The group of reversible Turing machines and the torsion problem for $\text{Aut}(A^\mathbb{Z})$ and related topological fullgroups

Sebastián Barbieri

From a joint work with Jarkko Kari and Ville Salo
LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon

CMM, universidad de Chile
December, 2016
Motivation

Given a fullshift \((A^\mathbb{Z}, \sigma)\) recall that its automorphism group is given by

\[\text{Aut}(A^\mathbb{Z}) = \{ \phi : A^\mathbb{Z} \to A^\mathbb{Z} \text{ homeomorphism, } [\sigma, \phi] = \text{id} \} \]
Motivation

Given a fullshift \((A^\mathbb{Z}, \sigma)\) recall that its automorphism group is given by

\[
\text{Aut}(A^\mathbb{Z}) = \{ \phi : A^\mathbb{Z} \to A^\mathbb{Z} \text{ homeomorpism}, [\sigma, \phi] = \text{id} \}
\]

It is still unknown whether \(\text{Aut}({0, 1}\mathbb{Z}) \cong \text{Aut}({0, 1, 2}\mathbb{Z})\), but we know that

\[
\text{Aut}({0, 1}\mathbb{Z}) \hookrightarrow \text{Aut}({0, 1, 2}\mathbb{Z})
\]

\[
\text{Aut}({0, 1, 2}\mathbb{Z}) \hookrightarrow \text{Aut}({0, 1}\mathbb{Z})
\]
Motivation

A simple example with that property:

\[G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \quad \text{and} \quad G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \]
Motivation

A simple example with that property:

\[G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \quad \text{and} \quad G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \]

\[G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \rightarrow (0, a_1, a_2, \cdots) \]

However, they are not isomorphic: Each element of \(G_1 \) which has order 2 has square roots, while \((1, 0, 0, 0, \cdots)\) has none in \(G_2 \).

Moral: we should try to understand torsion and roots in \(\text{Aut}\left(\{0, 1\} \mathbb{Z}\right) \).
Motivation

A simple example with that property:

\[G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \quad \text{and} \quad G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \]

\[G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \rightarrow (0, a_1, a_2, \cdots) \]

\[G_2 \hookrightarrow G_1 : (a_1, a_2, \cdots) \rightarrow (2a_1, a_2, \cdots) \]

However, they are not isomorphic: Each element of \(G_1 \) which has order 2 has square roots, while \((1, 0, 0, 0, \cdots)\) has none in \(G_2 \).

Moral: we should try to understand torsion and roots in \(\text{Aut} \left(\{0, 1\} \mathbb{Z} \right) \).
Motivation

A simple example with that property:

\[G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \quad \text{and} \quad G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z} \]

\[G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \rightarrow (0, a_1, a_2, \cdots) \]

\[G_2 \hookrightarrow G_1 : (a_1, a_2, \cdots) \rightarrow (2a_1, a_2, \cdots) \]

However, they are not isomorphic: Each element of \(G_1 \) which has order 2 has square roots, while \((1, 0, 0, 0, \cdots)\) has none in \(G_2 \). Moral: we should try to understand torsion and roots in \(\text{Aut} \left(\{0, 1\}^\mathbb{Z} \right) \)
Talk highlights

Definition (Torsion problem)

Let \(G = \langle S \mid R \rangle \) be a finitely generated group. The torsion problem of \(G \) is the language \(\text{TP}(G) \) where

\[
\text{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}
\]
Talk highlights

Definition (Torsion problem)

Let $G = \langle S \mid R \rangle$ be a finitely generated group. The torsion problem of G is the language $\text{TP}(G)$ where

$$\text{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}$$

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \geq 2$, $\text{Aut}(A^\mathbb{Z})$ contains a finitely generated subgroup with undecidable torsion problem.
Talk highlights

Definition (Torsion problem)
Let \(G = \langle S \mid R \rangle \) be a finitely generated group. The torsion problem of \(G \) is the language \(\text{TP}(G) \) where

\[
\text{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}
\]

Theorem (B, Kari, Salo)
For any finite alphabet \(|A| \geq 2 \), \(\text{Aut}(A^\mathbb{Z}) \) contains a finitely generated subgroup with undecidable torsion problem.

