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1 Elementary theory

1. Obviously, GCC is an IR-vector space. Proving that it is a CC-vector space amounts to
check that (λµ)x = λ(µx) for every λ, µ ∈ CC and x ∈ GCC . This must be done by direct
calculation.

2. The rank of M is the dimension of the space R(M) spanned by the columns

M (1), . . . , M (m)

of M in Kn. Each column of MM ′, being a linear combination (check that!) of the
M (j)’s, belong to F . Therefore the space spanned by the columns of MM ′ is a subspace
of F and must not have a greater dimension. This proves rk(MM ′) ≤ rk M . Applying
that to M ′T and MT instead, gives

rk(MM ′) = rk(MM ′)T = rk(M ′T MT ) ≤ rk M ′T = rk M ′.

3. (a) Let r := rk B. Let G be a subspace of Km such that Km = R(B) ⊕ G. Then
dim G = m−r. We have R(A) = A(R(B)⊕G) = A(R(B))+A(G) = R(AB)+A(G).
Since dim A(G) ≤ dim G, there comes

rk A = dim(R(AB) + A(G)) ≤ dim R(AB) + dim G ≤ rk(AB) + m − rk B.

(b) Let assume first that B be onto. Then apply the first question to A and BC ; we
obtain rk A+rk(BC) ≤ m+rk(ABC). This is the desired inequality, since rk B = m
and rk(AB) = dim R(AB) = dim R(A) = rk A.
We now consider the general case. The previous analysis is obviously valid for
homomorphisms. We apply it to the triplet (A′, B, C), where A′ is the restriction of
A to R(B). We obtain

rk(A′B) + rk(BC) ≤ rk B + rk(A′BC).

This is the desired result, since A′B acts exactly the same as AB.
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4. (a) The bilinearity is clear. That the range spans Mnn′×mm′ comes from the general fact
that Mp×q is spanned by all the elementary matrices Ek,l defined by

Ek,l
i,j = δk

i δ
l
j.

Last, the tensor product of elementary matrices is an elementary matrix, and one
obtains all elementary matrices in Mnn′×mm′ as such tensor products. Hence the
range of the tensor product spans Mnn′×mm′ . However, the map is not onto in
general, since it requires that all n′ × m′ blocks be colinear to a single one C. One
proves that it is onto if and only if either n = m = 1 or n′ = m′ = 1.

(b) One finds (BD) ⊗ (CE).

(c) The uniqueness of L follows from the fact that tensor products span Mnn′×mm′ . The
existence is given by the formula

L


∑

i,j,k,l

akl
ijE

ij ⊗ Ekl


 :=

∑
i,j,k,l

akl
ijφ

(
Eij, Ekl

)
.

This defines a linear form. There remains to check that L(B ⊗ C) = φ(B, C), which
is done by expanding B and C on the bases of elementary matrices and using the
bilinearity of φ.
Nota. in this question, one may replace the target space of φ by any K-vector space.

2 Square matrices

1. Let A, B be upper triangular matrices : aij = bij = 0 whenever i > j. Then,

(AB)ij =
∑
k

aikbkj =
∑

i≤k≤j

aikbkj,

and the last sum is void, hence null, if i > j.

2. Let us do it for the case of an upper triangular matrix M . For a product m1σ(1) · · ·mnσ(n)

to be non zero, one needs j ≤ σ(j) for every index j. Summing up, there comes

n(n + 1)
2

=
∑
j

j ≤
∑
j

σ(j) =
∑
k

k =
n(n + 1)

2

and hence all the inequalities are equalities. Finally, there remains at most one non zero
term in the determinant, namely the one corresponding to the identity. The product is
that of the diagonal entries and the signature is +1.

3.

M =
(

0 1
0 0

)
, N =

(
1 0
0 0

)
.
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4. Let A be orthogonal and upper triangular. Then AT = A−1 must be upper triangular
(see exercise 8). Therefore A is lower triangular, hence diagonal. Then In = AT A = A2

shows that every diagonal entry is either +1 or −1.

5. (a) Let x be in Kn. Define y = Px and z = x − y. Then Pz = y − P 2x = y − y = 0
gives z ∈ F . Also, (In − P )y = y − P 2x = 0. Hence Kn = E + F . Last, assume
that x ∈ E ∩ F . Then y = 0 and z = x. Since z ∈ F , there holds z = Pz = Px = 0.
Finally, x = 0.

(b) From (P − Q)2 = P + Q − PQ − QP , we find

P (P − Q)2 = P − PQP = (P − Q)2P.

By symmetry, (P − Q)2 commutes with Q too. Also, (In − P − Q)2 = In − P − Q −
PQ − QP gives the identity.

6. Let A be p× q and D be r × s. For AD to be meaningful, one needs q = r. Alike, for BC
to make sense, one needs s = r. At last, M being square, one has p + r = q = s, hence
p = q = r = s. Now, if p ≥ 2 the following is a counter-example to the formula :

A =
(

1 0
0 0

)
, B =

(
0 0
1 0

)
, C =

(
0 1
0 0

)
, D =

(
0 0
0 1

)
.

Schur’s formula is det M = det A det(D − BA−1C). When p = q = r = s and if A and B
commute, then it implies det M = det(AD − ABA−1C) = det(AD − BC).

7. Because AC = CA, there holds
(

Im 0m

−C A

)
M =

(
A B
0m AD − CB

)
,

form which we infer det A det M = det A det(AD − CB). This is the desired equality if
det A �= 0.

In the general case, we define a matrix M(X) by replacing A by A−XIm. Let us denote
Q(X) = det M(X) − det((A − XIm)D − CB). From the previous case, we know that
every scalar z ∈ K̄ is either a root of the characteristic polynomial PA, or a root of Q.
Since K̄ is infinite (it would be enough to consider z in a large enough extension of K)
and PA has finitely many roots, Q must have infinitely many root and therefore must be
the null polynomial.

8. Prove it either directly or by means of Cayley-Hamilton’s Theorem.

9. From exercise 2, the characteristic polynomial of a triangular matrix M equals the prod-
uct of the monomials X − mjj. Its roots are the diagonal entries mjj. The algebraic
multiplicity of an eigenvalue λ equals the number of indices j for which mjj = λ.
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10. Let assume that there exists a null matrix extracted from A, of size k × l with k + l > n,
corresponding to the row indices in K and column indices in L. For every permutation
σ, the sum of cardinals of σ(K) and L is k + l, and thus these sets must have a common
element j = σ(i). Form i ∈ K and σ(i) ∈ L, we obtain aiσ(i) = 0. Hence every diagonal
contains a null element.

We prove the converse by induction on n. Let the result be true at order n − 1 and
let A be n × n and such that every diagonal contains a zero element. If the first row is
identically zero, we already have an 1 × n null block and 1 + n > n. Otherwise, there
exists a non zero element a1j and we consider the (n − 1) × (n − 1) matrix obtained by
deleting the first row and the j-th column. By induction, it contains an r × s null block
with r + s ≥ n. If r + s > n, we are done. Otherwise, r + s = n and we may suppose,
up to a permutation of rows and columns, that this block is the upper left one. Hence, A
reads as (

0k×l B
C D

)
,

where B, C are square matrices. If each one has a diagonal with non zero elements, then
A has one too. Hence the induction hypothesis can be applied to one of both matrices
B, C. Without loss of generality, we may assume that B (of size k × k) contains a null
block of size a × b, with a + b > k, corresponding to row indices in a set I and columns
indices in a set J . Then A contains a null block of size a × (b + l), corresponding to row
indices in I and columns indices in J ∪ {1, . . . , l}. At last, a + b + l > k + l = n.

11. By inspection, GL2(ZZ/2ZZ) has 6 elements. Since matrices
(

1 1
0 1

)
,

(
0 1
1 0

)

do not commute, this group is not abelian. At last, every non abelian group with six
elements is isomorphic to S3.

12. (a) One easily find that πk = circ(. . . , 0, 1, 0, . . .), where the entry 1 is in k position,
modulo n. In particular, πn = In. Therefore, the algebra CC[π] equals the subspace
spanned by In, π, . . . , πn−1, which is Cn. Since the kernel of X 	→ π, from CC[X]
to CC[π], is the ideal spanned by Xn − 1, the characteristic polynomial of π, Cn is
isomorphic to the quotient ring CC[X]/(Xn − 1).

(b) Clearly, the hermitian adjoint of circ(a0, . . . , an−1) is circ(a0, an−1, . . . , a1). We al-
ready know that P (C) is circulant, since Cn is an algebra. A matrix is circulant if
and only if it commutes with π (check that!). Hence C−1, when defined, is circulant.

(c) Just because they are polynomials in π, and π has distinct eigenvalues (the n-th
roots of unity) and thus is diagonalizable.

(d) Same as in the previous question, because there are n distinct n-th roots of unity
under this assumption.
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(e) We shall prove that now π is not diagonalizable. Let p denote the characteristic
of K, then the algebraic mulitplicities of the eigenvalues of π are greater than 1,
since the derivative of the characteristic polynomial Xn − 1 vanishes identically.
However, every eigenvalue ω is geometrically simple, since the eigenspace is spanned
by (ωn−1, . . . , ω, 1)T . Other argument : the rank of π − ωIn is n − 1 at least since
this matrix contains a invertible block In−1. Hence its kernel has dimension one at
most.

13. Let A be alternate and D := diag(λ, 1, . . . , 1). Then

λPf(A) = (det D)Pf(A) = Pf(DT AD).

Since DT AD is obtained my multiplying the entries in the first row (and therefore those
in the first column, to keep the alternate shape) by λ, this shows that Pf is homogeneous
of degree 1 in the entries of the first row. Since Pf is a polynomial, this homogeneity
means linearity. Using permutations, or an other diagonal matrix D, we conclude that
Pf is linear with respect to each row and each column.

Let Pf = QR be a factorization of the Pfaffian. Obviously, Q and R must be homogeneous.
Also, considering the i-th row dependence, one of both, say Q, must be linear and the
other must not depend on it. If R is not constant, it must contain some variable Xjk,
and therefore be linear in the k-th column. Thus Q does not depend on the k-th column.
Hence, neither Q nor R depend on the entry Xik, which contradicts the fact that Pf
actually depends on every entry.

14. Let a be an eigenvalue of A and E := ker(A − aIn). For every M ∈ S, there holds
M(A−aIn) = (A−aIn)M , and thus M(E) ⊂ E. By assumption, one has E = kn, hence
A = aIn.

15. (a) Let assume that such sequences exist for every pair (j, k). Let I ∪ J be a non-trivial
partition of the set of indices. Let i ∈ I and j ∈ J be given and let i = l1, . . . , lr = j
be such a sequence. Let p be the smallest integer such that lp+1 �∈ I. Then lp ∈ I,
lp+1 ∈ J and alplp+1 �= 0. Hence the block AI×J is non zero, and A is irreducible.
On the contrary, let us assume that there exists a pair (i, j) such that there does
not exist a such sequence. Then let I be the set of attainable indices with such a
sequence starting from i. Finally, let J be the complement of I. By assumption,
I ∪ J is a non-trivial partition of the indices, but AI×J = 0. Hence A is reducible.

(b) If i < j, one uses the (non zero) entries ak,k+1 to make a sequence from i to j. If
i > j, one uses the entries ak+1,k instead. If i = j and n ≥ 2, we use two sequences,
one from i to some other index k and one from k to i. If n = 1, there is nothing to
prove.

16. (a) Just remark that q ∈ Ix.
(b) Let Q be the lcm of the rj’s. Since rj divides q, Q divides q as well. On an other

hand, every vector x writes as
∑

j xj
�ej, and thus Q(A)x = 0, since Q(A)�ej = 0.

Hence q divides Q, that is Q = q.
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(c) We notice that the set of monic divisors of q is finite. If xm converges to x, then
by continuity, px will divide every cluster point of the sequence pxm , that is every
polynomial which appears infinitely many times in that sequence. There follows that
px actually divides py for every y in a small neighbourhood. Hence Vp is open.

(d) If px is of maximal degree, then let p := px. Then Vp contains x. If y ∈ Vp, then p
divides py. The maximality of p implies that actually py = p. Since Vp is a non-void
open set, one can choose a basis of kn, contained in Vp. By linearity, there follows
that p(A) vanishes on every vector, and therefore q divides p. Thus q = p.
Conclusion. There exists a vector x such that p(A)x = 0 implies that the minimal
polynomial divides p.

17. (a) One has (
In 0

−B XIm

)
M =

(
In A
0 X2Im − BA

)
.

Taking the determinant in the identity gives the desired identity.

(b) On an other hand, one also has
(

XIn −A
0 Im

)
M =

(
X2In − AB 0

B XIm

)
.

Taking the determinant gives Xn det M = Xm det(X2 − AB). Using both iden-
tities, there comes X2nPBA(X2) = X2mPAB(X2). In other words, XnPBA(X) =
XmPAB(X).

(c) We may assume that m ≤ n. Then PAB = Xn−mPBA. If n �= m, then the spectrum
of AB equals the spectrum of BA, augmented of 0. If n = m, both spectra are
equal. The multiplicity of a non-zero eigenvalue is always the same for AB and BA.
The multiplicities of the null eigenvalue differ by n − m.

18. (a) Let W, Z be two vectors such that ZT W = 1, and define α := θ(WZT ). Then, for
every X, Y , there holds

θ(XY T ) = θ(XZT WY T ) = θ(WY T XZT ) = (Y T X)θ(WZT ) = αY T X.

(b) Decompose any matrix A as
∑

ij aij�ei�ej
T , where the �ei’s are the canonical basis

vectors. Then apply the previous question.

19. (a) We consider ∆, a polynomial of n variables, as a polynomial in the single variable
Xi with coefficients in An−1 = K[. . . , Xi−1, Xi+1, . . .]. We may specialize Xi to any
value in a field containing K. For instance, Xi may be assigned the value Xj ∈ An−1

for some j �= i. Then ∆ vanishes since the matrix M has two identical columns.
Hence Xi − Xj divides ∆ in K[k], where k is the fraction field of An−1. However,
since Xi − Xj is monic, the quotient belongs to K[An−1] = An.
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(b) Since the polynomials Xi − Xj (1 ≤ i < j ≤ n) are pairwise coprime, their product
must also divide ∆. Since both this product and ∆ have same degree n(n − 1)/2,
the quotient is a scalar.

(c) By induction on n, the coefficient of this monomial is 1 in both the product and ∆.
Hence a = 1, that is

∆ =
∏
i<j

(Xj − Xi).

(d) If two distinct exponents pr are equal, then the determinant vanishes since the matrix
has two identical rows. Otherwise, up to a permutation of rows, we may assume that
p1 < p2 < · · · < pn. One easily factorizes


∏

j

Xj




p1 ∏
i<j

(Xj − Xi).

The quotient of ∆ by this polynomial is a symmetric polynomial, whose determina-
tion is beyond the scope of our book.

20. From the previous exercise, the determinant equals
∏

i<j(aj − ai). Therefore it vanishes
if and only if at least one of the factors does.

21. (a) Just use Cauchy-Binet’s formula.

(b) Since the principal minors

A

(
1 · · · p
1 · · · p

)

are positive, therefore non-zero, A admits a unique LU factorization. Apply first the
Cauchy-Binet’s formula to the product LU , using the p first lines. Then the sum
reduces to only one term because all minors of L are zero but the principal one.
Therefore,

U

(
1 · · · p
j1 · · · jp

)
= A

(
1 · · · p
j1 · · · jp

)

is positive for every increasing sequence j1, . . . , jp and every length p ∈ {1, . . . , n}.
Likewise,

L

(
i1 · · · ip
1 · · · p

)

is positive for every increasing sequence i1, . . . , ip and length p.
The end of the proof is more delicate and does not involve A any more. It uses the
general fact that, for a triangular matrix, the (strict) positivity of non-trivial minors
follows from that of minors of the form above. This result is a consequence of the
algebraic relations between minors within a single matrix. We refer to S. Karlin,
Total Positivity, Stanford University Press (1968).
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(c) We have to show that any determinant of the form

F (x1, . . . , xr) := det((xpj

i ))1≤i,j≤r

is positive whenever x1 < · · · < xr and p1 < · · · < pr. Let us suppose that F (x) = 0.
Then an eigenvector of the corresponding matrix gives a non-zero polynomial Q =∑

l vlX
pl , such that Q(x1) = · · · = Q(xr) = 0. Now, Descartes’ rule of signs (G.

Polya, G. Szego, exercize V.36 in Problems and Theorems in Analysis, Grundl. der
mat. Wiss., band 216, Springer-Verlag) ensures that the number of positive roots
of Q does not exceed the number of sign changes in the list of coefficients, here
v1, . . . , vr. Hence, there should not be r positive roots of Q, a contradiction. Thus
F does not vanish under the constraints on the vectors x and p. We conclude by
induction : given an admissible vector p, F keeps a constant sign ε on admissible
vectors x. Letting x1 → 0+, the limit of x−p1

1 F (x) is the same determinant of order
r − 1, with admissible vectors. From the induction hypothesis, it is positive. Hence
F is positive for small values of x1 and ε must be +1.

