbb{Z}-effective G-subshift.
Outline

1. Background
2. Effectiveness in groups
3. Aperiodicity
Aperiodicity in a subshift

Definition: Strongly aperiodic

A G-subshift X is said to be \textit{strongly aperiodic} if

$$\forall x \in X, \quad \text{stab}_\sigma(x) := \{g \in G \mid gx = x\} = \{1_G\}$$
Aperodicity in a subshift

Definition: Strongly aperiodic

A G-subshift X is said to be *strongly aperiodic* if

$$\forall x \in X, \ stab_\sigma(x) := \{g \in G \mid gx = x\} = \{1_G\}$$

Example in $G = \mathbb{Z}$. Let $A = \{0, 1, 2\}$ and $\mathcal{F} = \{ww \mid w \in A^*\}$. Then $X_\mathcal{F}$ is strongly aperiodic.
Some known facts

- \mathbb{Z}-SFTs are never strongly aperiodic.
- There are strongly aperiodic \mathbb{Z}^2-SFTs. (1964 Berger, 1971 Robinson, 1996 Kari)
- There are weakly aperiodic SFTs in Baumslag Solitar groups (2013 Aubrun-Kari)
- There are strongly aperiodic SFTs in the Heisenberg group (2014 Sahin-Schraudner)
- The existence of a strongly aperiodic G-SFT implies G is one ended (2014 Cohen)
- A finitely presented group which admits a strongly aperiodic SFT has decidable word problem (2015 Jeandel)
The Robinson tiling
Our result

Theorem:
For every infinite and finitely generated group G there exists a strongly aperiodic G-effective subshift.
Our result

Theorem:
For every infinite and finitely generated group G there exists a strongly aperiodic G-effective subshift.

Corollary:
For a recursively presented group, there exists a \mathbb{Z}-effective strongly aperiodic subshift if and only if $WP(G)$ is decidable.
An ingredient for the proof

Definition

Let \((X, d)\) be a metric space. We say \(F \subseteq G\) is **r-covering** if for each \(x \in G\) there is \(y \in F\) such that \(d(x, y) \leq r\). We say \(F\) is **s-separating** if for each \(x \neq y \in F\) then \(d(x, y) > s\).
An ingredient for the proof

Definition
Let \((X, d)\) be a metric space. We say \(F \subseteq G\) is \(r\)-covering if for each \(x \in G\) there is \(y \in F\) such that \(d(x, y) \leq r\). We say \(F\) is \(s\)-separating if for each \(x \neq y \in F\) then \(d(x, y) > s\).

Proposition
If \(X\) is countable, then for any \(r \in \mathbb{R}\) there exists \(Y \subseteq X\) such that \(Y\) is both \(r\)-separating and \(r\)-covering.
Example: 2-covering and 2-separating set in \(\text{PSL}(\mathbb{Z}, 2) \)
Example: 2-covering and 2-separating set in $\text{PSL}(\mathbb{Z}, 2)$
Example: 2-covering and 2-separating set in $\text{PSL}(\mathbb{Z}, 2)$
Proof

- First we create a layer with a hierarchical structure.
- \(Y \subset (S \cup S^{-1} \cup \{1_G\})^G \)
- The points \(y \in Y \) codify forests with a property:
Proof

First we create a layer with a hierarchical structure.

\[Y \subset (S \cup S^{-1} \cup \{1_G\})^G \]

The points \(y \in Y \) codify forests with a property:

Property

For every \(n \in \mathbb{N} \), \(G \) can be partitioned in sets \((C_i)_{i \in I} \) such that

\[\exists g_i \in C_i \text{ such that } B(g_i, n) \subset C_i \subset B(g_i, 5^n) \]

And for each \(C_i \) there is either a single \(h \in C_i \) with \(x_h = 1_G \) and for every other \(g \in C_i \) then \(gx_g \in C_i \) or \(\forall g \in C_i \) \(x_g \neq 1_G \) and there is a single \(h \in C_i \) such that \(hx_h \not\in C_i \).
Proof

- First we create a layer with a hierarchical structure.
- \(Y \subset (S \cup S^{-1} \cup \{1_G\})^G \)
- The points \(y \in Y \) codify forests with a property:

Property

For every \(n \in \mathbb{N} \), \(G \) can be partitioned in sets \((C_i)_{i \in I} \) such that

\[
\exists g_i \in C_i \text{ such that } B(g_i, n) \subset C_i \subset B(g_i, 5^n)
\]

And for each \(C_i \) there is either a single \(h \in C_i \) with \(x_h = 1_G \) and for every other \(g \in C_i \) then \(gx_g \in C_i \) or \(\forall g \in C_i \) \(x_g \neq 1_G \) and there is a single \(h \in C_i \) such that \(hx_h \not\in C_i \).

Remark: This property can be easily verified with a TM with access to \(WP(G) \).
Cluster structure
Cluster structure
Cluster structure
Cluster structure
Second layer

Remark: We are not done yet!

Example: $G = \mathbb{Z}$.

$$y = \ldots, +1, +1, +1, +1, +1, +1, \ldots \in Y$$
Second layer

Remark: We are not done yet!

Example: \(G = \mathbb{Z} \).

\[
y = \ldots, +1, +1, +1, +1, +1, +1, \ldots \in Y
\]

Consider an infinite word \(\mathcal{W} \) without squares, such as the one produced by \(\phi : \{0, 1, 2\} \rightarrow \{0, 1, 2\}^* \) given by:

\[
\phi(k) = \begin{cases}
01210, & \text{if } k = 0 \\
12021, & \text{if } k = 1 \\
20102, & \text{if } k = 2
\end{cases}
\]
Remark: We are not done yet!
Example: \(G = \mathbb{Z} \).

\[
y = \ldots, +1, +1, +1, +1, +1, +1, \ldots \in Y
\]

Consider an infinite word \(\mathcal{W} \) without squares, such as the one produced by \(\phi : \{0, 1, 2\} \to \{0, 1, 2\}^* \) given by:

\[
\phi(k) = \begin{cases}
01210, & \text{if } k = 0 \\
12021, & \text{if } k = 1 \\
20102, & \text{if } k = 2
\end{cases}
\]

We consider \(X \subset ((S \cup S^{-1} \cup \{1_G\}) \times \{0, 1, 2\})^G \) such that for \(x \in X \) then \(\pi_1(x) \in Y \) and every path in \(\pi_1(x) \) contains a subword of \(\mathcal{W} \) in the second layer.
Final argument

The existence of $h \neq 1_G$ such that $h \in \text{stab}_\sigma(x)$ creates a square word.
Corollary:

For a recursively presented group, there exists a \mathbb{Z}-effective strongly aperiodic subshift if and only if $WP(G)$ is decidable.
Corollary:

For a recursively presented group, there exists a \mathbb{Z}-effective strongly aperiodic subshift if and only if $WP(G)$ is decidable.

Proof: As $WP(G)$ is decidable, every G-effective subshift is \mathbb{Z}-effective and thus our construction shows the existence. Jeandel’s result gives the other direction.
Current work

- Use simulation theorems with our construction to produce strongly aperiodic SFTs in some classes of groups.
Current work

- Use simulation theorems with our construction to produce strongly aperiodic SFTs in some classes of groups.
- Apply the idea of clusters to generate entropies in amenable groups.
Merci beaucoup pour votre attention !

Avez-vous des questions ?