Theorem (B, Kari, Salo)
Let \((A^\mathbb{Z}^d, \sigma)\) be a full shift and \(|A| \geq 2 \). The topological fullgroup \([\sigma]\) contains a finitely generated subgroup with undecidable torsion problem if and only if \(d \geq 2 \).
Recall that a Turing machine is defined by a rule:

$$\delta_T : \Sigma \times Q \rightarrow \Sigma \times Q \times \{-1, 0, 1\}$$
Recall that a Turing machine is defined by a rule:

\[
\delta_T : \Sigma \times Q \rightarrow \Sigma \times Q \times \{-1, 0, 1\}
\]

\[
\delta_T(\blacksquare, q) = (\blacksquare, r, -1)
\]
Recall that a Turing machine is defined by a rule:

\[\delta_T : \Sigma \times Q \rightarrow \Sigma \times Q \times \{-1, 0, 1\} \]

\[\delta_T(\square, q) = (\square, r, -1) \]
This defines a natural action

\[T : \Sigma^Z \times Q \rightarrow \Sigma^Z \times Q \]
This defines a natural action

\[T : \Sigma^\mathbb{Z} \times Q \rightarrow \Sigma^\mathbb{Z} \times Q \]

Such that if \((x, q) \in \Sigma^\mathbb{Z} \times Q\) and \(\delta_T(x_0, q) = (a, r, d)\) then:

\[T(x, q) = (\sigma_d(\tilde{x}), q') \]

where \(\sigma : \Sigma^\mathbb{Z} \rightarrow \Sigma^\mathbb{Z}\) is the shift action given by \(\sigma_d(x)_z = x_{z-d}\), \(\tilde{x}_0 = a\) and \(\tilde{x}|_{\mathbb{Z}\setminus\{0\}} = x|_{\mathbb{Z}\setminus\{0\}}\).
The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.

If the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.
The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.

If the action T is a bijection then the inverse is not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.
Let’s get rid of these constrains. Given F, F' finite subsets of a group G, consider instead of δ_T a function :

$$f_T : \Sigma^F \times Q \rightarrow \Sigma^{F'} \times Q \times G,$$
Let’s get rid of these constrains. Given F, F' finite subsets of a group G, consider instead of δ_T a function:

$$f_T : \Sigma^F \times Q \rightarrow \Sigma^{F'} \times Q \times G,$$

Let $F = F' = \{0, 1, 2\}^2$, then $f_T(p, q) = (p', q', \vec{d})$ means:

- Turn state q into state q'
- Move head by \vec{d}.

Moving head model

\(f_T \) defines naturally an action

\[T \curvearrowright \Sigma^G \times Q \times \mathbb{Z}^d \]

\(f(\bullet, q_1) = (\circ, q_2, (1, 1)) \)

\(F = \{(0, 0), (1, 0), (1, 1)\} \)
Moving head model

f_T defines naturally an action

\[T \acts \Sigma^G \times Q \times \mathbb{Z}^d \]

\[f(\bullet, q_1) = (\circ, q_2, (1, 1)) \quad F = \{(0, 0), (1, 0), (1, 1)\} \]

Let $|\Sigma| = n$ and $|Q| = k$.

$(\text{TM}(G, n, k), \circ)$ is the monoid of all such T with the composition operation; $(\text{RTM}(G, n, k), \circ)$ is the group of all such T which are bijective.
Let $Q = \{1, \ldots, k\}$ and $\Sigma = \{0, \ldots, n - 1\}$.

$$\Sigma^G = \{x : G \rightarrow \Sigma\}$$

$$X_k = \{x \in \{0, 1, \ldots, k\}^G \mid 0 \notin \{x_g, x_h\} \implies g = h\}$$

Let $X_{n,k} = \Sigma^G \times X_k$ and $Y = \Sigma^G \times \{0^G\}$. Then:
Let $Q = \{1, \ldots, k\}$ and $\Sigma = \{0, \ldots, n - 1\}$.

\[
\Sigma^G = \{x : G \to \Sigma\}
\]

\[
X_k = \{x \in \{0, 1, \ldots, k\}^G \mid 0 \notin \{x_g, x_h\} \implies g = h\}
\]