22. Compute the product, then use that detA = det AT and the formula for the determinant
of the Vandermonde matrix.

23. (a) That ∆ is symmetric is obvious, because the transposition i ↔ j exchanges factors
(Xi − Xk)2 and (Xj − Xk)2 (k �= i, j) while it leaves unchanged all other factors.
Obviously, ∆ has coefficients in ZZ. The fact that a symmetric polynomial expresses
as a polynomial in terms of σ1, . . . , σn is the fundamental Theorem of symmetric
polynomials. This theorem also tells that one may keep the same ring of scalars,
here ZZ.

(b) We apply the former identity to the eigenvalues (λ1, . . . , λn) of the matrix A. Since
the σj(λ1, . . . , λn)’s are the coefficients (up to ±1) of the characteristic polynomial
PA, they write as polynomials in the entries of A, with coefficients in ZZ.

(c) A symmetric matrix with real entries has real eigenvalues only. Hence each term
(λj − λi)2 is real non-negative and the product is non-negative too. If n = 2 the
discriminant of

A =
(

a b
b c

)

is DS(A) = (a − c)2 + b2 which is not the square of any polynomial. If DS were the
square of some polynomial Q for some n ≥ 2, then the restriction of Q to the set of
block-diagonal matrices where the first block is symmetric 2 × 2 and the others are
scalars a1, . . . , an−2 would be the square of a polynomial too. But this restriction,
being (

(a − c)2 + b2
) ∏

j<k

(aj − ak)2
∏
j

(
(a − aj)(c − aj) − b2

)2
,

is the product of such a square by (a − c)2 + b2. Hence the latter would be a square,
a contradiction.
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24. Obviously, the λi’s are the roots of P = Xn + a1X
n−1 + · · · + an.

25. (a) Let D denotes the commutator [A, B]. It is traceless, hence satisfies, from Cayley-
Hamilton’s Theorem, D2 = dI2, where d = − det D. Hence D2 commutes with every
matrix C.

(b) For every 2×2 matrix, Cayley-Hamilton’s Theorem reads M2 −(Tr M)M +det M =
0, and det M = (Tr M)2 − Tr M2. Hence the identity reads φ(M, M) = 0, with

φ(M, N) = MN + NM − (Tr M)N − (Tr N)M + {(Tr M)(Tr N) − Tr(MN)}I2.

Since φ is symmetric and bilinear, one deduces that

4φ(M, N) = φ(M + N, M + N) − φ(M − N, M − N) = 0.

(c) Just write that Tr(φ(N1, N2)N3) = 0.

(d) Again, write the Cayley-Hamilton’s Theorem for an arbitrary matrix M . Let write
the coefficients of the characteristic polynomial PM in terms of the sums

sk :=
∑
j

λk
j ,

where the λj’s are the eigenvalues of M . This is achieved through the Newton’s
formula (see Section 10.5). Now, Cayley-Hamilton’s formula appears as a polynomial
identity in M , homogeneous of degree n. It may be written as φ(M, . . . , M), where φ
is symmetric n-linear. There follows the polynomial identity φ(N1, . . . , Nn) = 0 for
every n × n matrices N1, . . . , Nn. Multiplying by Nn+1, and taking the trace yields
the desired formula.

26. (a) We proceed by induction over p. There is nothing to prove if p = 0. If p ≥ 1
and if the statement is true at order p − 1, then we expand the derivative of the
characteristic polynomial :

P ′
A(X) =

∑
i

PA(i)(X), A(i) := AJ(i),

where J(i) is the set of all indices but i. By induction, λ is a root of multiplicity
p (at least) of all terms in the sum, and therefore of P ′

A. Since by assumption it is
also a root of PA, its multiplicity must be p + 1 at least.

(b) Let EJ be the subspace spanned by �ej when j runs over J , and let F be the eigenspace
associated to λ. Since dim F = q, its intersection with EJ is non-trivial whenever
r := cardJ > n − q. Hence there exists an eigenvector in EJ , which provides an
eigenvector of AJ for the eigenvalue λ.

27. If l < n then just take ql = X l. If l ≥ n, then write Al−nPA(A) = 0, where PA is the
characteristic polynomial of A. Since X l−nPA = X l + l.o.t., this shows that Al is a linear
combination of Al−n, . . . , Al−l. Then proceed by induction over l. If A is invertible, then
A−lPA(A) = 0 shows that A−l is a linear combination of A1−l, . . . , An−l. For l = −1, this
gives already the result. Then proceed by induction over −l.
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28. It is enough to show that the map is one-to-one. So let M be such that AM = MB. Then
A2M = AMB = MB2. By induction, there holds AkM = MBk for every k ∈ IN and
hence p(A)M = Mp(B) for every polynomial p. Let us take p = PB, the characteristic
polynomial of B. From Cayley-Hamilton’s Theorem, we obtain pB(A)M = 0. However,
the eigenvalues of pB(A) are the images of those of A under PB. By assumption, all of
them are non-zero and thus PB(A) is invertible. Hence M = 0.

29. (a) Let Mrs be a non-zero matrix. Then, from MrjMjs = Mrs, one finds that none of
Mrj or Mjs vanish. Repeating the argument, we find tha none of the Mij vanish.

(b) Trivial : we have M2
ii = Mii.

(c) Let xj ∈ Ej. If
∑

j xj = 0, then apply Mii for some index i. Since Miixi = xi and
Miixj = 0 otherwise, there remains xi = 0. Hence E1, . . . , En are in direct sum.
Since Mii is non-zero, Ei is non trivial. From

∑
j dim Ej ≤ n and dim Ej ≥ 1, there

comes dim Ej = 1.

(d) Given a generator ej of Ej, one has Mjjej = ej. Because of Mjk = MjjMjk, we know
that R(Mjk) ⊂ Ej. But since Mjk is non zero, we really have R(Mjk) = Ej. Next,
Mjkel = MjkMllel = 0 if l �= k. Hence R(Mjk) is spanned by Mjkek and therefore
Mjkek = αjkej for some scalar αjk �= 0. At last, writing MijMjkek = Mikek, we obtain
αijαjk = αik. Let us denote βj := α1j. Then there comes (take i = 1) αjk = βk/βj.
Now, renormalizing the generators by ej 	→ ej/βj, we obtain Mijej = ei for every
indices i, j.

(e) Let σ be an automorphism of Mn(k). We define Mij := σ(Eij), where Eij’s are ele-
mentary matrices : (Eij)kl = δk

i δ
l
j. Then the Mij’s satisfy the assumption. Therefore

there exists a basis B = {e1, . . . , en} of kn such that Mijek = δk
j ei. Let P be the

change of basis from the canonical one to B. Then MjkP = PEjk. Since the Eij’s
form a basis of Mn(k), this extends by linearity, giving σ(M) = PMP−1.

3 Matrices with real or complex entries

1. Let A be skew-hermitian and X be an eigenvector, AX = µX. Then µ‖X‖2 = X∗AX.
Hence µ̄‖X‖2 = (X∗AX)∗ = X∗A∗X = −X∗AX = −µ‖X‖2. Thus µ̄ = −µ, that is
µ ∈ iIR. Last, a real skew-symmetric matrix is skew-hermitian.

2. The polynomial f(z) := det(P + zQ) is non trivial since f(i) �= 0. Hence it vanishes only
finitely many times. In particular, there are plenty of real numbers b such that f(b) �= 0,
that is P + bQ ∈ GLn(IR).

Let M, N ∈ Mn(IR) be similar in Mn(CC). There exists P, Q ∈ Mn(IR) such that
P + iQ ∈ GLn(CC) and (P + iQ)M = N(P + iQ). Taking real and imaginary parts,
there comes PM = NP , QM = NQ. From above, there exists a real number b such that
P + bQ ∈ GLn(IR). Since (P + bQ)M = N(P + bQ), M, N are similar within GLn(IR).
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3. Let T be upper triangular and normal. Computing the diagonal entries of TT ∗ = T ∗T ,
we obtain ∑

k≤i

|tki|2 =
∑
k≥i

|tik|2.

Making i = 1, there follows t1k = 0 for every k > 1. Hence T is block diagonal, where
diagonal blocks are upper triangular and inherit the normality. We conclude by induction
over n.

If M is normal and if M = U∗TU is a unitary trigonalization, then T is triangular and
normal, hence is diagonal.

4. Writing that the restriction of A to the plane spanned by the i-th and j-th basis vectors
is positive definite, we have

a2
ij < aiiajj ≤ (max

l
all)2.

5. (a) A direct computation shows that hM ◦ hN = hMN . Since hI2 is the identity, this
shows that hM is a bijection, with the inverse hN , N := M−1. Notice that the point
at infinity is crucial in this procedure, since hM(∞) = a/c and hM(−d/c) = ∞.

(b) There remains to compute the kernel of this multiplicative homomorphism. If hM is
the identity, then az + b = z(cz + d) for every z. Hence, c = 0 = b and a = d. The
kernel is thus IRI2, the set of homotheties.

(c) One finds

�hM(z) =
det M

|cz + d|2�z.

In particular, hM(H) ⊂ H whenever det M > 0. Since then det M−1 > 0 and
hM−1 = h−1

M , we have actually hM(H) = H. Thus GL+
2 (IR) acts on H. Notice that

the point at infinity is not needed in this analysis, since hM(∞) is real.

(d) Obviously, the quotient GL+
2 (IR)/IRI2 acts on H. But the quotient GL+

2 (IR)/IR+I2

is isomorphic to SL2(IR), through M 	→ M/ det M . Hence the former is isomorphic
to PSL2(IR).

(e) Let z be a fixed point of hM : az + b = z(cz + d). This is a quadratic equation with
real coefficients. Its discriminant is (d − a)2 − 4bc = (Tr M)2 − 4. If |Tr M| ≥ 2,
then the roots are real and hM does not have a fixed point in H. If |Tr M| < 2 there
are two complex conjugate roots of which precisely one belongs to H. Nota : a
matrix in SL2(IR) is called hyperbolic, elliptic or parabolic if the modulus of its trace
is larger than, equal to or less than 2, respectively. Hyperbolic matrices fix exactly
one point in H. Elliptic matrices fix two points on the boundary IR ∪ {∞}, while
parabolic fix only one point on the boundary.

6. Let F be a set of convex functions on IRN and F be the supremum of its elements :
F (x) = supf∈F f(x). Given vectors x, y and a number θ ∈ [0, 1], we have, for every f in
F ,

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ≤ θF (x) + (1 − θ)F (y).
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Taking the supremum gives the convexity of F .

We apply this principle to the maximal eigenvalue λn of an n×n hermitian matrix. From
Rayleigh’s formula, it is given as the supremum of affine (thus convex) functions

M 	→ x∗Mx

x∗x
.

7. If M is normal, then M = V ∗DV where V ∈ Un and D is diagonal. There exists a
unitary diagonal matrix W such that D̄ = DW . Hence

M∗ = V ∗D̄V = V ∗DWV = MU, U = V ∗WV ∈ Un.

Conversely, let us assume that M∗ = MU with U unitary. Taking the hermitian adjoint,
we have M = U∗M∗ = U∗MU . Hence UM = MU . There follows M∗M = MUM =
M2U = MM∗.

8. Within the set of triangular matrices, those having pairwise distinct diagonal entries form
a dense subset. Since these ones have distinct eigenvalues, they are diagonalizable. Hence
the set of diagonalizable triangular matrices is dense in the set of triangular matrices.
Now, let M be any matrix in Mn(CC). From Schur’s Theorem 3.1.3, it writes as U∗TU
where U is unitary and T is triangular. Let Tk be asequence of diagonalizable triangular
matrices converging towards T . Then U∗TkU is a sequence of diagonalizable matrices
converging towards M .

9. We may assume that both sequences are ordered increasingly. We shall prove that the
maximum is a1b1 + · · ·+anbn and the minimum is a1bn + · · ·+anb1. First of all, both these
values are achieved by choosing diagonal matrices A and B. By unitary diagonalisation,
we may suppose that A = diag(a1, . . . , an). We denote εj := aj+1 − aj ≥ 0. From Schur’s
Theorem 3.4.1, we have

n∑
i

bjj ≤
n∑
i

bj, 2 ≤ i ≤ n,

while the sums from 1 to n are equal. Hence,

Tr(AB) =
n∑
1

ajbjj = a1Tr B + ε1

n∑
2

bjj + · · · + εn−1bnn

≤ a1

n∑
1

bj + ε1

n∑
2

bj + · · · + εn−1bn =
n∑
1

ajbj.

Using again Schur’s Theorem 3.4.1, we have
n∑
i

bjj ≥
n−i+1∑

1
bj, 2 ≤ i ≤ n,

and we obtain

Tr(AB) ≥ a1

n∑
1

bj + ε1

n−1∑
1

bj + · · · + εn−1b1 = a1bn + · · · + anb1.
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10. (a) We notice that L+ l depends only on u1 +un, u2, . . . , un−1, while L− l depends only
on u1 − un, u2, . . . , un−1. Actually, the restriction of L + l to Kn depends only on
u2, . . . , un−1 :

L(u) + l(u) = (a1 + an)
(

1 −
n−1∑

2
uj

)
+

n−1∑
2

uj

(
aj +

1
aj

)
=: h(u2, . . . , un−1).

Therefore, L + l is maximal on Kn by maximizing h under the constraints

u2, . . . , un−1 ≥ 0 and
n−1∑

2
uj ≤ 1.

Remarking that the coefficient aj +1/aj −an −a1 of uj in h is non-positive (because
t 	→ t + 1/t is convex), we see that the maximum of L + l is achieved for u2 = · · · =
un−1 = 0, with

max
Kn

(L(u) + l(u)) = a1 + an.

On an other hand, L− l vanishes in Kn, for instance at the point (1/2, 0, . . . , 0, 1/2)T

in which L + l is maximal. This point answers the question.

(b) Since 4lL = (L + l)2 − |L − l|2 and L + l is always non-negative, we have from the
previous question

4 max
Kn

l(u)L(u) =
(
max
Kn

(L(u) + l(u))
)2

−
(
min
Kn

(L(u) − l(u))
)2

= (a1 + an)2.

(c) Let us express x in an orthonormal eigenbasis of A. Then

(x∗Ax)(x∗A−1x)
‖x‖2 = l(u)L(u),

where uj = x2
j/‖x‖2, hence u belongs to Kn. If a1an = 1, we have the desired

inequality from the previous question. Otherwise, let just renormalize by dividing
A by

√
a1an.

11. (a) We use the min-max formula, denoting by rA(x) the Rayleigh quotient x∗Ax/‖x‖2 :

γj = min
dim F=j

max
x∈F\{0}

rA+B(x) ≤ min
dim F=j

max
x∈F\{0}

(rA(x) + βn) = αj + βn.

Likewise,
γj ≥ min

dim F=j
max

x∈F\{0}
(rA(x) + β1) = αj + β1.

(b) Actually, for every unit vector x ∈ G ∩ H, there holds x∗Ax ≤ RA(G), x∗Bx ≤
RB(H) and therefore x∗Cx ≤ RA(G) + RB(H). Then take the supremum.
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(c) In the former inequality, let us take the infimum over the subspaces G, H of respective
dimensions l, m. We obtain

inf RC(G ∩ H) ≤ αl + βm,

where the infimum runs over all subspaces G ∪ H of dimension between k and
min(l, m). Hence

γk = min
k≤j≤min(l,m)

γj ≤ αl + βm.

(d) Just apply the last result to −A, −B,−C.

(e) Let us apply the first question to the matrices A, D = B−A, B, where the eigenvalues
of D are δ1 ≤ · · · ≤ δn. Then

|βk − αk| ≤ max(δn, −δ1) = ρ(B − A).

Last, we use the fact that ρ(D) = ‖D‖2 for hermitian matrices.

12. Use the previous exercise, or use directly the Rayleigh quotients.

13. Apply the previous exercise.

14. From Proposition 8.1.2 (Schur’s formula), we have detM = det A det(C − B∗A−1B) (no-
tice that A, being positive definite, is invertible). The inequality det(C − B∗A−1B) ≤
det C follows from the previous exercise with the obvious fact that B∗A−1B is positive
semidefinite and the fact, that we shall prove now, that C − B∗A−1B is positive semidef-
inite. Given y ∈ CCq, let us define x = (−A−1By, y)T . Then y∗(C − B∗A−1B)y = x∗Mx
is positive whenever y �= 0.

15. The diagonal entries of M−1 are the principal minors of M , divided by det M . Hence
their product equals Pn−1(M)(det M)−n. Applying Hadamard’s inequality to M−1, we
obtain (det M)n−1 ≤ Pn−1(M). Last, Pn(M) = det M .

We prove the general formula by applying the former to every principal minor of size
k + 1. This immediately gives an upper bound of Pk+1(M) in terms of a product of
principal minors of size k. Obviously, this product is a symmetric function on the set of
these minors. Hence it equals a power of Pk(M). The power is found by looking at the
homogeneity degrees of Pk and Pk+1 with respect to the entries of M . These degrees are

k

(
n
k

)
and (k + 1)

(
n

k + 1

)
, respectively. Hence the power is the ratio (n − k)/k of

these two numbers.

16. (a) Since d(0n)(d(M) − 1) ≡ 0 and d is non constant, one has d(0n) = 0. Since
d(M)(d(In) − 1) ≡ 0n we have likewise d(In) = 1. If P is non singular, then
d(P )d(P−1) = d(In) = 1, hence d(P ) �= 0 and d(P−1) = 1/d(P ). Last, d(P−1MP ) =
d(P−1)d(M)d(P ) = d(M).
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(b) Just choose Dk = diag(dk+1, . . . , dk+n), where D = diag(d1, . . . , dn), and the in-
dices are computed modulo n. Then δ(det D)n = d(det In) = d(DD1 · · ·Dn−1) =
d(D)d(D1) · · · d(Dn−1). We conclude with the remark that D, D1, . . . , Dn are similar
to each other. Hence δ(det D)n = d(D)n. Last, both δ and d are non-negative.

(c) Since M is similar to a diagonal matrix D, we have d(M) = d(D) = δ(det D) =
δ(det M).

(d) Obviously, δ is multiplicative too. Since MT is similar to M , we have d(MT ) = d(M).
Hence, using the fact that the symmetric matrix MT M is diagonalizable, we have

d(M)2 = d(MT )d(M) = d(MT M) = δ(det MT M) = δ((det M)2) = δ(det M)2.

17. Let C := B−1B∗. Then C−1 = B−∗B and C∗ = BB−∗ are similar.

(a) Conversely, let A be given such that A∗ = PA−1P−1. Then A∗PA = P and thus
A∗P ∗A = P ∗. One chooses H = µP + µ̄P ∗, where µ ∈ CC. There remains to show
that µ can be chosen in such a way that H be non-singular. This is true because
−µ/µ̄ runs over the unit numbers when µ runs over CC∗, and P−1P ∗ has finitely
many eigenvalues.

(b) Since, for every complex number a, there holds BA = B∗ for B := (aIn + āA∗)H, it
is enough to find a such that det B �= 0. By the same argument as above, there exists
an a such that aIn + āA∗ is non singular. Then B is invertible and A = B−1B∗.

18. Since
∑

ij |aij|2 = Tr(A∗A) is invariant under unitary conjugation, as well as
∑

l |λl|2 and
normality, and since every matrix is unitary similar to a triangular matrix, it is enough
to prove the result when A is triangular. With this restriction, we have seen in Exercise
3 that A is normal if and only if it is diagonal. On the other hand, λl = all, so that the
equality between sums amounts to writing aij = 0 for every distinct indices.

19. (a) The eigenvalues of A are pure imaginary numbers iµj. Thus det(In + A), being a
product of numbers 1+iµj whose moduli are greater than or equal to 1, has modulus
greater than or equal to 1. Equality means that the spectrum of A reduces to {0} ;
since A is normal, hence diagonalizable, this means A = 0n.

(b) Let K be the square root of H−1 (K is hermitian positive definite and K2 = H−1).
Then M − M∗ is skew-hermitian and H−1(M − M∗) = K(K∗(M − M∗)K)K−1 is
similar to the skew-hermitian matrix K∗(M − M∗)K. Using the previous result, we
compute

det H ≤ det H| det(In +
1
2
H−1(M − M∗))| = | det(H +

1
2
(M − M∗))| = | det M |.

20. The eigenvalues of M are non-negative, with a sum equal to n, the trace of M . Since one
of them is n, all other eigenvalues vanish. Since a real symmetric matrix is diagonalizable,
M is similar to diag(0, . . . , 0, n) and has rank 1. Hence there exist non-zero vectors X, Y
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such than M = XY T . One of them, say X, can be chosen of norm 1 (‖X‖2 = 1, that
is XT X = 1). The symmetry XY T = Y XT shows that X and Y are colinear. Thus
M = µXXT . Next, MX = µX, so that µ equals the only non-zero eigenvalue n. Finally,
M = nXXT and mjj = nx2

j give xj = ±1/
√

n. Conversely, every matrix of the form
nXXT with xj = ±1/

√
n satisfies all the assumptions.

21. (a) Trivial.

(b) From Proposition 3.2.1, A =
∑p

1 xαx∗
α and B =

∑q
1 yαy∗

α. Then the desired formula
holds with zαβ defined by xα ◦ yβ, that is

(zαβ)i := (xα)i(yβ)i.

Therefore, A ◦ B is positive semi-definite.

(c) If A and B are positive semi-definite, then {x1, . . . , xn} and {y1, . . . , yn} are bases of
CCn. Let p ∈ CCn be orthogonal to all the zαβ’s. Then, denoting P := diag(p1, . . . , pn),
there holds xα⊥Pyβ for every pair (α, β). There follows that Pyβ = 0 and therefore
P = 0n, or p = 0. This means that the zαβ’s span CCn, so that A ◦ B is positive
definite.

(d) Here is an example, with p = q = 2 < n = 3 :

xα = yα =


 1

aα

a2
α


 .

There are three distinct vectors zαβ and their determinant is of Vandermonde type.
It is non zero whenever ab(b2 − a2) �= 0.

22. (a) The implication is trivial for j = 1 or 2. Let us assume P3 and let B be a principal
sub-matrix of A, with a real eigenvalue µ associated with an eigenvector y. Complet-
ing y with null entries, we obtain a non-zero vector x ∈ IRn, for which Ax − µx has
zero entries along the lines kept in B. Therefore (Ax − µx)lxl = 0 for every l. Let
D be a non-negative diagonal matrix such that (Ax, Dx) > 0. Then (Ax − µx, Dx)
vanishes, being a sum of zeroes. Thus µ(x, Dx) > 0, which implies µ > 0.
At last, let us assume P4. With the notation above, the spectrum of B consists in
positive real eigenvalues and non-real eigenvalues which come by complex conjugate
pairs. Hence their product det B is positive.

(b) The coefficients of the polynomial D 	→ det(A + D) are principal minors of A,
thus positive numbers. This implies that the polynomial achieves positive values for
non-negative data.

(c) Let x �= 0 be given and y := Ax. Let J be the (non-void) set of indices of the non-zero
components of x. We denote by x(J), y(J), A(J) the vectors and matrix obtained by
preserving only rows and columns of indices in J . In particular y(J) = A(J)x(J). If
ykxk were non-positive for every k, there would exist a non-negative diagonal matrix
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∆ such that y(J) = −∆x(J). Hence, there would hold (A(J) + ∆)x(J) = 0, hence
det(A(J) + ∆) = 0. This contradicts the former result, applied to A(J).
Finally, P5 implies P1, so that the five properties are equivalent to each other.

4 Norms

1. From Mx = (b, x)a and Proposition 4.1.2, we have ‖M‖p = ‖a‖p‖b‖p′ . Let us write that
‖M‖p = 1 for p = 1, 2, ∞ :

1 = ‖a‖2
2‖b‖2

2 ≤ ‖a‖1‖a‖∞‖b‖1‖b‖∞ = 1.

Therefore, ‖b‖2
2 = ‖b‖1‖b‖∞ and ‖a‖2

2 = ‖a‖1‖a‖∞. This means that, for every index
i, |ai| equals either ‖a‖∞ or zero. Likewise, |bi| equals either ‖b‖∞ or zero. Then 1 =
l‖a‖∞‖b‖∞ = m‖a‖∞‖b‖∞, where l, m are the numbers of non-zero components of a, b.
Hence l = m.

Conversely, let a, b and l be given such that l components of a have moduli ‖a‖∞ and l
components of b have moduli ‖b‖∞. Assume also that l‖a‖∞‖b‖∞ = 1. Then ‖M‖p = 1
for every p.

2. Let J be the set of indices such that xiyi �= 0. Let x(J) and y(J) denote the vector
obtained by keeping only the components with index in J . Then |(x, y)| = |(x(J), y(J))| ≤
‖x(J)‖p‖y(J)‖p′ ≤ ‖x‖p‖y‖p′ . Let us assume that |(x, y)| = ‖x‖p‖y‖p′ . Then both
inequalities above must be equalities. On a first hand this means xi = 0 (if p < ∞) and
yi = 0 (if p > 1) for every i in the complement of J . On the other hand, if p < ∞, there
exists a non-zero complex number λ such that yi = λxi|xi|p−2 for every i ∈ J . If p > 1,
we write instead that there is a non-zero µ such that xi = µyi|yi|p

′−2 for every i ∈ J .

We turn to the equality case in Minkowski inequality. If p ∈ (0, ∞), this is equivalent
to the colinearity of x and y. If p = 1, it is equivalent to the fact that yi/xi belongs to
IR+ ∪ {∞} for every i. If p = ∞, it is equivalent to the existence of an index i such that
xi and yi have maximal moduli, and yi/xi belongs to IR+ ∪ {∞}.

3. Just write
‖x‖∞ ≤ ‖x‖p ≤ ‖x‖∞n1/p

and let p tend to +∞.

4. (a) See exercise 2.

(b) Permutations of coordinates are isometries of (CCn, ‖ · ‖p) and therefore the induced
norm is invariant under such permutations. Then Corollary 5.5.1 asserts that the
non-trivial convex set made of bi-stochastic matrices is contained in the unit sphere
for this norm, which is thus not strictly convex.
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5. (a) Let x, y ∈ CCn, λ ∈ CC be given. For every ε > 0, there exists decompositions
x =

∑
l αlx

l and y =
∑

k βky
k such that

∑
l

|αl|N(xl) < N1(x) + ε,
∑
k

|βk|N(yk) < N1(y) + ε.

Taking the union of the xl’s and the yk’s, we may assume that the sets of indices is
the same and xl = yl. Then x + y =

∑
l(αl + βl)xl and λx =

∑
l(λαl)xl, so that

N1(x + y) ≤ N1(x) + N1(y) + 2ε, N1(λx) ≤ |λ|(N1(x) + ε).

Letting ε → 0+, we have

N1(x + y) ≤ N1(x) + N1(y), N1(λx) ≤ |λ|N1(x).

If x ∈ IRn, the decomposition x = x gives N1(x) ≤ N(x). On an other hand, for
every decomposition of x, we have x =

∑
l(�αl)xl and, since N is a norm over IRn,

N(x) ≤
∑

l

|�αl|N(xl) ≤
∑

l

|αl|N(xl).

Taking the infimum, there follows N(x) ≤ N1(x), that is N(x) = N1(x). Last,
the same computation shows that, for every vector x with real part y, there holds
N1(y) ≤ N1(x). Hence, if N1(x) = 0, there holds y = 0; likewise, the imaginary part
vanishes and x = 0. Therefore, N1 is a norm.

(b) Each map x 	→ [eiθx] is a norm on CCn, viewed as an IR-vector space. Hence N2 is such
one too, as their average. On the other hand, N2(eiαx) = N2(x) for every real number
α. Hence N2 is a CC-norm. If x ∈ IRn, then [eiθx] = N(x)

√
cos2 θ + sin2 θ = N(x)

gives N2(x) = N(x).

(c) For every decomposition of x, we have

N2(x) ≤
∑

l

|αl|N2(xl) =
∑

l

|αl|N(xl).

Taking the infimum gives N2 ≤ N1. Nota : this fact is true for every norm of CCn

extending N . In other words, N1 is the largest such norm.

(d) The decomposition on the canonical basis gives immediately N1(x) ≤ ‖x‖1. Since
‖ · ‖1 is a norm on CCn which extends its restriction to IRn, the maximality property
mentionned above shows that ‖x‖1 ≤ N1(x). Hence the equality.
Finally, we compute N2 for x = (1, i)T . The real and imaginary parts of eiθx
are (cos θ, − sin θ)T and (sin θ, cos θ)T , each one of norm 1. Thus [eiθx] =

√
2 and

N2(x) =
√

2 < N1(x) = ‖x‖1 = 2.

6. Since a supremum over CCn \ {0} is larger than or equal to the supremum of the same
quantity over IRn \ {0}, and since N1 and N coincide on IRn, there holds N1(M) ≥
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N(M) (this is actually true for every extension of the norm N). Conversely, given a
decomposition of a vector x ∈ CCn, we have

N1(Mx) = N1

(∑
l

αlMxl

)
≤
∑

l

|αl|N1(Mxl) =
∑

l

|αl|N(Mxl) ≤ N(M)
∑

l

|αl|N(xl).

Taking the infimum over all decompositions of x gives N1(Mx) ≤ N(M)N1(x). Taking
the supremum over the unit ball gives N1(M) ≤ N(M).

Let p, q, θ be as in Theorem 4.3.1, and let M be given in Mn(IR). To distinguish the p-
norm of M in Mn(IR) from that in Mn(CC), we denote ‖M‖p and ‖MCC‖p respectively. By
the same argument as above, one has ‖MCC‖p ≥ ‖M‖p. On the other hand, denoting N1,p

the N1-norm constructed from ‖ ·‖p, and recalling its maximality among the norms which
extend ‖ · ‖p, we have ‖MCC‖p ≤ N1,p(M). Since M has real entries, ‖M‖p = N1,p(M) and
hence ‖MCC‖p = ‖M‖p, and similarly with q, r instead of p. Applying now Theorem 4.3.1
to MCC , we obtain the inequality

‖M‖r ≤ ‖M‖θ
p‖M‖1−θ

q .

7. Use Proposition 4.4.1 and the fact that ‖An‖1/n ≤ ‖A‖.

8. Since D and N commutte,

(D + N)m =
n−1∑
k=0

(
m
k

)
NkDm−k.

Using triangle inequality, and a bound of the norms of matrices N, . . . , Nn−1 as well as
of D, . . . , Dn−1, we obtain

‖(D + N)m‖ ≤ c0m
n‖Dm−n+1‖.

Taking the m-th root and letting m tend towards +∞, we obtain ρ(D + N) ≤ ρ(D).
Exchanging the rôles of D and D + N , we also have the opposite inequality.

9. If λ = 0, then ‖B‖ = 0 thus B = 0, which proves the desired property. Otherwise, let
us assume that X belongs to the range of B − λ. Then there is a vector Y such that
(B − λ)Y = X. For every scalar k ∈ IN , we have BkY = λkY + kλk−1X, from which
there comes

‖λkY + kλk−1X‖ ≤ |λ|k‖Y ‖.

Dividing by |λ|k and letting k tend to +∞, we obtain a contradiction. We conclude that
ker(B−λ)2 = ker(B−λ), meaning that the Jordan component associated to λ is diagonal.

10. By assumption, there exists P ∈ GLn(CC) such that PBP−1 = diag(B1, B2) =: D, where
B1 is diagonal and ρ(B2) < ρ(B). To this block decomposition corresponds a factorization
CCn = (CCp ×{0})+ ({0}×CCn−p). obviously, there is a norm on CCp for which the induced
norm of B1 equals ρ(B1), which is nothing but ρ(B). On an other hand, Householder’s
Theorem gives a norm on CCn−p for which the induced norm of B2 is less than ρ(B).
Summing both norms, we obtain a norm on CCn which solves our problem.
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11. (a) From Proposition 4.4.1, the series is bounded by a convergent series
∑

k cκk with
(ρ(A) + ε)−1ρ(A) < κ < 1.

(b) Each term of the sum is a semi-norm, the first one being a norm. Thus the sum is
a norm.

(c) There holds
‖Ax‖ = (ρ(A) + ε)(‖x‖ − N(x)).

12. (a) The induced norm that we have denoted by ‖ · ‖2, and the Frobenius norm, since
they are the square roots of the spectral radius and the trace of A∗A. If U, V are
unitary, then (UAV )∗(UAV ) = V ∗A∗AV , which is similar to A∗A and thus has the
same spectrum.

(b) Let ‖ · ‖ be a unitary invariant norm and let QH be the polar decomposition of A.
Then ‖A‖ = ‖H‖. Moreover, H is unitarily diagonalizable. Hence ‖A‖ depends
only on the eigenvalues s1, . . . , sn of H, through the formula

‖A‖ = ‖diag(s1, . . . , sn)‖.

13. (a) The (k, l)-entry of U∗jAU j is aklω
j(l−k). We now use the formula

1
n

n−1∑
j=0

ωj(l−k) = δl
k.

Since ‖U∗jAU j‖ = ‖A‖, the triangle inequality gives ‖D(A)‖ ≤ ‖A‖.

(b) Let P be the permutation matrix associated to σ. It is unitary and Aσ = D(P−1AP ).
Hence ‖Aσ‖ ≤ ‖P−1AP‖ = ‖A‖.
By assumption, ‖P‖ = ‖In‖ for every permutation matrix. Hence Birkhoff’s Theo-
rem and the convexity of the norm give ‖M‖ ≤ ‖In‖ for every bi-stochastic matrix
M .

(c) Similar to 13a).

(d) Idem.

(e) Just because Tr(A) = D−r(A) + · · · + Dr(A).

(f)

‖Tr(A)‖ ≤ 1
2π

∫ 2π

0
|dp(θ)| ‖UθAU∗

θ ‖ dθ =
‖A‖
2π

∫ 2π

0
|dp(θ)| dθ.

(g) We have B = T2n+1(C), where

C :=
(

0 A∗

A 0

)
.

Hence ‖B‖2 ≤ Ln‖C‖2 (this would be true for every unitary invariant norm). Last,
C∗C = diag(A∗A, AA∗) has the same spectrum as A∗A and hence ‖C‖2 = ‖A‖2.
Similarly, ‖B‖2 = ‖∆(A)‖2. Nota : the same argument (but here ‖C‖S =

√
2‖A‖S)

works for the Schur-Frobenius norm.
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(h) Same method for ‖∆0(A)‖2 ≤ Ln−1‖A‖2.

14. (a) We expand
(B∗

F BF )m =
∑

i(1),...,i(2m)∈F

A∗
i(1)Ai(2) · · ·A∗

i(2m−1)Ai(2m).

From the assumption,

‖A∗
i(1)Ai(2) · · ·A∗

i(2m−1)Ai(2m)‖ ≤ γ(i(1)−i(2))2γ(i(3)−i(4))2 · · · γ(i(2m−1)−i(2m))2.