Let $X_{n,k} = \Sigma^G \times X_k$ and $Y = \Sigma^G \times \{0^G\}$. Then:

\[
\text{TM}(G, n, k) = \{\phi \in \text{End}(X_{n,k}) \mid \phi|_Y = \text{id}, \phi^{-1}(Y) = Y\}
\]

\[
\text{RTM}(G, n, k) = \{\phi \in \text{Aut}(X_{n,k}) \mid \phi|_Y = \text{id}\}
\]
f_T defines naturally an action

$$T \curvearrowright \Sigma^G \times Q$$

$$(\bullet \circ, q_1) = (\circ \bullet, q_2, (1, 1))$$

$$F = \{(0, 0), (1, 0), (1, 1)\}$$
Moving tape model

f_T defines naturally an action

\[T \circlearrowright \Sigma^G \times Q \]

Let $|\Sigma| = n$ and $|Q| = k$.

$(\text{TM}_{\text{fix}}(G, n, k), \circ)$ is the monoid of all such T with the composition operation; $(\text{RTM}_{\text{fix}}(G, n, k), \circ)$ is the group of all such T which are bijective.
Let $x, y \in \Sigma^G$. x and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let $T : \Sigma^G \times Q \to \Sigma^G \times Q$ be a function. Dynamical definition T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s : \Sigma^G \times Q \to G$ and $F \subset G$ we have $T(x, q) \sim_F s(x, q)$ for all $(x, q) \in \Sigma^G \times Q$.

$s : \Sigma^G \times Q \to G$ is the shift indicator function.
Let $x, y \in \Sigma^G$. x and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let $T : \Sigma^G \times Q \to \Sigma^G \times Q$ be a function.

Dynamical definition

T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s : \Sigma^G \times Q \to G$ and $F \subset G$ we have $T(x, q)_1 \sim_F \sigma_{s(x,q)}(x)$ for all $(x, q) \in \Sigma^G \times Q$.

$s : \Sigma^G \times Q \to G$ is the shift indicator function.
Moving tape model: dynamical definition

Let $x, y \in \Sigma^G$. x and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let $T : \Sigma^G \times Q \to \Sigma^G \times Q$ be a function.

Dynamical definition

T is a moving tape Turing machine \iff T is continuous, and for a continuous function $s : \Sigma^G \times Q \to G$ and $F \subset G$ we have $T(x, q)_1 \sim_F \sigma_{s(x, q)}(x)$ for all $(x, q) \in \Sigma^G \times Q$.

$s : \Sigma^G \times Q \to G$ is the shift indicator function
Equivalence of the models

\[\text{RTM}_{\text{fix}}(G, 1, k) \cong S_k \text{ and } G \leftrightarrow \text{RTM}(G, 1, k). \]
Equivalence of the models

$\text{RTM}_{\text{fix}}(G, 1, k) \cong S_k$ and $G \hookrightarrow \text{RTM}(G, 1, k)$.

Proposition

If $n \geq 2$ then:

\[
\text{TM}_{\text{fix}}(G, n, k) \cong \text{TM}(G, n, k) \\
\text{RTM}_{\text{fix}}(G, n, k) \cong \text{RTM}(G, n, k).
\]
Properties of RTM

Proposition

Let \(T \in TM_{\text{fix}}(G, n, k) \). Then the following are equivalent:

1. \(T \) is injective.
2. \(T \) is surjective.
3. \(T \in RTM_{\text{fix}}(G, n, k) \).
4. \(T \) preserves the uniform measure (\(\mu(T^{-1}(A)) = \mu(A) \) for all Borel sets \(A \)).
5. \(\mu(T(A)) = \mu(A) \) for all Borel sets \(A \).
Proposition

If $n \geq 2$ $\text{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.
Properties of RTM

Proposition

If $n \geq 2$ $\text{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.

Proof: We find an epimorphism from RTM to a non-finitely generated group.

Let $T \in \text{RTM}_{\text{fix}}(\mathbb{Z}, n, k)$, therefore, it has a shift indicator $s : \Sigma^\mathbb{Z} \times Q \rightarrow \mathbb{Z}$. Define

$$\alpha(T) := E_\mu(s) = \int_{\Sigma^\mathbb{Z} \times Q} s(x, q) d\mu,$$

One can check that $\alpha(T_1 \circ T_2) = \alpha(T_1) + \alpha(T_2)$.

Therefore $\alpha : \text{RTM}(\mathbb{Z}, n, k) \rightarrow \mathbb{Q}$ is an homomorphism.
Now consider the machine $T_{\text{SURF},m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$f(0^m a, q) = (a0^m, q, 1).$$

Otherwise $f(u, q) = (u, q, 0)$.
Now consider the machine $T_{\text{SURF},m}$ where for all $a \in \Sigma$ and $q \in Q$:

\[f(0^m a, q) = (a0^m, q, 1). \text{ Otherwise } f(u, q) = (u, q, 0). \]

$T_{\text{SURF},m} \in \text{RTM}(\mathbb{Z}, n, k)$ and $\alpha(T_{\text{SURF},m}) = 1/n^m$
Now consider the machine $T_{\text{SURF},m}$ where for all $a \in \Sigma$ and $q \in Q$:

\[
f(0^m a, q) = (a0^m, q, 1).
\]

Otherwise $f(u, q) = (u, q, 0)$. $T_{\text{SURF},m} \in \text{RTM}(\mathbb{Z}, n, k)$ and $\alpha(T_{\text{SURF},m}) = 1/n^m$.

$\langle (1/n^m)_{m \in \mathbb{N}} \rangle \subset \alpha(\text{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q}.

Properties of RTM
Interesting subgroups of RTM

$\triangleright \ LP(G, n, k) \longrightarrow \text{Local permutations.}$

0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0

q

r

T_π

0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0
Interesting subgroups of RTM

▷ LP(G, n, k) \rightarrow Local permutations.
▷ RFA(G, n, k) \rightarrow Reversible finite-state automata.
Interesting subgroups of RTM

- LP(G, n, k) \rightarrow Local permutations.
- RFA(G, n, k) \rightarrow Reversible finite-state automata.
- OB(G, n, k) \rightarrow Oblivous machines $\langle\text{LP, Shift}\rangle$.
Interesting subgroups of RTM

- $\text{LP}(G, n, k) \rightarrow$ Local permutations.
- $\text{RFA}(G, n, k) \rightarrow$ Reversible finite-state automata.
- $\text{OB}(G, n, k) \rightarrow$ Oblivous machines $\langle \text{LP}, \text{Shift} \rangle$.
- $\text{EL}(G, n, k) \rightarrow$ Elementary machines $\langle \text{LP}, \text{RFA} \rangle$.
Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group.

Amenable groups admit left invariant finitely additive measures.

LEF and LEA stand for locally embeddable into (finite/amenable) groups.

Sofic groups are generalizations of LEF and LEA.
∀ \(n \geq 2 \), \(\text{RTM}(\mathbb{Z}^d, n, k) \) is LEF but neither amenable nor residually finite.
For $n \geq 2$, we have $S_{\infty} \hookrightarrow \text{LP}(G, n, k)$.
For $n \geq 2$, we have $S_\infty \hookrightarrow \text{LP}(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.
Some properties : $\text{LP}(G, n, k)$

For $n \geq 2$, we have $S_\infty \hookrightarrow \text{LP}(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

$\text{LP}(G, n, k)$ is locally finite.
Some properties: $\text{LP}(G, n, k)$

For $n \geq 2$, we have $S_\infty \hookrightarrow \text{LP}(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

$\text{LP}(G, n, k)$ is locally finite.

In particular, for $n \geq 2$ \(\text{LP}(G, n, k)\) is amenable and not finitely generated.
Now let’s add the shift. Recall that $\text{OB}(G, n, k) = \langle \text{LP}, \text{Shift} \rangle$.
Some properties: $\text{OB}(\mathbb{Z}^d, n, k)$

Now let’s add the shift. Recall that $\text{OB}(G, n, k) = \langle \text{LP}, \text{Shift} \rangle$.

$\text{OB}(G, n, k)$ is amenable \iff G is amenable.
Now let’s add the shift. Recall that \(\text{OB}(G, n, k) = \langle \text{LP}, \text{Shift} \rangle \).