On an other hand, using ‖Aj‖2 = ρ(A∗
jAj) ≤ ‖A∗

jAj‖ ≤ γ(0)2, we also have

‖A∗
i(1)Ai(2) · · ·A∗

i(2m−1)Ai(2m)‖ ≤ γ(0)2γ(i(2) − i(3))2 · · · γ(i(2m − 2) − i(2m − 1))2.

Taking the geometric average of both bounds, there comes

‖A∗
i(1)Ai(2) · · ·A∗

i(2m−1)Ai(2m)‖ ≤ γ(0)γ(i(1) − i(2)) · · · γ(i(2m − 1) − i(2m)).

We apply the triangle inequality, and then sum over i(1), then other i(2), . . ., up to
i(2m − 1). We obtain

‖(B∗
F BF )m‖ ≤ γ(0)‖γ‖2m−1

1

∑
i(m)∈F

1,

which gives the desired result.

(b) Again, ‖BF ‖2m = ‖B∗
F BF ‖m = ‖(B∗

F BF )m‖ since B∗
F BF is hermitian. Hence,

‖BF ‖ ≤ (card F )1/2m‖γ‖1.

One concludes by letting m tend towards +∞.

(c) Let x, y be given and aj(x, y) := yT Ajx. From the previous question, the sum∣∣∣∑j∈F aj

∣∣∣ is bounded independently of F . This ensures that the series
∑

ZZ aj(x, y)
converges absolutely, thus converges. Obviously, its sum a(x, y) is a bilinear form,
thus defines a matrix A through yT Ax = a(x, y). At last, |a(x, y)| ≤ ‖x‖ ‖y‖ ‖γ‖1

gives ‖A‖ ≤ ‖γ‖1.

(d) Applying the former result to vectors x, y chosen in the canonical basis shows that
each entry in the series

∑
j Aj is absolutely summable. This tells that the series∑

ZZ Aj is normally convergent. Nota : Cotlar’s Lemma actually holds when CCn is
replaced by a Hilbert space. Then Aj are bounded operators. The above procedure
is a way to define the sum

∑
j Aj as a bounded operator. An important application,

in the theory of pseudo-differential operators, is the fact that symbols of order zero
give rise to bounded operators on L2(IRm). Notice however that, due to the infinite
dimension, the sum does not converge normally in general.
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15. (a) For ε small enough, there holds

‖A‖∞ = max
i


1 − εbii + ε

∑
j �=i

|bij|

 .

Therefore, the desired inequality holds if and only if

∀i, ω +
∑
j �=i

|bij| ≤ bii.

This tells that B is strictly diagonally dominant. Conversely, let B be strictly
diagonally dominant. Then there exist an ω > 0 such that the previous inequality
holds for every index i. Then ‖In − εB‖∞ ≤ 1 − ωε for every ε > 0 less then
1/ maxi bii.

(b) Since ‖ · ‖1 is the dual norm of ‖ · ‖∞, ‖In − εB‖1 ≤ 1 − ωε holds if and only if
‖In − εBT ‖∞ ≤ 1 − ωε. From the previous result this characterizes matrices B such
that BT is strictly diagonally dominant. In other words,

∀j, bjj >
∑
i�=j

|bij|.

(c) We have

‖In − εB‖2 = sup
X �=0

∣∣∣∣∣1 − ε
XT BX

‖X‖2

∣∣∣∣∣ .
Also, XT BX = 1

2X
T (BT + B)X. The fraction is bounded by above (by ‖B‖2). If

BT + B is positive definite, it is also bounded by below by a positive constant ω,
and then the desired inequality holds for 0 < ε < 1/‖B‖2. Otherwise, there exists a
vector X such that XT BX ≤ 0 and thus ‖In − εB‖2 ≥ 1 for every positive ε.

16. (a) Let λ be an eigenvalue. If λ is one of the diagonal entries, then λ ∈ B(A) trivially.
Otherwise, let X be an eigenvector ; it admits at least two non-zero components.
Let xi, xj be two components of larger moduli. The let us write

(λ − aii)xi =
∑
k �=i

aikxk, (λ − ajj)xj =
∑
k �=j

ajkxk.

Taking the moduli, we obtain

|λ − aii| |xi| ≤ ri(A)|xj|, |λ − ajj| |xj| ≤ rj(A)|xi|.

Multiplying both inequalities, and then dividing by |xi| |xj|, we obtain that λ ∈
Bij(A).

(b) Obviously, Bij(A) is contained in the union of Geschgöring discs Di(A) ∪ Dj(A).
Hence B(A) is a subset of the Geschgöring domain. In general, the inclusion is strict.
For let assume that both sets are equal and let z be a boundary point. Therefore, z

22



is on the boundary of discs Di(A) for i ∈ I, and is exterior to the others. Since there
exists a pair i, j of distinct indices for which z ∈ Bij(A), one immediately finds that
i, j ∈ I. Therefore, each point of ∂G belongs to at least two Gerschgöring discs. In
other words, the Gerschgöring domain is covered by discs which occur twice in the
list of Gerschgöring discs. A very rare event.

(c) There is only one pair of distinct indices i, j and we have |∑k �=i aikxk| = ri(A)|xj|,
|∑k �=j ajkxk| = rj(A)|xi|. Hence (|λ−a11| |λ−a22|−r1(A)r2(A))|x1| |x2| = 0. Notice
that if λ = aii, then ri = 0 and B(A) is just the union of two points.

17. (a) We only have to remark that, if ‖ · ‖ is a hermitian norm, then x 	→ ‖Px‖ is another
one, for every invertible matrix P .

(b) Let us assume that ρ(B) < 1. We just have shown that there exists a hermitian norm,
say x 	→ x∗Ax with A ∈ HDP n, such that ‖B‖ < 1. In other words, x∗B∗ABx <
x∗Ax for every non-zero vector, that is A − B∗AB ∈ HDP n. Conversely, let
A ∈ HDP n be such that A − B∗AB ∈ HDP n. Then ‖B‖ < 1 for the norm
induced by x 	→ x∗Ax .

18. (a) The assumptions imply that the discs Dj are pairwise disjoint. Then Theorem 4.5.1
implies that each disc contains exactly one eigenvalue. In particular, the eigenvalues
are simple. We shall name hereafter λi the eigenvalue belonging in Di.

(b) Just remark that Aρ is obtained from A by conjugating by P = diag(. . . , 1, δ, 1, . . .).

(c) La borne finale est 2nε2/δ. Obviously, Aρ has the same diagonal entries as A,
including aii. But ri(Aρ) = ρri(A) ≤ ρε(n − 1), while rj(Aρ) ≤ ε(n − 2 + 1/ρ)
otherwise. Since ρ = 2ε/δ < 1, we have for every index j �= i,

ri(Aρ) + rj(Aρ) ≤ nε(ρ + 1) +
δ

2
≤ 2nε +

δ

2
< δ ≤ |aii − ajj|.

Therefore the i-th Gerschgöring disc of Aρ is disjoint from the others. By Theorem
4.5.1, it contains a unique eigenvalue of Aρ, that is of A. Obviously it is λi. We
deduce that

|λi − aii| ≤ ri(Aρ) ≤ nερ =
nε2

δ
.

Nota : this result is interesting in its own, since it tells that an O(ε) perturbation of
the off-diagonal entries of a diagonal matrix is responsible for an O(ε2) perturbation
of the eigenvalues, when the diagonal entries are pairwise distinct.

19. We begin with the diagonal case (S = In, A = D). Given an eigenvalue µ of D+E, either
it is one of the dj’s, or In − (D − µ)−1E is singular. The latter case implies (Proposition
4.1.5) ‖(D − µ)−1E‖ ≥ 1 and therefore, in both cases, minj |µ − dj| ≤ ‖E‖.

In the general case, the spectrum of A + E equals the one of D + S−1ES and we just
have to apply the previous result.
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20. Writing |aijxj| = |aij|1/2|aij|1/2|xj| and using Cauchy-Schwarz inequality, we have

‖Ax‖2
2 =

∑
i

∣∣∣∣∣∣
∑
j

aijxj

∣∣∣∣∣∣
2

≤
∑

i


∑

j

|aij|



∑

j

|xj|2|aij|

 ≤ ‖A‖∞

∑
i,j

|xj|2|aij|

≤ ‖A‖∞‖x‖2
∑

i

max
j

|aij| = ‖A‖1‖A‖∞‖x‖2.

21. The equality is true for every diagonal matrix. Also, both ρ and ‖·‖2 are unitary invariant.
Since normal matrices are unitary similar to diagonal matrices, the equality holds true
for every normal matrix.

22. (a) The numbers R, S are achieved ; for instance, R is the supremum of N1 (continuous)
on the sphere (a compact set) of N2. Let thus x, y be such that

N1(y) = N2(x) = 1, N1(x) = R, N2(y) = S.

From Hahn-Banach Theorem, there exists a linear form � on CCn, such that |�(w)| ≤
N2(w) for every vector, while �(y) = S. This form may be represented as �(w) = z∗w
for some vector z. Let B denote the matrix xz∗. Then N2(Bw) ≤ N2(w) for every
w and N2(By) = S = N2(x). Thus N2(B) = 1. On the other hand, N1(By) =
SN1(x) = RS gives N1(B) ≥ RS. Hence (notice that, as above, the supremum is
achieved)

max
A�=0

N1(A)
N2(A)

≥ RS.

Next, for every vector w and every matrix A, we have

N1(Aw) ≤ RN2(Aw) ≤ RN2(A)N2(w) ≤ RSN1(w)N2(A)

and therefore
max
A�=0

N1(A)
N2(A)

≤ RS.

This shows the first equality. Exchanging the rôles of N1 and N2, we also have the
second one.

(b) If N1 = N2, the previous result gives RS = 1. Applying the definitions of R, S, we
immediately obtain that N2/N1 is constant.

(c) If N1 ≤ N2, we have RS ≤ 1. But, RS being larger than or equal to 1 by definition,
we again have RS = 1, with the same conclusion.

23. (a) Obvious.

(b) From
‖Ax‖y = ‖Axy∗‖ ≤ ‖A‖ ‖xy∗‖ = ‖A‖ ‖x‖y.
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(c) If ‖ · ‖ is induced and if larger than or equal to an algebra norm ‖ · ‖1, our last
result gives an induced norm N , less than or equal to both. Thanks to exercise 22,
N = ‖ · ‖ and thus ‖ · ‖1 = ‖ · ‖. Hence ‖ · ‖ is minimal.
If ‖ · ‖ is a minimal algebra norm, the minimality and the inequality Ny ≤ ‖ · ‖ show
that Ny = ‖ · ‖.
At last, we assume that Ny = ‖ · ‖ holds true for every y �= 0. Then ‖ · ‖ is an
induced norm since Ny is such one.

24. (a) From the previous exercise, we have Ny = ‖ · ‖ = Nz. Hence, Exercise 22 shows that
‖ · ‖y/‖ · ‖z is constant.

(b) Let y, t be given. From the previous question, there exists a non-zero constant
such that, for every x, z, there holds ‖xy∗‖ = c‖xt∗‖. The desired equality follows
immediately.

25. This matrix norm is unitarily invariant. Since hermitian matrices are unitary diagonaliz-
able, we see that, up to a unitarily conjugation of M , it is enough to prove the inequality
when H = D is a diagonal matrix with positive real diagonal entries. Next, replacing
DMD by M , we are led to proving the inequality

‖M‖2 ≤
∥∥∥∥12(DMD−1 + D−1MD)

∥∥∥∥
2
.

Last, factorizing D as a product of diagonal matrices where all but one diagonal entries
equal 1, it is enough to prove the inequality when D = diag(d, 1, . . . , 1). The matrix M(d)
in the right hand side depends only on t := (d + 1/d)/2 ≥ 1, in the following way :

M(d) =
(

m tx∗

ty M ′

)
=: N(t).

Since t 	→ N(t) is affine, the function φ(t) := ‖N(t)‖2 is convex on IR+. But

N(t)
(

1
0

)
=
(

m
ty

)
, N(t)

(
0
Y

)
=
(

x∗Y
M ′Y

)
,

show that φ(t) ≥ max(|m|, ‖M ′‖2) = ‖N(0)‖2 = φ(0). Hence the convex function φ is
non-decreasing on IR+. In particular, when t = (d + 1/d)/2 (which is not less than 1),
‖M‖2 = φ(1) ≤ φ(t) gives the desired inequality.

26. (a) Let M be an extremal point of B. From Theorem 7.7.1 (singular value decomposi-
tion), there exist two orthogonal matrices U, V and a non-negative diagonal matrix
D such that M = UDV . Since B is invariant under the left and right multiplication
by orthogonal matrices, which are linear transformations, D is an extreme point of
B too. Since diag(a1, a2) ∈ B if and only if |a1|, |a2| ≤ 1, the extremality gives
D = In, which means that M is orthogonal.
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Conversely, the set of extreme points of B is non-void (because B is compact, Krein-
Milman Theorem) and thus contains at least one orthogonal matrix. On another
hand, it is invariant under the (say, left) action of O2(IR), since B is so. Hence it
contains O2(IR). We have thus proven that it equals O2(IR).

(b) Again, Σ is invariant under the left and right action of O2(IR). Hence, every point
M in Σ reads PDQ where D ∈ Σ is diagonal. Since ‖D‖2 = maxi |dii|, we may
always assume a form D = diag(a, 1) with a ∈ [0, 1].

(c) A diagonal matrix D = diag(a, 1) belonging to Σ is such that a ∈ [−1, 1]. It is thus
an element of the segment [I2, S], where S is the symmetry diag(−1, 1). The image
of this segment through D 	→ PDQ, where P, Q are given in O2(IR), is a segment
whose one vertex is the rotation ±PQ and the other one is the symmetry ∓PSQ,
where ±1 = det P det Q.
Conversely, let [r, s] be a segment with r ∈ R and s ∈ S. The left multiplication
by r−1 sends it onto [I2, s

′], where s′ is an other symmetry. Let x �= 0 be such that
s′x = x. Then every point in the segment fixes x, and therefore has norm larger than
or equal to 1. The converse inequality follows from convexity. Hence [I2, s

′] ⊂ Σ and
similarly [r, s] ⊂ Σ.

(d) Since [r′, s′] can be sent, through left and right orthogonal multiplications, onto
[I2, S], we may assume that r′ = I2 and s′ = S. So let [r, s] contain some point of
the form D = diag(a, 1). Then the (2, 2)-entry of either r or s is not less than 1.
Since the rows and columns of the corresponding matrix have norm 1, this entry is
actually 1 and the off-diagonal entries are zeroes. Hence it has the same diagonal
form, which shows that either r = I2 or s = S. Hence, two distinct segments have at
most a vertex in common. In other words, distinct open segments do not intersect.

(e) An orthogonal symmetry has the form s = I2 − 2xxT for some unitary vector x.
Since ‖xxT ‖2 = 1, we deduce that d(I2, s) = 2. Next, given the rotation r of angle
θ, I2 − r equals 2 sin(θ/2) times an other rotation. Hence d(I2, r) = 2| sin(θ/2)| is
less than 2 except in the case r = −I2. Last S − s is also 2 sin(θ/2) times an other
symmetry, for a suitable θ. We again have d(S, s) ≤ 2 with equality if and only if
s = −S. Using orthogonal invariance of the distance, we see that the equality in
d(r, r′) ≤ 2 or d(s, s′) ≤ 2 occurs if and only if r′ = −r or s′ = −s, respectively ;
likewise, there always holds d(r, s) = 2.
Let M, N ∈ Σ be such that d(M, N) = 2. From question c), there exist two seg-
ments such that M ∈ [r, s] and N ∈ [r′, s′]. Since we already treated the case
of rotations and symmetries, we may assume that M ∈ (r, s) and N ∈ (r′, s′).
Since d(N, r), d(N, s) ≤ 2, convexity of the d(N, ·) implies d(N, r) = d(N, s) = 2.
Therefore, convexity of the d(r, ·) implies d(r, r′) = d(r, s′) = 2 ; we obtain likewise
d(s, s′) = 2. Hence r′ = −r and s′ = −s.
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5 Non-negative matrices

1. (a) By assumption,
∑

i mij = 1 for every j, and maxj
∑

i |mij| ≤ 1. Obviously, this
implies mij ≥ 0.

(b) By assumption,
∑

i mij = 1 for every j. Since mij ≥ 0, this implies
∑

i |mij| = 1 and
in particular ‖M‖1 = 1.

(c) No, since 0n satisfies P1, P3 but not P2. Even the stronger assumption ‖M‖1 = 1,
together with P1, do not imply P2 ; see for instance M := diag(1, 0).

2. (a) In fact, K is the intersection of ker(A − ρ(A)In) with the simplex defined by y ≥ 0
and

∑
j yj = 1. Thus it is a compact convex set.

(b) If dim ker(A − ρ(A)In) ≥ 2, then let consider an affine eigenline L passing through
x. Then K ∩ L is a segment, where x is an interior point as well as every positive
points. Let y be a boundary point of K ∩ L. Then y ≥ 0 without being positive : it
has at least a zero component. But this contradicts Lemma 5.3.2.