\(\text{OB}(G, n, k) \) is amenable \(\iff \) \(G \) is amenable.

Proof: Use the short exact sequence

\[
1 \rightarrow \text{LP}(G, n, k) \rightarrow \text{OB}(G, n, k) \rightarrow G \rightarrow 1.
\]
Recall that $\text{RFA}(G, n, k)$ is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the fullgroup of (Σ^G, σ) then $[[\sigma]] \cong \text{RFA}(G, n, 1)$.

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$\underbrace{\mathbb{Z}/2\mathbb{Z} \ast \cdots \ast \mathbb{Z}/2\mathbb{Z}}_{m \text{ times}} \hookrightarrow \text{RFA}(G, n, k)$$
Some properties: $\text{RFA}(\mathbb{Z}^d, n, k)$

Recall that $\text{RFA}(G, n, k)$ is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the full group of (Σ^G, σ) then $[[\sigma]] \cong \text{RFA}(G, n, 1)$.

Theorem

For $n \geq 2$, countable and not locally finite G we have that

\[
\mathbb{Z}/2\mathbb{Z} \ast \cdots \ast \mathbb{Z}/2\mathbb{Z} \underbrace{\hookrightarrow} \text{RFA}(G, n, k)
\]

Proof: Blackboard.
Some properties: $\text{RFA}(\mathbb{Z}^d, n, k)$
Some properties: $\text{RFA}(\mathbb{Z}^d, n, k)$

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$\mathbb{Z}/2\mathbb{Z} \ast \cdots \ast \mathbb{Z}/2\mathbb{Z} \hookrightarrow \text{RFA}(G, n, k)$$

m times

In particular, this means that RFA and RTM are not amenable in this case.
Some properties: $\text{RFA}(\mathbb{Z}^d, n, k)$

Theorem

For $n \geq 2$, countable and not locally finite G we have that

\[
\mathbb{Z}/2\mathbb{Z} \ast \cdots \ast \mathbb{Z}/2\mathbb{Z} \hookrightarrow \text{RFA}(G, n, k) \]

m times

In particular, this means that RFA and RTM are not amenable in this case.

Theorem

For $n \geq 2$, infinite and residually finite G we have that $\text{RFA}(G, n, k)$ is residually finite but *not finitely generated*.
Some properties: $\text{EL}(\mathbb{Z}^d, n, k)$ and $\text{RTM}(\mathbb{Z}^d, n, k)$

$\text{EL}(\mathbb{Z}^d, n, k) = \langle \text{LP}(\mathbb{Z}^d, n, k), \text{RFA}(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.
Some properties: $EL(\mathbb{Z}^d, n, k)$ and $RTM(\mathbb{Z}^d, n, k)$

$EL(\mathbb{Z}^d, n, k) = \langle LP(\mathbb{Z}^d, n, k), RFA(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.
Example: Langton’s ant $\in EL(\mathbb{Z}^2, 2, 4)$.
Some properties: \(EL(\mathbb{Z}^d, n, k) \) and \(\text{RTM}(\mathbb{Z}^d, n, k) \)

\[
EL(\mathbb{Z}^d, n, k) = \langle \text{LP}(\mathbb{Z}^d, n, k), \text{RFA}(\mathbb{Z}^d, n, k) \rangle
\]
is the subgroup of elementary Turing machines.
Example: Langton’s ant \(\in \text{EL}(\mathbb{Z}^2, 2, 4). \)

Question: Is \(EL(\mathbb{Z}^d, n, k) = \text{RTM}(\mathbb{Z}^d, n, k) \)?
Some properties: $\text{EL}(\mathbb{Z}^d, n, k)$ and $\text{RTM}(\mathbb{Z}^d, n, k)$

$\text{EL}(\mathbb{Z}^d, n, k) = \langle \text{LP}(\mathbb{Z}^d, n, k), \text{RFA}(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.

Example: Langton’s ant $\in \text{EL}(\mathbb{Z}^2, 2, 4)$.

Question: Is $\text{EL}(\mathbb{Z}^d, n, k) = \text{RTM}(\mathbb{Z}^d, n, k)$?

For $n \geq 2$, $\alpha(\text{EL}(\mathbb{Z}^d, n, k)) = \alpha(\text{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator. In particular $\text{EL} \nsubseteq \text{RTM}$.
Computability properties

Given a finite rules : f, f' :

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1}.

$RTM(\mathbb{Z}, d, n, k)$ is a recursively presented group with decidable word problem.

What can we say about the torsion ($\exists n$ such that $T_n = 1$)?
Computability properties

Given a finite rules: \(f, f' \):

- It is decidable (in any model) whether \(T_f = T_{f'} \).
- We can effectively calculate a rule for \(T_f \circ T_{f'} \).
- It is decidable whether \(T_f \) is reversible.
- If it is, we can effectively compute a rule for \(T_f^{-1} \).

\(\text{RTM}(\mathbb{Z}^d, n, k) \) is a recursively presented group with decidable word problem.
Given a finite rules : f, f' :

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1}.

$RTM(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

What can we say about the torsion ($\exists n$ such that $T^n = 1$) problem?
Back to the target: $TP(\text{Aut}(A^\mathbb{Z}))$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\text{Aut}(A^\mathbb{Z})$. The sketch is as follows:

1. The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\text{Aut}(A^\mathbb{Z})$. The sketch is as follows:

1. The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
2. Classical Turing machines embed into $\text{EL}(\mathbb{Z}, n, k)$.
Back to the target : $TP(\text{Aut}(\mathbb{Z}))$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\text{Aut}(\mathbb{Z})$. The sketch is as follows :

1. The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
2. Classical Turing machines embed into $\text{EL}(\mathbb{Z}, n, k)$.
3. $\text{EL}(\mathbb{Z}, n, k)$ is finitely generated.
Back to the target: $TP(\text{Aut}(A^\mathbb{Z}))$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\text{Aut}(A^\mathbb{Z})$. The sketch is as follows:

1. The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
2. Classical Turing machines embed into $\text{EL}(\mathbb{Z}, n, k)$.
3. $\text{EL}(\mathbb{Z}, n, k)$ is finitely generated.
4. There exists a "torsion preserving function" from $\text{EL}(\mathbb{Z}, n, k)$ to $\text{Aut}(A^\mathbb{Z})$

Classical \hookrightarrow EL \hookrightarrow Aut($A^\mathbb{Z}$)
$\text{OB}(\mathbb{Z}^d, n, k)$ is finitely generated.

This proof is inspired both on the existence of strongly universal reversible gates for permutations of Σ^m and the Juschenko Monod proof for the fullgroup of minimal actions. A controlled swap is a transposition (s, t) where s, t have Hamming distance 1 in $Q \times \Sigma^m$.

Theorem

The group generated by the applications of controlled swaps of $Q \times \Sigma^4$ at arbitrary positions generates $\text{Sym}(Q \times \Sigma^m)$ if $|\Sigma|$ is odd and $\text{Alt}(Q \times \Sigma^m)$ if it’s even.

Corollary : $[\text{Sym}(Q \times \Sigma^m)]_{m+1} \subset \langle [\text{Sym}(Q \times \Sigma^4)]_{m+1} \rangle$.
OB(\mathbb{Z}^d, n, k) is finitely generated.

Using this result, a generating set can be constructed:

- $A_1 =$ Shifts T_{e_i} for \(\{e_i\}_{i \leq d} \) a base of \mathbb{Z}^d.
- $A_2 =$ All $T_\pi \in \text{LP}(\mathbb{Z}^d, n, k)$ of fixed support $E \subset \mathbb{Z}^d$ of size 4.
- $A_3 =$ The swaps of symbols in positions $(\vec{0}, e_i)$.
EL(\mathbb{Z}, n, k) is finitely generated.

EL(\mathbb{Z}, n, k) = \langle LP(\mathbb{Z}, n, k), RFA(\mathbb{Z}, n, k) \rangle = \langle OB(\mathbb{Z}, n, k), RFA(\mathbb{Z}, n, k) \rangle
EL(\mathbb{Z}, n, k) is finitely generated.

$\text{EL}(\mathbb{Z}, n, k) = \langle LP(\mathbb{Z}, n, k), RFA(\mathbb{Z}, n, k) \rangle = \langle OB(\mathbb{Z}, n, k), RFA(\mathbb{Z}, n, k) \rangle$

We can show that $RFA(\mathbb{Z}, n, k)$ is generated by orbitwise shifts and controlled position swaps.