(c) If the multiplicity of ρ(A) were larger than 1, there would exist (from the previous
result) a vector z such that Az − ρ(A)z = x. For sufficiently large a ∈ IR, the vector
y := z+ax is positive and satisfiesAy−ρ(A)y = x too. In particular, Ay−ρ(A)y > 0.
This contradicts the maximality of ρ(A), in view of Lemma 5.3.2.

3. We already know that M is invertible (Corollary 4.5.1). Let b ≥ 0 be given and x be the
solution of Mx = b. Let xi be its minimal component. Then

miixi = bi −
∑
j �=i

mijxj ≥
∑
j �=i

|mij|xj ≥ xi

∑
j �=i

|mij|.

If M is strictly diagonally dominant, we immediately obtain xi ≥ 0. If M is strongly
diagonally dominant and irreducible, and if xi < 0, then mii =

∑
j �=i |mij|, and mij = 0

whenever xj > xi. Then the set I of indices i of minimal components, together with its
complement J , make a partition, such that mij = 0 for every (i, j) ∈ I ×J . Irreducibility
implies then J = ∅. Thus mii =

∑
j �=i |mij| for every i, which contradicts the assumption.

Hence x ≥ 0. Proposition 5.1.1 then tells that M−1 ≥ 0.

4. (a) By assumption, B + ε admits a positive eigenvector xε associated to the spectral
radius. One may assume that ‖xε‖1 = 1, that is

∑
j xε

j = 1. Since the eigenvalues
are continuous functions of the entries, the spectral radius is, too. We may extract
a converging sequence of xε as ε tends to zero. Its limit is a non-negative non-zero
eigenvector of B, associated to the limit ρ(B).

(b) The series
∑

k(λ−1B)k converges whenever ρ(λ−1B) < 1, that is |λ| > ρ(B), and its
sum is (In − λ−1B)−1. Hence the formula. Thus the function h reads as

h(λ) = λ − a −
∞∑
0

λ−kξT Bk−1η.
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Since ξ, B and η are non-negative, each term in this expression is non-decreasing on
(ρ(B), +∞). The first one being increasing, h is so. More precisely, h′ > 0. Likewise,
x(λ) > 0 (the term with k = 1 is positive).

(c) This is Schur’s formula.

(d) Zeroes of PA in (ρ(B), +∞) are those of h. Since h is strictly increasing and even
more, its derivative is strictly positive, we only have to prove that it vanishes on
(ρ(B), +∞). Also, the result does not depend on a, so that we must prove that the
range of h is the whole line. Since we have (easy) h(+∞) = +∞, there remains to
show that the decreasing function

g(λ) := ξT (λI − B)−1η.

tends to +∞ as λ decays towards ρ(B). This is the difficult part, that we are going
to prove now.
First of all, up to a conjugation by a permutation matrix, we may assume that
B is lower block-triangular, with at most two diagonal blocks B0, B1, and where
ρ(B0) ≤ ρ(B), while B1 is irreducible and ρ(B1) = ρ(B). The lower off-diagonal
block is denoted by B10. In this decomposition, B1 is always present, but B0 may
be absent (it is provided B itself is irreducible). We decompose η and ξ accordingly.
The irreducibility of A implies the following properties :

η0 �= 0, (η1, B10) �= 0, (ξ0, B10) �= 0, ξ1 �= 0.

Let now define R(λ) := (λI − B)−1. Using Ri(λ) := (λI − Bi)−1, we have

R(λ) =
(

R0(λ) 0
R1(λ)B10R0(λ) R0(λ)

)
.

Then there comes

g(λ) ≥
1∑

i=0
ξT
i Rii(λ)ηi + ξT

1 R1(λ)B10R0(λ)η0.(1)

We remark that, as λ → ρ(B) + 0, there holds

ξT
1 R1(λ) ∼ 1

λ − ρ(B)
Y T

1 ,

where Y1 is a positive eigenvector of BT
1 .

We now argue by absurdum. Assuming that g is bounded by above near ρ(B), we
obtain that each terms, in the sum of the right-hand of (1) are bounded. From the
asymptotics above, we derive on the one hand that η1 = 0. On the other hand,
the monotonicity of B10R0(λ)η0 implies that the functionλ 	→ ηT

1 R1(λ)B10R0(σ)η0 is
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bounded on (ρ(B), +∞) for every parameter σ > ρ(B). Using again the asymptotics
above, we derive the identity B10R0(λ)η0 = 0 for all λ > ρ(B). In other words,

B10B
k
0η0 = 0, ∀k ≥ 0.(2)

We now see that, thanks to (2), and because of η1 = 0, the lower left block in
the block decomposition of every power of A vanishes. In particular, the lower
left block of (I + A)n−1 vanishes, contradicting Proposition 5.1.2 and therefore the
irreducibility of A. Hence g is unbounded near ρ(B), meaning that H(ρ(B)) = −∞.
Now, applying the intermediate value Theorem, we conclude that h vanishes at some
point in (ρ(B), +∞).

(e) Since AT is non-negative and irreducible and has λ0 in its spectrum, and since
ρ(BT ) = ρ(B), this eigenvalue is the only one of AT in the interval (ρ(B), +∞), and
is associated to a positive eigenvector �. We therefore have lT (A − λ0In) = 0.

(f) From AX = µX and triangle inequality, we obtain (A − |µ|In)|X| ≥ 0. Multiplying
by �T gives (λ0 − |µ|)�T |X| ≥ 0. Since X is non-zero and � > 0, we have �T |X| > 0,
hence λ0 ≥ |µ|, which means that λ0 = ρ(A).

5. (a) For 0 < h maxi aii < 1, the matrix In − hA is strictly diagonally dominant and
its off-diagonal entries are non-positive. From Exercise 3, it is non-singular and its
inverse is non-negative.

(b) Let t > 0 be given. For m large enough, R(t/m; A) ≥ 0 and thus R(t/m; A)m ≥ 0.
Passing to the limit, Trotter’s formula gives exp tA ≥ 0.

(c) Obvious from the last result.
(d) Since the spectrum of exp tA is the image of that of A under the map µ 	→ etµ, the

spectral radius of exp tA is the number etσ. Applying Perron-Frobenius to exp tA,
we obtain that tσ + 2ikπ is an eigenvalue of tA for a suitable integer k. In other
words, σ + 2ikπ/t ∈ Sp(A). Letting t varying, and using the finiteness of Sp(A), we
have easily σ ∈ Sp(A).

6. (a) From
|λ + τ |2 = τ 2 + 2τ�λ + |λ|2,

we see that |λ+τ | is the largest, for large values of τ , when λ is one of the eigenvalues
of maximal real part, and when |λ| is maximal among these. Hence ρ(A + τIn) =
|µ + τ | for large τ > 0.

(b) We weak form of Perron-Frobenius’ Theorem (Theorem 5.2.1) tells us that |µ + τ |
is an eigenvalue of A + τIn, for τ > 0 large enough. Hence |µ + τ | − τ ∈ SpA. Since

|µ + τ | − τ = �µ +
1
2τ

(�µ)2 + O
( 1

τ 2

)
,

we deduce that |µ + τ | = τ + �µ for τ large enough and thus �µ = 0. Therefore
µ = σ. In other words, σ ∈ SpA. From its definition, σ is not less than ρ(A). Since
ρ(A) is the largest real eigenvalue (from Perron-Frobenius’ Theorem), and σ is itself
an eigenvalue of A, we deduce that σ = ρ(A).

29



7. For τ > 0 large enough, we have B + τIn > 0. By Perron-Frobenius, we deduce that
B admits a real eigenvalue µ, associated to a positive eigenvector X. Let us define
D := diag(x1, . . . , xn) and B′ := D−1BD. Then B′e = µe, where e = (1, . . . , 1)T . By
assumption, µ < 0. Now, there holds

∑
j

b′
ij = µ < 0, ∀i.

8. (a) Let (X, Y )T be a positive eigenvector, associated to λ. There holds (B − λ)X = 0
and (B − λ)Y = −X. For small positive a, the vector Z := X − aY is positive,
while (B − λ)Z = aX > 0. Thus there is a µ, larger than λ, such that BZ ≥ µZ.
Following the proof of Theorem 5.2.1, we obtain ρ(B) ≥ µ, that is ρ(B) > λ.

(b) Perron-Frobenius’ Theorem tells that ρ(A) (which is nothing but ρ(B)), is an eigen-
value of AT , associated to a non-negative eigenvector �. Then

0 = �T (A − λIn)
(

X
Y

)
= (ρ(B) − λ)�T

(
X
Y

)

yields a contradiction, since both factors are positive.

9. (a) Let µ1, . . . , µp these simple eigenvalues of modulus 1, and CCxj the corresponding
eigenspaces. Denoting by �j the corresponding eigenvectors of B∗, the orthogonal F
to {�1, . . . , �p} is invariant under B, and CCn is the direct sum of F and G := ⊕jCCxj.
The restriction of Bm to G is defined by

Bm
∑
j

ajx
j =

∑
j

µm
j ajx

j,

and is therefore bounded. Since the spectral radius of the restriction of B to F is
less than one, Householder’s Theorem implies that its m-th power tends to zero as
m → +∞. Hence Bm remains bounded as m → +∞.

(b) i. We split IRn = IRx ⊕ y⊥, where both factors are invariant subspaces for M .
Since they are also invariant for L, they are for B as well. On IRx, B vanishes,
while it equals to M on y⊥. Since 1 is a simple eigenvalue of M , it is not an
eigenvalue of its restriction to y⊥. Thus B − In is invertible.

ii. From Theorem 5.4.1, eigenvalues of M of modulus 1, hence those of B, are
simple. Question a) then tells us that Bm remains bounded. Last, one verifies
easily that BL = LB = 0 and L2 = L. Therefore, the binomial formula holds
true and gives Mm = Bm + L.

iii. We have
1
N

N−1∑
m=0

Mm = L +
1
N

(B − In)−1(BN − In).

The right-hand side tends to L since BN remains bounded.
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iv. The property is equivalent to BN → 0n, which amounts to saying that ρ(B) < 1.
In other words, it holds true if and only if 1 is the only eigenvalue of M of that
modulus.

10. (a) This is a direct application of Lemma 5.3.3.

(b) Notice that Xt belongs to a compact set and therefore has at least a cluster point X,
a unitary non-negative vector. Passing to the limit in BXt ≤ (B + tC)Xt = rtXt,
we obtain BX ≤ rX. If r is finite, this implies B′Y ≤ 0, where B′ is the lower-left
block of B. Since B ≥ 0 and Y > 0, this gives B′ = 0.

(c) In other words, B is block-triangular. Since B is irreducible, this block-triangular
form is trivial, that is X = Y , or equivalently X > 0.

(d) Likewise, passing to the limit in CXt ≤ (rt/t)Xt gives CX ≤ 0. Since C ≥ 0 and
X > 0, we derive C = 0. This contradicts the assumption. Therefore r = +∞.

(e) Apply the intermediate value Theorem.

11. The stability of ∆ under multiplication is obvious. Therefore, if M is bi-stochastic, its
powers belong to the compact set ∆, and thus remain bounded.

12. Form Perron-Frobenius’ Theorem, ρ(M) is the only eigenvalue associated to a positive
eigenvector. Since Me = 1e, we conclude that ρ(M) = 1. With the notations of Exercise
9, there hold x = e, � = n−1xT and the desired equality. The case

M =
(

0 1
1 0

)

shows that Mm does not always converge.

13. Since Jn = n−1eT e, Hölder inequality gives ‖Jn‖p ≤ n−1‖e‖p‖e‖p′ . Applying Jn to e,
we see that both numbers are actually equal. Since ‖e‖q = n1/q for every q, we obtain
‖Jn‖p = n1/p+1/p′−1 = 1.

14. Since both P and P−1 send the simplex Kn into itself, we see that P (Kn) = Kn, and P
is a bijection. Let i be an index. Then there exists x in Kn such that Px = �ei. From
Proposition 5.5.1, we have o(x) ≥ n−1, which means that x is itself a �ej. We act similarly
with P−1 and conclude that P is a permutation matrix.

15. Let i1, j1, i2, . . . be such a chain (we shall say an admissible chain), and let Il be the set
in the canonical decomposition of M , to which i1 belongs. Then j1 ∈ Jl, which in turns
implies i2 ∈ Il. By induction, all ik’s belong to Il. Thus the equivalence class I of some
i ∈ Il is contained in Il, which turns out to be a union of such classes. On the other hand,
let J be the set of indices j appearing in such chains which originate from some i′ in I.
If j ∈ J and i′′ ∈ Ic, there exists an i′ in I and an admissible chain i′, . . . , j. However,
the chain i′, . . . , j, i′′ is not admissible and therefore we have mi′′j = 0. Likewise, we have
mij = 0 whenever i ∈ I and j ∈ J c. The minimality of the canonical decomposition then
implies that I = Il.
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We apply this result to the matrix

M :=




1/2 1/2 0 · · · 0

1/2 0 1/2 . . . ...

0 1/2 . . . . . . 0
... . . . . . . 0 1/2
0 · · · 0 1/2 1/2




.

The chain i1 = 1, j1 = 2, 3, 4, . . . is admissible and therefore (2k + 1)R1 for every k. The
chain 1, 1, 2, 3, 4, . . . is also admissible, so that (2k)R1 for every k. Hence the coset of 1
is {1, . . . , n}. Therefore the canonical decomposition is trivial and M ∈ S∆n.

16. If x ∈ ∂Kn, then o(M ′Mx) ≤ o(Mx) < o(x). Hence M ′M ∈ S∆n. If o(M ′x) < o(x),
then o(MM ′x) ≤ o(M ′x) < o(x). Otherwise, M ′x ∈ ∂Kn and we have o(MM ′x) <
o(M ′x) = o(x). In both cases, there holds o(MM ′x) < o(x), thus MM ′ ∈ S∆n.

17. Let K be the image of Kn under Mn−1. Since x ∈ ∂Kn implies o(Mx) < o(x), K
is contained in the interior (namely those points with o(x) = 0) of Kn. Under the
translation x 	→ x − e, we obtain two convex compact subsets K1, K2 of the hyperplane
H := {x ;

∑
i xi = 0}, the latter being in the interior of the former. Hence there exists a

number µ < 1 such that K2 ⊂ µK1. Since K1 is the unit ball of H (for the norm ‖ · ‖1),
we conclude that the norm of the restriction of Mn−1 to H is strictly less than 1, and the
sequences of its powers tends to 0. This implies that the N -th power of the restriction of
M to H tends to 0 as well. At last, IRn = H ⊕ IRe and MNe = e for every N . Thus MN

converges towards Jn, defined in exercise 12.

18. (a) Obviously, ‖M‖1 = ‖M‖∞ = 1.

(b) Use ‖M‖ ≥ ρ(M) and Me = e.

(c) At first sight, it differs from Corollary 5.5.1 in that this one applies to norms induced
on Mn(IR) by norms of IRn, while here the norm is the restriction to Mn(IR) of
an induced norm of Mn(CC). However, in view of Exercise 6, Section 4, where we
showed that both induced norms ‖ · ‖p are equal, the present result is a consequence
of Corollary 5.5.1.

19. (a) Let us differentiate the identity (A + tB − λjIn)Xj = 0 :

(B − λ′
jIn)Xj + (A + tB − λjIn)X ′

j = 0.

Multiplying by XT
j kills the second term. Since Xj is unitary, there comes the desired

identity.

(b) We have αj = λj(0), γj = λj(1). Therefore,

γj − αj =
∫ 1

0
λ′

j(t)dt =
∫ 1

0
(BXj, Xj)dt.
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(c) For every pair of orthonormal bases (W, Z), the matrix M defined by

mij = |(Wi, Zj)|2

is bi-stochastic (actually, it is orthostochastic). We apply this remark to the bases
W = X(t) and Z = Y , and then integrate from 0 to 1 using the convexity of ∆n.

(d) Since (BXj(t), Xj(t)) =
∑

k βk |(Xj(t), Yk)|2, we immediately obtain γ − α = Σβ.
Thanks to Kirchhoff’s Theorem, Σ may be written as a barycenter of permutation
matrices. Hence Σβ is a barycenter of the vectors obtained from β by permutations
of its coordinates.

20. (a) Since C(a) is defined by large linear inequalities, it is closed and convex. Since every
b in C(a) satisfies a1 ≤ minj bj and maxj bj ≤ a1, this set is also bounded, thus
compact.
Let b ∈ C(a) be non-decreasing, with bj < bj+1 for some index j. Then b± ∈ C(a),
where b± is obtained from b via the two perturbations b±

j = bj ± ε, b±
j+1 = bj+1 ∓ ε

(notice that j < n), with ε > 0 small enough. Hence b is not extremal. We deduce
that if b is extremal in C(a), then sj(a) = sj(b) for every j. In other words, b is a
permutation aσ of a : bj = aσ(j).
Conversely, let b ∈ C(a) be such that sj(a) = sj(b) for every j. Assume that
b = (b′ + b′′)/2 with b′, b′′ ∈ C(a). Clearly, each sj is a concave function, and we have

sj(b′), sj(b′′) ≥ sj(a) = sj(b),

hence sj(b′) = sj(b′′) = sj(a). We may assume that b is non-decreasing. Then
b1 = a1 = s1(b′) ≤ b′

1 and likewise b1 ≤ b′′
1 ; this implies b′

1 = b′′
1 = b1. Working by

induction over j, we find b′ = b′′ = b. Therefore b is extremal in C(a).

(b) We use a formula that is proved in the same way as Theorem 3.3.2. If M is hermitian,
with spectrum µ1 ≤ · · · ≤ µn, then, for every k,

φk(M) := µ1 + · · · + µk = min
dim F=k

Tr (M |F ) .

Hence, φk is concave, from which we immediately have

(θ ∈ [0, 1], φk(M), φk(N) ≥ sk(a)) ⇒ φk((1 − θ)M + θN) ≥ sk(a).

Since moreover φn is linear, we deduce that Y (a) is convex. Obviously, it is closed.
Last, M ∈ Y (a) implies µ1 ≥ a1 and µn ≤ an and thus ‖M‖2 = ρ(M) (always true
for hermitian matrices) is bounded by max(−a1, an). Hence, Y (a) is compact.
We notice that Y (a) is invariant under orthogonal conjugation. Therefore, its ex-
tremal subset ext(Y (a)) has the same invariance property. Let M be an extreme
point of Y (a). It is orthogonaly similar to a diagonal matrix D, which is therefore ex-
tremal. And conversely, extremality of D implies extremality of all M ∈ Symn(IR)
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with SpM = {d1, . . . , dn}. Since the subset of diagonal matrices in Y (a) is isomor-
phic to C(a), extremality of D = diag(d1, . . . , dn) implies that of d = (d1, . . . , dn) in
C(a), that is d = aσ, for some permutation σ. Since ext(Y (a)) is non-void, by Krein-
Milman’s Theorem, we conclude that there exists at least one extremal matrix of the
form diag(aσ). By orthogonal invariance, every such diagonal matrix is extremal.
Finally, the set of extremal points of Y (a) consists in symmetric matrices whose
spectrum equals {a1, . . . , an}, with consistent multiplicities. This set is denoted by
X(a) in the next question.

(c) Just apply Krein-Milman’s Theorem.

(d) We may assume that a be non-decreasing. Then ksn(a) − nsk(a) = k(ak+1 + · · · +
an)−(n−k)(a1 + · · ·+ak) ≥ k(n−k)(ak+1 −ak) ≥ 0. Hence a′ ∈ C(a). Let b ∈ C(a)
be given. The same inequality, applied to b, gives

sk(b) ≤ k

n
sn(b) =

k

n
sn(a) = sk(a′).

Since also sn(b) = sn(a) = sn(a′), we conclude that b ≺ a′.

(e) If SpM ≺ a′, then TrM = sn(a). Conversely, let M ∈ Symn(IR) satisfy TrM =
sn(a). Then let b := SpM ; we have b ≺ b′ = a′. Hence the set consists precisely in
those symmetric matrices whose trace equals sn(a).

6 Matrices with entries in a principal domain ; Jordan’s
reduction

1. Let A be a principal domain. We say that a is prime if a = bc implies that either b or
c is invertible, and a is not itself invertible (this definition is slightly different from the
usual one, but makes our proof easier). It amounts to saying that (a) is a maximal ideal
(because A is principal) and (a) �= A. If p is prime, then p = ab implies that p divides
either a or b, for otherwise Bézout identities for the pairs (p, a) and (p, b) give immediately
the false conclusion 1 ∈ (p). More generaly, if the prime p divides ab · · · z, then p divides
one of the factors.

Let x �= 0 belong to A. If x is not prime, then it admits a strict divisor x1, that
is a divisor neither invertible, nor associated to x. Because A is Nœtherian, maximal
sequences x0 = x, x1, . . ., where each term is a strict divisor of the previous one, are
finite ; obviously, the last term of such a sequence is prime. Therefore x admits a prime
divisor p. Let now y1 denote x/p (recall that our rings are integral). By induction, we
find at least one maximal sequence y0 = x, y1, . . ., where each term is a strict divisor of
the previous one, and the quotient is prime. Again, this sequence must be finite, and the
last term yr must be prime. Denoting by qj the quotient yj/yj+1, and qr = yr, we obtain
x =

∏r
j=1 qr : x is a product of prime elements.

Let now
x = p1 · · · ps = q1 · · · qr
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be two factorizations in prime elements. Then p1 divides one of the qj’s, say the first
one. But since q1 is prime and p1 is not invertible, the quotient q1/p1 must be invertible.
Hence p2 · · · pr = uq2 · · · qs. Similarly, p2 is associated to one of the remaining qj’s, say
q2 (it cannot divide the unit u). By induction, we obtain that r = s and each pj’s is
associated to qφ(j), for some bijection φ.

2. Let us write in a unique way P (X) = XQ(X) + an. Let expand det(XIn − BP ) with
respect to the first column. One obtains X det(XIn−1−BQ)+∆, where ∆ is a determinant
of size n − 1 whose first line is (0, . . . , 0, an). We expand ∆ with respect to this line
and obtain (−1)nanδ. Now, δ is the determinant of an (n − 2) × (n − 2) triangular
matrix whose diagonal is (−1, . . . ,−1). Hence δ = (−1)n−2. Finally, det(XIn − BP ) =
X det(XIn−1 − BQ) + an. An induction over n gives the result.

3. Since M and MT are similar, they have same rank. Also, we already now that the rank
of AB is not larger than that of A or that of B. Hence the rank of MT M is less than or
equal to that of M . If k = IR, MT Mx = 0 implies xT MT Mx = 0, that is ‖Mx‖2 = 0, or
Mx = 0. Therefore ker M = ker MT M , which shows that M and MT M have same rank
n − dim ker M . This property is false for k = CC, as shown by the following example

M =
(

1 0
i 0

)
.

4. Well, that’s difficult to do by hand. You should use your favorite linear algebra software
package.

5. Let M be any invertible matrix whose first row is XT , and N be any invertible matrix
whose first column is Y . Then

MAN =
(

1 vT

u A′

)
.

Multiplying at left and right by
(

1 0T

−u In−1

)
,

(
1 −vT

0 In−1

)

respectively, we obtain M1AN1 = diag(1, A1), where M1, N1 are invertible, and the first
row of M1 is XT , the first column of N1 is Y . Since the reduction of diag(1, A1) to the
canonical diagonal form involves only invertible matrices of the form diag(1, R), we find
that P may be taken as diag(1, M2)M1, whose first row is XT . And likewise for Q.

We deduce that PAY = (1, 0, . . . , 0)T and XT AQ = (1, 0, . . . , 0). There follows PBQ =
diag(0, Ir−1, 0n−r), thus the rank of B is r − 1.

Likewise, if XT AY = Im, we may choose P and Q in such a way that

PAQ = diag(Ir, 0n−r) and PAY = diag(Im, 0m×(n−m))T ,
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XT AQ = diag(Im, 0(n−m)×m). Hence, defining B := A − (AY )(XT A), we have PBQ =
diag(0m, Ir−m, 0n−m), so that the rank of B is r − m.

If XT AY is only invertible, we apply the last result to the pair (X, Y ′), where Y ′ :=
Y (XT AY )−1.

6. (a)
dy

dt
= PAP−1y.

(b) There exists an invertible P such that PAP−1 =: B has a canonical Jordan form.
To the elementary divisor (X − a)m, there corresponds a block J(a; m) in B. We
may assume that B = diag(J(b; m), . . .). Then (6.1) admits solutions of the form
x = (z(t), 0)T , where z is any solution of

dz

dt
= J(a; m)z.

Writing z = q exp(at), this amounts to solving

dq

dt
= J(0; m)q,

whose general solution is q(t) = (Q(t), Q′(t), . . . , Qm−1(t))T , where Q is any polyno-
mial of degree less than m. Choosing Q(t) = tk solves the question.

7. (a) The characteristic polynomial of M is P . From Section 6.3.1, the similarity invariants
of M are 1, . . . , 1, P . Therefore, its elementary divisors are the monomials (X −a)na ,
each one with multiplicity 1. According to Theorem 6.3.7, the Jordan form of M is
diag(J(a1; n1), . . . , J(ar; nr)), where a1, . . . , ar are the distinct roots of P and nj are
their respective multiplicities.

(b) Define X := (x, x′, . . . , x(n−1)). Then X solves the differential equation X ′ = MT X.
We conclude with the previous exercise.

8. With the notations of the previous exercise, and Um := (um, um+1, . . . , um+n−1), we have
Um+1 = MUm. If PMP−1 is a Jordan form of M , then Vm := PUm solves Vm+1 =
PMP−1Vm, which decomposes as decoupled inductions of the form Wm+1 = J(a; na)Wm.
Hence Wm = (aIna + N)mW0, where N is nilpotent. Therefore

(aIna + N)m =
na−1∑
k=0

(
m
k

)
am−kNk.

This is of the form amQ(m), where Q is a polynomial of degree na − 1. Coming back to
u, we obtain that every solution is a linear combination of such amR(m). Since the set of
such linear combinations is a vector space of dimension

∑
a na = n, and contains the set

of solutions of the linear induction, itself of dimension n, both are equal.
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9. (a) One may choose (other choices are possible) xj = j, yj = j − 1. Since M =
XXT − Y Y T , the rank of M is at most 2. Since X and Y are not colinear (or as
well, M admits non null 2 × 2 minors), the rank is exactly 2.

(b) Because the rank of M is 2, the list of invariant factors is (p, q, 0, . . . , 0), where q �= 0
and p|q. Substracting the first row to the others give the equivalent matrix

M1 =




1 2 · · · n
1 1 · · · 1
...

...
n − 1 n − 1 · · · n − 1


 .

Substracting k − 1 times the second row to the k-th one (if k ≥ 3) and once to the
first one yields

M2 =




0 1 2 · · · n − 1
1 1 1 · · · n − 1
0 0 0 · · · 0
... · · · ...


 .

Substracting the second column to the over ones yields

M3 =




−1 1 1 · · · n − 2
0 1 0 · · · 0
0 0 0 · · · 0
... · · · ...


 .

Adding k − 2 times the first column to the k-th one (if k ≥ 3), and once to the
second column gives at last M4 = diag(−1, 1, 0, . . . , 0). Hence, four step suffice, and
p = q = 1.

10. (a)

NB =




0 · · · 0 1 0
... . . . . . .

0 . . . . . .
...

1
0 · · · 0




, BN =




0 · · · 0
1

... . . . . . . 0

. . . . . .
...

0 1 0 · · · 0




, BNB = NT .

Since B is real symmetric, S∗S = (I + B2)/2 = I. Thus S is unitary.
(b) The displayed matrix is 1

2(N + BNB + i(BN − NB)) = SNS∗ = SNS−1, which is
similar to N .

(c) We have shown that every Jordan block is similar to a complex symmetric matrix.
Since every complex matrix is similar to a blockwise diagonal matrix with Jordan
diagonal blocks, we deduce that every complex matrix is similar to a symmetric
matrix. Obviously, this differs from the real case, where only the diagonalizable
matrices (with real eigenvalues) are similar to symmetric matrices.
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7 Exponential of a matrix, polar decomposition and clas-
sical groups

1. The same argument as for other proofs of similar results : H 	→ H2 is continuous on
HPDn, bijective and the preimage of bounded sets are bounded sets. The latter property
comes from ‖H‖2 = ρ(H) and ρ(H2) = ρ(H)2.

2. The set of matrices of the form Q(M), where Q runs over k(X), is a subspace, hence a
closed set. Since it contains all finite sums

m∑
0

1
k!

Mk,

it contains their limit exp M .

If P were the same for every matrix, it would not be constant. Then, choosing a matrix
such that P (M) = 0n (that is always possible), we should have expM = 0n, which
contradicts the fact that expM is invertible.

3. One has p′
ij = pi,j+1, so that P ′ = LP with L = J(0; ∞) the generalized Jordan matrix,

lij = δj−1
i .

4. (a) The rank of P is an integer-valued continuous function, hence is constant.

(b) We differentiate and obtain PP ′+P ′P = P ′. Multiplying by P at right, for instance,
there comes PP ′P = P ′P − P ′P 2, thus PP ′P = 0.

(c) We have [Q, P ] = P ′P − 2PP ′P + PP ′ = P ′P + PP ′ = P ′.

(d) Since Q is continuous, the Cauchy problem for U admits a unique solution. Let us
compute

(PU)′ = P ′U + PU ′ = (P ′ + PQ)U = QPU.

Thus PU − UP (t0) solves the Cauchy problem Y ′ = QY , with the initial data 0n.
Hence it vanishes identically : P (t) = U(t)P (t0)U(t)−1. This shows that, given a C1

family E(t) of subspaces of IRn (or CCn as well), it is possible to choose C1 vector
fields Xj(t) such that (X1(t), . . . , Xn(t)) be a basis of E(t). Actually, the regularity
of the vector fields is the same as that of E(t).

5. Let Jp = diag(1, . . . , 1, 0, . . . , 0) denote the standard projector of rank p. Since every
projector is diagonalisable, a projector P of rank p has the form P = QJpQ

−1 where
Q ∈ GLn(IR). Up to the change Q 	→ Q, one may assume Q ∈ GLn(IR)+. Use now the
connectedness of GLn(IR)+.

6. (a) Let H denote
√

A. Then AB = H2B = H(HBH)H−1 is similar to, and thus has
same spectrum as, HBH. Since HBH is hermitian, it is diagonalizable with real
eigenvalues ; hence AB has the same properties. Also, the eigenvalues of AB, namely
those of HBH, have same signs as those of B, since HBH and B represent the same
hermitian forms in different bases.
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(b) Up to a transposition, we may assume that C is positive definite. Then let us define
E := C−1 and D = ABC. We have AB = DE, where all matrices are hermitians
and three of them are positive definite. Without loss of generality, we assume that
B, D, E are positive definite. From the previous question, we now that eigenvalues
of DE (therefore also those of AB) are real and positive. But the signs of the
eigenvalues of A must be the same as those of the eigenvalues of AB. Hence the
eigenvalues of A are positive : A is positive definite.

7. If HQ = QH, then M∗ = Q−1H = HQ−1, from which it follows M∗M = H2 = MM∗.
Conversely, let us assume that M be normal. Then M is unitary diagonalizable : M =
U∗DU . Denoting |D| := diag(|d1|, . . . , |dn|) and V := D|D|−1 = |D|−1D, we have H =
U∗|D|U and Q = U∗V U which commute obviously.

8. (a) We have W (F ) = W (H), hence w is the restriction of W to SPDn(IR).

(b) From the assumption, we have w(QT HQ) = W (QT HQ) = W (H) = w(H). There-
fore w is constant on the classes of orthogonal conjugation in SPDn. Thus is
depends only on the eigenvalues of H (the singular values of F ), that is on the
coefficients of its characteristic polynomial.

9. (a) The map U 	→ ‖A − U‖ is continous on the compact set Un, hence achieves its
lower bound at some matrix Q. Unitary invariance of Schur’s norm shows that In

minimizes ‖S − U‖ over Un.

(b) The hermitian adjoint of U(t) := exp(itH) is the exponential of (itH)∗ = −itH,
hence it is U(t)−1. Thus U(t) is unitary. Form the previous question, and since the
square of Schur’s norm is C1, we must have

d‖S − U(t)‖2

dt

∣∣∣∣∣
t=0

= 0.

This reads �Tr((S − In)(iH) = 0. In other words, S − In is orthogonal to every
skew-hermitian matrix. Therefore it is hermitian, that is S ∈ Hn.

(c) If S = V ∗DV with V ∈ Un, then

‖D − In‖ = ‖S − In‖ ≤ ‖S − U‖ = ‖D − V UV ∗‖ = ‖DU ′ − In‖

with U ′ = V U∗V ∗, which runs over Un with U . Chosing U ′ = D−1|D| (|D| the
“module” od D as in Chapter 5), we obtain ‖D−In‖ ≤ ‖ |D|−In‖, which immediately
gives D = |D|. Hence the eigenvalues of S are real non-negative numbers : S is
positive semi-definite.

(d) If A is invertible, then so is S, which turns out to be positive definite. Since A = QS,
we have the (left) polar decomposition.

(e) If H ∈ HPDn, the polar decomposition writes H = InH. Therefore Q = In

minimizes ‖H − U‖ over Un : there holds ‖H − In‖ ≤ ‖H − U‖ for every unitary
U . The equality holds only if U = In, since the polar decomposition is unique.
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(f) This is obtained by passing to the limit in the previous question, since H belongs to
the closure of HPDn.

10. (a) The map h 	→ R(h; A) − exp(hA) is analytic in the disc D(0; 1/ρ(A)) and its Taylor
series begins with h2A2/2. Hence the map h 	→ h−2(R(h; A) − exp(hA)) is analytic,
thus bounded on the compact set D(0; r).

(b) Each term BlCm−1, but the first and the last ones, appears exactly twice, once with
coefficient +1, once with coefficient −1. Thus they cancel. There remains Cm, with
coefficient +1, and Bm, with coefficient −1.
We apply the formula to C = R(h; A) and B = ehA. There comes

‖Cm − Bm‖ ≤ ‖C − B‖(‖C‖m−1 + · · · + ‖B‖m−1) ≤ c0h
2m(max(‖B‖, ‖C‖))m.

Since max(‖B‖, ‖C‖) ≤ 1 + c2|h| in the disc, we obtain

‖R(h; A) − ehA‖ ≤ c0m|h|2(1 + c2|h|)m ≤ c0m|h|2ec2m|h|.

(c) When h = t/m with fixed and m → +∞, we may apply the previous inequality
when m is large enough. The right-hand side is a constant times |h| and tends to
zero. Hence R(t/m; A)m tends to exp(tA).