1. f is orbitwise shift is $\forall x \in X \exists k \in \mathbb{Z}$ such that $f(\sigma^n(x)) = \sigma^{n+k}(x)$.

2. f is controlled position swap if for some $u, v \in \Sigma^*$, $f(xu.avy) = xua.vy$ and $f(xua.vy) = xu.avy$.
EL(\mathbb{Z}, n, k) is finitely generated.

\[\text{EL}(\mathbb{Z}, n, k) = \langle \text{LP}(\mathbb{Z}, n, k), \text{RFA}(\mathbb{Z}, n, k) \rangle = \langle \text{OB}(\mathbb{Z}, n, k), \text{RFA}(\mathbb{Z}, n, k) \rangle \]

We can show that RFA(\mathbb{Z}, n, k) is generated by orbitwise shifts and controlled position swaps.

1. \(f \) is orbitwise shift is \(\forall x \in X \exists k \in \mathbb{Z} \) such that \(f(\sigma^n(x)) = \sigma^{n+k}(x) \).

2. \(f \) is controlled position swap if for some \(u, v \in \Sigma^* \),
 \[
 f(xu.avy) = xua.vy \text{ and } f(xua.vy) = xu.avy.
 \]

In the fullshift, orbitwise shifts are precisely the shifts. So we only need to implement controlled position position swaps [technical].
Definition

Let G and H be groups. We say a function $\phi : G \to H$ is a **blurphism** if the following holds: If $F \subseteq G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G' with generating set B with undecidable torsion problem and there is a computable blurphism $\phi : G \to H$, then the subgroup H' of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

A better name than blurphism is needed, any ideas?
Definition
Let G and H be groups. We say a function $\phi : G \to H$ is a blurphism if the following holds: If $F \subseteq G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

Lemma
If G has a finitely generated subgroup G' with generating set B with undecidable torsion problem and there is a computable blurphism $\phi : G \to H$, then the subgroup H' of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.
Definition

Let G and H be groups. We say a function $\phi : G \to H$ is a blurphism if the following holds: If $F \subset G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G' with generating set B with undecidable torsion problem and there is a computable blurphism $\phi : G \to H$, then the subgroup H' of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

A better name than blurphism is needed, any ideas?
Construction of the blurphism

- Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup \{Q \times \{\uparrow, \downarrow\}\})\}$.

Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* |\leftarrow^* \rightarrow^*)^*$. Define ϕ to act as a conveyor belt. ϕ is a computable blurphism. Therefore $\phi(EL(Z, n, k))$ is a finitely generated subgroup of $\text{Aut}(A_Z)$ with undecidable torsion problem. As $\text{Aut}(A_Z) \rightarrow \text{Aut}(\{0, 1\}^Z)$ the same is valid for any automorphism group of a fullshift.
Construction of the blurphism

- Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\}$.
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.
Construction of the blurphism

- Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\}$.
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.
- Define ϕ to act as a conveyor belt [Blackboard]
Construction of the blurphism

Let \(A = \{ \Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\} \).

Parse the third layer into zones \((\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*\).

Define \(\phi \) to act as a conveyor belt [Blackboard]

\(\phi \) is a computable blurphism.
Construction of the blurphism

- Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\}$.
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* \mid \leftarrow^* \rightarrow^*)^*$.
- Define ϕ to act as a conveyor belt [Blackboard]
- ϕ is a computable blurphism.

Therefore $\phi(\text{EL}(\mathbb{Z}, n, k))$ is a finitely generated subgroup of $\text{Aut}(A^\mathbb{Z})$ with undecidable torsion problem. As $\text{Aut}(A^\mathbb{Z}) \hookrightarrow \text{Aut}(\{0, 1\}^\mathbb{Z})$ the same is valid for any automorphism group of a fullshift.
The torsion problem for RFA

RFA(\(\mathbb{Z}, n, k\)) has decidable torsion problem.

Proof: As \(\mathbb{Z}\) is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.
The torsion problem for RFA

RFA(\mathbb{Z}, n, k) has decidable torsion problem.

Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

RFA(\mathbb{Z}^d, n, k) has a finitely generated subgroup with undecidable torsion problem for \(d, n \geq 2 \).
The torsion problem for RFA

RFA(\(\mathbb{Z}, n, k\)) has decidable torsion problem.

Proof: As \(\mathbb{Z}\) is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

RFA(\(\mathbb{Z}^d, n, k\)) has a finitely generated subgroup with undecidable torsion problem for \(d, n \geq 2\).

Proof: Reduction to the snake tiling problem, which reduces to the domino problem for \(\mathbb{Z}^d\).
The snake problem

Can we tile the plane in a way which produces a bi-infinite path?
The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.
The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in \text{RFA}$ which walks the path of the snake, and turns back if it encounters a problem.
The torsion problem for RFA: Cheating version

We’ll first do it by cheating: Arbitrary alphabet \(\tau \) as an instance of the snake tiling problem and at least two states \(L, R \).

- Let \(t \) be the tile at \((0, 0)\). If \(t = \epsilon \), do nothing.
- Otherwise:
 - If the state is \(L \). Check the tile in the direction \(\text{left}(t) \). If it matches correctly with \(t \) move the head to that position, otherwise switch the state to \(R \).
 - If the state is \(R \). Check the tile in the direction \(\text{right}(t) \). If it matches correctly with \(t \) move the head to that position, otherwise switch the state to \(L \)
The torsion problem for RFA: The real deal

We are going to code everything in a binary alphabet and use no states.

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & b_1 & b_2 & b_3 & 0 & 1 \\
1 & 0 & r_1 & r_2 & b_4 & 0 & 1 \\
1 & 0 & l_1 & l_2 & b_5 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Consider the group spanned by the following machines:

1. \(\{ T\vec{v} \}_{\vec{v} \in D} \) that walks in the direction \(\vec{v} \in D \) independently of the configuration.

2. \(T_{\text{walk}} \) that walks along the direction codified by \(l_1, l_2 \) or \(r_1, r_2 \) depending on the direction bit.

3. \(\{ g_c \}_{c \in C} \) that flips the direction bit if the current pattern is \(c \in C \),

4. \(\{ h_c \}_{c \in C} \) that flips the auxiliary bit if the current pattern is \(c \in C \),

5. \(\{ g_{+,c} \}_{c \in C} \) that adds the auxiliary bit to the direction bit if the current pattern is \(c \in C \), and

6. \(\{ h_{+,c} \}_{c \in C} \) that adds the direction bit to the auxiliary bit if the current pattern is \(c \in C \),
The torsion problem for RFA: The real deal

The previous group spans the machines g_p and h_p for patterns p composed of fragments of c in compatible positions.
The torsion problem for RFA: The real deal

The previous group spans the machines g_p and h_p for patterns p composed of fragments of c in compatible positions.

$$g_p^* = \left(T_{-7\bar{v}} \circ g_{+,c} \circ T_{7\bar{v}} \circ h_{p^*\{\bar{v}\}} \right)^2.$$

$$h_p^* = \left(T_{-7\bar{v}} \circ h_{+,c} \circ T_{7\bar{v}} \circ g_{p^*\{\bar{v}\}} \right)^2.$$

Finally, we use these machines to code the first ones.
The torsion problem for RFA: The real deal

\[\mathcal{M}(t) = \]

[Diagram of a grid with arrows indicating torsion movements]
The torsion problem for RFA: The real deal

\[T^* = (T_{\text{walk}})^M \circ \prod_{p^* \in M} g_{p^*} \circ \prod_{c \in C} g_c \]

Acts as the first machine, but using these coded macrotiles.
The torsion problem for RFA: The real deal

\[T^* = (T_{\text{walk}})^M \circ \prod_{p^* \in M} g_{p^*} \circ \prod_{c \in C} g_c \]

Acts as the first machine, but using these coded macrotiles.

Corollary

Let \(d \geq 2 \) and \(\sigma \) be the shift action of \(\mathbb{Z}^d \) over a full shift \(A^{\mathbb{Z}^d} \) where \(|A| \geq 2 \). Then the full group \([[\sigma]] \) contains a finitely generated subgroup with undecidable torsion problem.
Thank you for your attention!