11. (a) Multiplying by e−b, we may assume that b = 0, thus a = 1. We look for N nilpotent,
such that exp N = Ir + K, where given K is itself nilpotent. We use the log(1 + x)
series to define

N = K − 1
2
K2 + · · · + (−1)rKr−1.

Computing exp N − Ir − K, we find a convergent series in K, whose term of lower
degree has degree r, thus is zero (because Kr = 0). Hence exp N = Ir + K.

(b) The range of exp is stable under conjugation, thus it is enough to determine the
Jordan forms which belong to it. From the previous question, every invertible Jordan
form is an exponential. Hence every invertible matrix is an exponential. Conversely,
we know that every exponential is invertible. However, exp is not one-to-one, since
exp(2iπIn) = In = exp 0n.
If Y ∈ GLn(CC), we have shown that there exists an A ∈ Mn(CC) such that Y =
exp A. Then M := exp(A/2) satisfies M2 = Y and M ∈ GLn(CC).
We remind that the minimal polynomial of Y := J(0; n) is Xn. If M2 = Y , then
M2n = 0n. Thus M is nilpotent, and since its size is n×n, it must satisfy Mn = 0n.
This shows that Y m = 0n, where m is the integral part of (n + 1)/2. Therefore
(n + 1)/2 ≥ n, that is n ≤ 1. Hence M 	→ M2 is onto Mn(CC) only when n = 1.

12. (a) We have (J2 + I2)2 = 02. If M2 = J2, we deduce that the characteristic polynomial
of M divides (X2 + 1)2. Since it is real of degree two, it must be X2 + 1. Hence
M2 + I2 = 02, which is impossible since J2 �= −I2.
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(b) Let Y ∈ M 2(IR) be such that Y 2 = −I2, for instance

Y =
(

0 1
−1 0

)
.

Then

M :=
(

Y I2

02 −Y

)

satisfies M2 = J4.
Let M ∈ M 4(IR) be such that M2 = J3. Then its eigenvalues are ±i. Since
they come by complex conjugate pairs, each one is double and the characteristic
polynomial of M is (X2 +1)2. Applying Cayley-Hamilton, we obtain (I4 +J3)2 = 04,
which is obviously false (compute the entry at first row and last column).

(c) Let us assume that exp M = J2. From Exercise 2, J2 = aI2 + bM for some real
numbers a, b. Obviously, b �= 0 and therefore M is triangular. Thus its eigenvalues
are real and those of J2, being their exponentials, must be real positive. An obvious
contradiction.
We just have seen that neither the exponential nor the square are onto GL2(IR). A
more involved result is that, as in the complex case, both maps have the same range,
which means that every invertible matrix of the form M2 (with M ∈ GLn(IR)) is
the exponential of some matrix with real entries. The next question supports this
comment, as well as the fact that exp M is the square of exp(M/2). This could have
been used above, to show that J2 is not an exponential.

(d) Let us take Z ∈ M 2(IR) such that exp Z = −I2, for instance (see Exercise 14)

Z =
(

0 π
−π 0

)
.

Then

M :=
(

Z −I2

0 Z

)

satisfies

exp M :=
(

−I2 I2

02 −I2

)
.

Conjugating by the matrix of the permutation (2, 3), we obtain J4 = exp P , where

P =




0 −1 π 0
0 0 0 π

−π 0 0 −1
0 −π 0 0


 .

As mentioned above, the fact that J3 is not a square implies that it is not an
exponential. We may also make a direct proof :
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Let us assume that some matrix satisfies expM = J3. Then its eigenvalues are of
the form ±µk, µk := (2k + 1)iπ. They come by complex conjugate pairs. Since
J3 is not diagonalizable (in M 4(CC)), M is not, which implies that M has at least
one non-simple eigenvalue. Thus its spectrum is {±µk}, where each eigenvalue has
multiplicity 2 and is non semi-simple . This means that the similarity invariants of
M are (1, 1, 1, (X2 − µ2

k)
2 =: P ). Hence M is similar (in M 4(IR)), to

N =
(

Sk I2

02 Sk

)
, Sk := (2k + 1)

(
0 π

−π 0

)
,

because N has the same characteristic polynomial P which turns out to be the
minimal one, and thus has the same list of similarity invariants as M . We have

exp N =
(

−I2 W
02 −I2

)

for some W , from which it follows (I4+exp N)2 = 04. This implies again (I4+J3)2 =
04, which is false.

13. If D is unitary and diagonal, its diagonal entries are numbers of unit modulus, thus are of
the form eiaj for real numbers aj. Such a D is the exponential of D′ := diag(ia1, . . . , ian), a
skew-hermitian matrix. If U is unitary, it is normal and therefore unitary diagonalisable :
U = V ∗DV , where D is unitary and diagonal. Then U = exp(V ∗D′V ), where V ∗D′V is
skew-hermitian.

14. (a) We have B2k = (−1)kθ2kI2 and thus B2k+1 = (−1)kθ2k+1B1, where B1 is the B-
matrix for θ = 1. Hence

exp B = (cos θ)I2 + (sin θ)B1 =
(

cos θ sin θ
− sin θ cos θ

)

is the rotation of angle θ.

(b) We recall that M ∈ SOn(IR) is orthogonally similar to a block-diagonal matrix M ′,
whose diagonal blocks are either 2 × 2 rotations or 1’s (see the proof of Proposition
7.5.1). From the previous question, M ′ is the exponential of a block-diagonal matrix
A′, whose diagonal blocks are either B-matrices or 0’s. The matrix A′ is skew-
symmetric and M is the exponential of A, orthogonally similar to A′, thus skew-
symmetric.

15. (a) Since φ(M2) = φ(M)2 is non-negative, it equals |φ(M2)|, thus δ(det M2). Since the
range of exp is contained in that of M 	→ M2, there follows that φ(A) = δ(det A)
holds true on the range of exp.

(b) From Exercise 14, we know that the range of exp contains SOn. On the other hand,
it contains also SPDn (real version of Proposition 7.2.3). Hence φ = δ ◦ det on
these sets.
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(c) Let M ∈ GL+
n (IR) and M = SO be its polar decomposition. Then φ(M) =

φ(S)φ(O) = δ(det S)δ(1) from the previous question, thus is non-negative. Hence
φ(M) = |φ(M)| = δ(det M).
Let now P ∈ GLn(IR) be some matrix with det P < 0. If det M < 0, let N denote
P−1M . The equality φ(M) = φ(PN) = φ(P )φ(N) shows that the sign of φ(M) is
the same as the one of φ(P ), since det N > 0. Therefore φ takes a constant sign
on matrices of negative determinant. If it is non-negative, then φ ≡ δ ◦ det. If it is
non-positive, then φ ≡ sgn(det)δ ◦ det.

16. (a) Clear, since the series of norms is dominated by the exponential series of ‖x‖. We
have ‖ exp x‖ ≤ exp ‖x‖.

(b) If [x, y] = 0, we may apply the binomial formula for (x + y)m. This immediately
gives exp(x+y) = (exp x)(exp y). Moreover, the partial sums of exp y commute with
x, hence the sum of the series does : [exp y, x]=0.

(c) The series of derivatives converges normally too, uniformly on bounded sets. There-
fore t 	→ exp tx is differentiable, and its derivative is the sum of the series of deriva-
tives. We immediately obtain the formula. By induction, the map is C∞.

(d) i. Differentiating twice this expression, we obtain

exp(−tx)(x3y − 2x2yx + xyx2) exp(tx),

that is exp(−tx)x[x, [x, y]] exp(tx), which is zero by assumption. Hence the
expression is of the form at + b. Making t = 0 gives b = xy. Differentiating at
t = 0 gives a = x[y, x], that is a = [y, x]x from the assumption.

ii. The derivative of the right-hand side is [y, x](e−tx) exp(−tx). Using the previous
question, we find the same expression for the derivative of the left-hand side.
Therefore both expression differ only from a constant. This constant is zero, by
evaluation at t = 0.

iii. Using our last results, this derivative equals

e−ty
[
e−tx, y

]
et(x+y) = te−ty[y, x]e−txet(x+y).

Since [y, x] commutes with y, it commutes with e−ty too. The expression, de-
noted by Y (t), verifies therefore Y ′ = t[y, x]Y . Since Y (0) = In, this Cauchy
problem gives

Y (t) = exp
(

t2

2
[y, x]

)
.

Making t = 1 gives the Campbell-Hausdorff formula.

(e) The following matrices work

x =


 0 1 0

0 0 0
0 0 0


 , y =


 0 0 0

0 0 1
0 0 0


 .
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17. The map is well-defined : the spectrum of H is real, thus iIn −H is invertible. Since both
factors commute to each other, we have

f(H)∗f(H) = (−iIn − H)−1(−iIn + H)(iIn + H)(iIn − H)−1 = In,

thus f(H) ∈ Un. Also, the spectrum of f(H) is the image of that of H, which is real, by
the rational map t 	→ (it + t)/(it − t). It cannot contain −1. Let E be the set of unitary
matrices whose spectrum does not contain −1. Then f : Un → E is bijective, since it
has an inverse

f−1(U) = i(U − In)(U + In)−1

(check that this matrix is hermitian for every U ∈ E). Last, both f and f−1 are continous.

Using the formula (In − X)−1 =
∑

k≥0 Xk for small matrices X, we obtain

f(tH) − exp(−2itH) ∼ t2

2
H2.

18. (a) There holds [M, N ]∗J + J [M, N ] = N∗(M∗J + JM) + (M∗J + JM)N + M∗(N∗J +
JN) + (N∗J + JN)M . Therefore M, N ∈ G implies [M, N ] ∈ G.

(b) Use the series defining the exponential to derive the asymptotic formula. If A, B ∈ G,
then exp tA, exp tB and their inverses exp(−tA), exp(−tB) belong to G. Thus the
product of the four exponentials belongs to G. Writing

(In + t2[A, B] + O(t3))∗J(In + t2[A, B] + O(t3)) = J,

and identifying the powers of t2, we obtain [A, B]∗J + J [A, B] = 0n.

(c) Just develop the expressions.

19. By definition, G++ ∪ G+− is the subset of O(1, q) defined by m11 > 0. This is the set
of matrices M ∈ O(1, q) such that the image of τ := (1, 0, . . . , 0)T by M belongs to the
upper half-plane defined by x1 > 0. Since τ 2

1 − τ 2
2 − · · · − τ 2

n > 0, its image x = Mτ must
satisfy the same inequality. With x1 > 0, we obtain x1 >

√
x2

2 + · · · + x2
n. Conversely, if

x = Mτ satisfies this inequality, then x1 > 0.

20. (a) Obviously, σH(M−1N) = σH(M)−1σH(N) : σH is a homomorphism of GLn(IR).
Also it leaves invariant O(p, q). It is an automorphism of O(p, q), since it has the
inverse σH−1 . Hence it sends G0, which is a connected component of O(p, q), onto
some connected component X. But since In = σH(In) ∈ X, we obtain X = G0.

(b) If N ∈ G, then exp tN ∈ G for every t. Since it is In for t = 0, connectedness implies
that it belongs to G0 for every t. Hence H exp tN = (exp tN)H. Differentiating at
t = 0, we obtain HN = NH.
Let us write blockwise

H =
(

X Y
W Z

)
.
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Taking N = diag(0p, A), with A skew-symmetric, there holds N ∈ G and thus
HN = NH, which gives Y A = 0p,q, AW = 0q,p and AZ = ZA. This holds for every
skew A and thus immediately gives Y = 0p,q, W = 0q,p and Z = zIq for some z ∈ IR.
Likewise, taking N = diag(A, 0q), with A skew-symmetric, we obtain X = xIp, for
some x ∈ IR. Last, taking

N =
(

0p B
BT 0q

)
,

which also belongs to G, we obtain xB = zB, that is x = z. Hence H is a homothety.

(c) We remark that H 	→ σH is a group homomorphism from G to Aut(G0), the latter
denoting the set of automorphisms of G0. Its kernel is made of those H ∈ G which
commute with every element of G0. We just have shown that such an H must be of
the form hIn for some h ∈ IR. Then, J = HT JH gives h2 = 1, that is H = ±In.
Therefore, if H, K ∈ G, σH = σK is equivalent to K = ±H. When K ∈ G0, this
gives H ∈ G0 ∪ Gµ,β. Conversely, if H ∈ G0, we choose K = H, while if H ∈ Gµ,β,
we choose K = −H.

21. Let G0 denote the connected component of the unit element e. The image of the connected
set G0 × G0 by the continous map (g, h) 	→ g−1h is connected and contains e = ee, hence
is contained in G0. This shows that G0 is a subgroup. Last, its image under a conjugation
by any g ∈ G is still connected and contains e = geg−1, thus is contained in G0. Hence
G0 is normal.

Let H be an open subgroup. Then, for every g ∈ G, gH is open, as the preimage of
H under the left multiplication by g−1. Let E ⊂ G be a set of representatives of the
cosets gH. Then G is the disjoint union of the gH’s when G runs over E. Therefore, the
complement of H is such a union and, as a union of open sets, is open. Hence H is closed.
We warn the reader that in general, closed subgroups need not be open ! For instance, IR,
IR/ZZ are topological groups, which contain discrete subgroups like ZZ in the first case,
or 1

N
ZZ/ZZ in the second one. These subgroups are closed but not open.

22. (a) We have, under that identification, M̃(x + iy) = Ax + By + i(Cx + Dy). If M̃ is
CC-linear, it must be M̃(x + iy) = (A + iC)(x + iy). This happens if and only if
D = A and B + C = 0.

(b) We remind that Spn ∩ O2n is made of matrices of the form

M =
(

A B
−B A

)
,

where A + iB is unitary. Form the previous question, M̃ is CC-linear and equals
precisely A − iB, which is unitary as well. One checks easily that the composition
laws aggree : M 	→ M̃ is an isomorphism from Spn ∩ O2n onto Um.
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8 Matrix factorizations

1. We use this algorithm in the non abelian ring Mn(k), to derive a method for multiplying
within MNn(k). We view an Nn×Nn matrix as an N ×N matrix with entries in Mn(k).
Thus multiplication of Nn × Nn matrices needs K multiplications and L additions of
n × n matrices. In terms of complexity, we obtain

PNn ≤ KPn + Ln2.

We argued that we shall not find a better result than Pn = O(n2). Actually, noone
reasonable even expects this optimal result. We shall estimate Pn using the induction

πj+1 ≤ Kπj + L N2j, πj := PNj .

We distinguish three cases, according to the position of α with respect to 2. Only the
first one is reasonable. We begin by noting that the induction gives

πj ≤ L Kj
j−1∑
k=0

(N2K−1)k.

• If α > 2, then N2K−1 < 1 and there comes πj ≤ cKj. Arguing as in the case of the
Strassen algorithm, we obtain Pn ≤ c′nα.

• If α = 2, we have πj ≤ cjN2j, which gives Pn ≤ c′n2 log n.

• If α < 2, we have πj ≤ cN2j, that is Pn ≤ c′n2.

2. Using the second method, we pass from the size n−1 to the size n by solving a triangular
system ((n − 1)2 operations) and extract a square root. Summing up, the complexity is
n3/3 + O(n2).

3. By induction, using the second method, one easily shows that L is bidiagonal, that is
lij = 0 whenever i ≥ j + 2. More generally, if mij = 0 whenever |j − i| ≥ r, then lij = 0
for i − j ≥ r.

4. Use again the second method, and remark that if L is lower triangular and non-singular,
and if the k first components of R vanish, then the corresponding components of L−1R
vanish too.

5. Same argument as usual. Let Tn denote the set of complex upper triangular matrices
with positive real diagonal entries. The map (Q, R) 	→ QR is continuous and bijective
from Un × Tn to GLn(CC). It will be sufficient to prove that the preimage of converging
sequences are relatively compact. Thus let Mk = QkRk converge towards M in GLn.
Since Un is compact, we may extract a subsequence such that Qk converges. Then
Rk = Q∗

kMk converges too.
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6. The missing block is −BA−1. Then THT ∗ = diag(A, C −BA−1B∗). The second diagonal
block is the Schur complement of A.

Let H ′ denote H − diag(0n−k, W ) =: H − D. Then H ′ is positive (semi-)definite if and
only if TH ′T ∗ is so, since both matrices represent the same hermitian form in different
bases. However, TDT ∗ = D. Therefore, TH ′T ∗ = diag(A, S − W ), which is positive
(semi-)definite if and only if S − W is so.

7. From the previous exercise, we now that

H −
(

0 0
0 S(H)

)
≥ 0, H ′ −

(
0 0
0 S(H ′)

)
≥ 0.

Summing up, there comes

H + H ′ −
(

0 0
0 S(H) + S(H ′)

)
≥ 0.

Using again the previous exercise, we obtain S(H + H ′) − S(H) − S(H ′) ≥ 0.

Let us first consider the case H − H ′ > 0. Then, defining H ′′ := H − H ′ we apply our
last result :

S(H) = S(H ′ + H ′′) ≥ S(H ′) + S(H ′′) > S(H ′).

Since the Schur complement S is a continuous function, we may pass to the limit as H ′′

tends to a positive semi-definite matrix. There comes S(H) ≥ S(H ′).

8. Since Q is unitary, its spectrum is made of complex numbers of unit modulus, and it is
diagonalizable. Since its is triangular with real positive diagonal entries, the spectrum
is made of such numbers. Hence SpQ = {1}. Since Q is diagonalizable, there follows
Q = In, which means uniqueness.

9. In both cases, x† = ‖x‖−2
2 x∗.

10. For a orthogonal projector P , one has P † = P . Every other orthogonal projector Q whose
range is a subspace of that of P satisfies PQ = QP = Q. Hence every such Q satisfies
the property that QP and PQ be orthogonal projectors, though only P is the generalized
inverse of P .

11. (a) We first consider the case c = 0, that is a = Bd, or equivalently B†Bd = d. One
obtains

AA† = BB†, A†A =
(

B†B − (1 + |d|2)−1dd∗ (1 + |d|2)−1d
(1 + |d|2)−1d∗ (1 + |d|2)−1|d|2

)
,

which are hermitian. Then AA†A = (AA†)A = BB†(B, a) = (BB†B, BB†a) =
(B, a) = A, and

A†AA† = A†BB† =
(

B†BB† − dbBB†

bBB†

)
= A†,
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because of bBB† = b.
We now examine the case c �= 0. Then AA† = BB† − Bdc† + ac† = BB† + cc† is
hermitian. Next, noticing that c† is parallel to c∗ = d∗(Iq − BB†) (see Exercise 9),
we have c†B = 0, from which there follows

A†A =
(

B†B (1 − c†a)d
0 c†a

)
.

From Exercise 9, c† = ‖c‖−2c∗. Since c = πa, where π := (Ip − BB†) is an orthog-
onal projection, we have c†a = ‖πa‖−2a∗πa = 1. Finally, A†A = diag(B†

B, 1) is
hermitian.
From the latter result, we have AA†A = (BB†B, a) = A and

A†AA† =
(

B†BB† − B†Bdc†

c†

)
= A†,

since B†Bd = d. This shows that the suggested formula gives actually the generalized
inverse of A.

(b) We proceed by induction over q, keeping p constant. From Proposition 8.4.1, we
may assume that q ≤ p. When q = 1, we use the formula a† = ‖a‖−2a∗ if a �= 0 and
a† = 0 otherwise (see Exercise 9). We now examine the step from q − 1 to q. The
computation of d requires about 2pq operations, like that of c. The computation
of b = c†, in the case c �= 0, is negligible. If c = 0, it is not, requiring about 2pq
operations ; however, this case means exactly a ∈ R(B), a fact which is unlikely since
B is p × (q − 1) and q − 1 < p. Thus we shall not take this case in account in the
study of complexity. Last, the computation of B† − db requires also 2pq operations.
Finally, the whole computation of A† is done in about 3pq2 operations.

9 Iterative methods for linear problems

1. The Jacobi matrix has the property that Jij �= 0 implies |j − i| = 1. Thus −J = PJP−1

where P := diag(1, −1, 1, −1, . . .). There follows that Sp(−J) = Sp(J), which is point 4)
of Proposition 9.4.1.

2. Let λ = (λ1, . . . , λn) be any sequence of real numbers such that λ ≺ 0 := (0, . . . , 0).
This means that, ordering λ in the non-decreasing way, there holds λ1 + · · · + λk ≤ 0
for every k and λ1 + · · · + λn ≤ 0. By Theorem 3.4.2, there exists a symmetric matrix
J whose diagonal is (0, . . . , 0) and spectrum is λ. This matrix is the Jacobi matrix for
A := In − J ∈ Symn. The matrix A is positive definite whenever 1 − λn > 0. For
instance, λ = (−(n − 1)µ, µ, . . . , µ) works for every µ ∈ [0, 1). For µ > 1/(n − 1), there
holds ρ(J) > 1 and the Jacobi method for A does not converge. When µ tends to 1, ρ(J)
tends to n − 1.
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Conversely, if D = In and γ := Sp(A), then λ := 1 − γ is the spectrum of J . From
Theorem 3.4.1, there holds γ ≺ 1, that is λ ≺ 0 (notice that a ≺ b is equivalent to
−a ≺ −b, a counter-intuitive fact in view of the notation). Also, since A ∈ SPDn, we
have λj < 1 for every j. Hence λ1 = −∑n

2 λj > −(n − 1). This proves that ρ(J) < n − 1.
Finally,

sup{ρ(J) ; A ∈ SPDn, D = In} = n − 1.

3. (a) The spectrum of J is even since A is tridiagonal. It is real since A and thus J , are
hermitian.

(b) The diagonal D is positive, so let us define K := D−1/2(E + F )D−1/2, which is
hermitian and similar to J . If Y ∈ CCn, then Y ∗KY = X∗(E + F )X where X =
D−1/2Y . Since A is positive definite, we have X∗(E + F )X < X∗DX whenever
X �= 0. Hence Y �= 0 implies Y ∗KY < ‖Y ‖2

2. This exactly means ρ(K) < 1, that is
ρ(J) < 1.

(c) Since ρ(J) < 1, the Jacobi method is convergent.

4. (a) The idea used in Exercise 3 gives the inequality |((E + E∗)v, v)| ≤ ρ(J)‖D1/2v‖2.
Then let µ1 and µn denote the smallest and largest eigenvalues of hermitian matrices.
From (Av, v) ≤ (Dv, v)+ |((E +E∗)v, v)| ≤ (1+ρ(J))‖D1/2v‖2, we deduce µn(A) ≤
(1 + ρ(J))µn(D). Similarly, µ1(A) ≥ (1 − ρ(J))µ1(D). Finally, we obtain

K(A) ≤ 1 + ρ(J)
1 − ρ(J)

K(D).

(b) Actually, there holds

g

(
1 + y

1 − y

)
=

1 −
√

1 − y2

y
.

(c) If D = In, we remark that the inequalities above are equalities, so that K(A) ≤
(1 + ρ(J))/(1 − ρ(J)). Since g is an increasing function, we have

θ = − log g

(
1 + ρ(J)
1 − ρ(J)

)
= − log

1 −
√

1 − y2

y
= −1

2
τ,

where τ is the convergence ratio of SOR with the optimal parameter.

5. (a) i. Let X be an eigenvector associated to λ. Then

(1 − ω − λ)DX + ω(E∗ + e2iθE)X = 0.

We multiply this identity by e−iθ, so that the last parenthesis becomes hermitian.
We then multiply at left by X∗. Since X∗DX (non nul) and X∗(e−iθE∗+eiθE)X
are real, we obtain that (1 − ω − λ)e−iθ is real.

ii. Taking the imaginary part, there comes (ω − 2) sin θ = 0, that is sin θ = 0.
Equivalently, λ = 1. However, this implies AX = 0, which is impossible since A
is positive definite.
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iii. Since Pω does not vanish on the unit circle S1, we have the Cauchy integral

m(ω) =
1

2iπ

∫
S1

P ′
ω(z)

Pω(z)
dz.

This shows that m is a continuous function on (0, 2). Thus m is constant.

(b) i. There holds Lω − In = −ω(D − ωE)−1A. Hence the limit is −D−1A.
ii. The matrix D−1A is similar to D−1/2AD−1/2, which is hermitian positive def-

inite. Hence its eigenvalues µ1, . . . , µn are real and positive. For small ω, the
eigenvalues of Lω obey to the asymtpotics 1 − ωµj + O(ω2), which turns out to
be less than 1 for positive values. Hence ρ(Lω) < 1 for small positive ω, that is
m(ω) = n. Since m is constant on (0, 2), we deduce m ≡ n, which means that
ρ(Lω) < 1 for every ω ∈ (0, 2). Hence the relaxation method converges for all ω
in (0, 2).

6. (a) Since ρ(J) < 1, one has λa < 1. For ω = 1, ∆(λa) = λ2
a > 0, while for ω = 2,

∆(λa) = 4(λ2
a − 1) < 0. Since ∆(λa) is a polynomial of degree two in ω, this implies

that its two roots are real, with exactly one being in (1, 2) and one larger than 2.

(b) If ω ∈ D, we have ω = 1+ e2iγr2 with r ∈ [0, 1). Let us assume that this polynomial
has two roots x, y of equal moduli. This modulus will be (see the product of roots)
|ω − 1|1/2, say

x = eiα|ω − 1|1/2, y = eiβ|ω − 1|1/2.

The product gives α + β = 2γ. Then the sum gives

(e−iγ + eiγr2)λa = 2r cos(β − γ).

Taking the imaginary part yields (r2 − 1)λa sin γ = 0, that is ω = 1 + r2 ∈ [1, 2).
At last, for ω ∈ [1, ωa), the discriminant ∆(λa) is positive, so that the polynomial
has two distinct real roots. These turn out to have equal signs (their product is
positive), thus are of distinct moduli.
Finally, whenever the polynomial has roots of distinct moduli, whose product is
ω − 1, exactly one of both must have a modulus larger than |ω − 1|.

(c) The implicit function Theorem, in its holomorphic version, implies the holomorphy
of ω 	→ µa on its domain.
When ω = 1 + e2iγ, the roots of the polynomial are ei(γ±α) where cos α = λa cos γ.
The continuity of the roots of a polynomial in terms of its coefficients allows for the
conclusion

lim
|ω−1|→1

|µa(ω)|2 = 1.

Also, when ω ∈ [ωa, 2) both roots have moduli ω−1. Hence the continuity argument
yields

lim
ω→γ

|µa(ω)|2 = γ − 1, γ ∈ [ωa, 2).
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(d) The maximum principle for holomorphic functions says that the modulus of µa can-
not achieve a local maximum on the open set D \ [ωa, 2). Since this modulus has a
continuous extension up to the boundary, the latter being not greater than 1, and
since its value is less than 1 at some interior point (take ω close to ωa), we conclude
that this modulus is less than 1 everywhere in D \ [ωa, 2).
This implies that ρ(Lω) < 1 everywhere in D, namely that the relaxation method
converges for every such parameters ω.

(e) On a other hand, |µr| does not vanish in D \ [ωa, 2), since it is always larger than
|ω −1|1/2. Hence the maximum principle, applied to the holomorphic function 1/µa,
tells that the lower bound of the |µr(ω)|, which is continuous up to the boundary,
is achieved only at interior points. From the previous question, this lower bound is
achieved only at ωr. Since ρ(Lω) ≥ |µr(ω)|, we deduce that

ρ(Lω) > |µr(ωr)| = ρ(Lωr)

for every ω ∈ D \ {ωr}.

7. From

(D − E)−1 =


 I 0 0

−M2 I 0
M3M2 −M3 I


 ,

we have

G =


 0 0 −M1

0 0 M2M1

0 0 −M3M2M1


 .

The spectrum of G is the union of 0 and that of −M3M2M1. Thus ρ(G) = ρ(M3M2M1).
Since B3 = diag(M1M3M2, M2M1M3, M3M2M1), where the diagonal blocks have the same
spectra, except perhaps for the eigenvalue 0, we find also ρ(B3) = ρ(M3M2M1). Finally,
there holds ρ(G) = ρ(B)3 = ρ(J)3, since J = B. This tells that if one of both methods
converges, then the other one does too, and Gauss-Seidel converges three times faster
than Jacobi.

If instead

J = B =


 0 M3 0

0 0 M1

M2 0 0


 ,

then

(D − E)−1 =


 I 0 0

0 I 0
−M2 0 I


 , G =


 0 −M3 0

0 0 −M1

0 M2M3 0


 .

One still has ρ(J)3 = ρ(M3M1M2). But ρ(G) equals the spectral radius of ρ(H), where

H :=
(

0 −M1

M2M3 0

)
.
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Since H2 is block-diagonal, we find ρ(G)2 = ρ(M3M1M2) and therefore ρ(G) = ρ(J)3/2.
This tells that one method converges if and only if the other one does, and then Gauss-
Seidel is one and a half faster than Jacobi.

For a cyclic matrix of order p, the best acceleration factor is obtained when the structure
of B is such that Bij = 0 whenever i �= j + 1 modulo p. In case of convergence, Gauss-
Seidel is p times faster because ρ(G) = ρ(J)p = ρ(Mp · · ·M1). The worst case is when
Bij = 0 whenever j �= i + 1. Then Gauss-Seidel is only p/(p − 1) faster than Jacobi.
Notice that in this case, G is block triangular, where the diagonal blocks are 0 in one
hand and a (p − 1)-cyclic matrix on the other hand.

10 Approximation of eigenvalues

1. (a) The sequence is obviously well-defined since one divides by non-zero polynomials.
Since deg Pj decays strictly, the sequence is finite. By definition, the last polynomial
Pr is a constant. If it is zero, then Pr−1 divides Pr−2 and there follows by induction
that Pr−1 divides every other Pj, including P and P ′. This contradicts the fact
that P has only simple roots. Hence Pr is a non-zero constant. If Pj(x) = 0, then
Pj−1(x)Pj+1(x) = −Pj−1(x)2 ≤ 0. Actually, if it vanished then x would be a common
root of Pj−1 and Pj, and therefore of every Pl, including Pr, a contradiction. Hence
Pj−1Pj+1 < 0 and we have a Sturm sequence.

(b) For P = X2 + aX + b, we have P1 = 2X + a and P2 = −b + a2/4 =: δ. We evaluate
the total number of real roots by computing V (−∞)−V (+∞). Since V (±∞) is the
number of sign changes in the sequences (+∞, ±∞, δ), we have the following cases.
If δ < 0, then V (±∞) = 1, thus the number of real roots is 1− 1 = 0. If δ > 0, then
V (−∞) = 2, V (+∞) = 0 and the number of real roots is 2 − 0 = 0.
Let now turn to the case of P = X3+pX+q. Then P1 = 3X2+p, P2 = −(2p/3)X−q
and P3 = −p − 27q2/(4p2) =: −δ. Here, we count the sign changes in the sequences
(±∞, +∞, ∓(sgn p)∞, −δ). If δ > 0, we have V (−∞) = 2 and V (+∞) = 1, for
2 − 1 = 1 real root. If δ < 0, then p < 0, and we have V (−∞) = 3 and V (+∞) = 0,
for 3 − 0 roots.

2. (a) If |j| ≤ p − 1, there holds (Wnx)p+j = (|j| + 1)xp+j + xp+j−1 + xp+j+1. Besides,
(Wnx)1 = px1 + x2 and (Wnx)n = pxn + xn−1. Hence x ∈ E ′ (respectively x ∈ E ′′)
implies Wnx ∈ E ′ (respectively Wnx ∈ E ′′).

(b) Let {e1, . . . , en} be the canonical basis of IRn. We build a basis {f 1, . . . , fp} of
E ′ by fp−j := ep−j + ep+j when j = 0, . . . , p − 1. Likewise, gp−j := ep−j − ep+j

(j = 1, . . . , p− 1) defines a basis of E ′′. The matrix W ′
n (respectively W ′′

n ) is the one
of the restriction to E ′ (respectively to E ′′) of Wn in this basis.
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(c) Let us define

W ′′′
n :=




p 1

1 . . . . . .
. . . . . . 1

1 3


 ∈ Mp−2(IR).

From Proposition 10.1.2, and since both W ′′
n and W ′′′

n are symmetric, their eigenval-
ues are simple and those of W ′′′

n strictly separate those of W ′′
n . Denoting by P, Q, R

the characteristic polynomials of W ′
n, W

′′
n , W ′′′

n , we have (expand with respect to last
row and last column) P (X) = (X − 1)Q(X)− 2R(X). Then proceed as in the proof
of Proposition 10.1.2.

3. (a) The eigenvectors are rj := (1, . . . , 1, 1 − j, 0, . . . , 0)T (with j − 1 times a 1) for
j = 2, . . . , n and rn+1 := (1, . . . , 1)T . The corresponding eigenvalues are given by
λj =

∑
k rj

kak.

(b) That each sum of a row or of a column equals 1 is clear. Also, bj −aj ≥ (j−1)(aj−1−
aj) ≥ 0. Thus M(a) is bi-stochastic. Next, bj+1 −aj+1 − (bj −aj) = j(aj −aj+1) ≥ 0.
At last, bn − an = 1 − nan ≤ 1.
Let us remark that λj = bj − aj for j = 2, . . . , n.

(c) We may assume that µ1 ≤ · · · ≤ µn. We need to solve the linear system

a1 − a2 = µ1,

a1 + a2 − 2a3 = µ2,
...

a1 + · · · + an−1 − (n − 1)an = µn−1,

a1 + · · · + an = 1.

Elimination between the two last equations gives the value of an (through 1−nan =
µn−1). Then a backward induction gives a unique value of aj for j ≥ 2. Last,
knowing a2, . . . , an, the last equation gives a unique value for a1. Thus this n × n
system is uniquely solvable.
There remains to prove that a ∈ S. First of all, we have bj −aj = µj−1 and therefore
bj+1 − aj+1 − (bj − aj) ≥ 0, which exactly means that a is non-increasing. Last,
µn−1 ≤ 1 gives an ≥ 0.

(d) Corollary 5.5.1 tells that ∆ is included in Σ. Recall that ∆ is the polytope of
dimension (n − 1)2, made of bi-stochastic matrices. Now, let P ∈ Σ. We begin with
the case where P ∈ Symn is positive semi-definite. Then ρ(P ) = ‖P‖2 = 1, which
means that its eigenvalues µj satisfy 0 < µ1 ≤ · · · ≤ µn = 1. Hence there exists
a ∈ S such that µ1, . . . , µn be the eigenvalues of M(a). Since both P and M(a) are
symmetric, thus orthogonally diagonalizable, we equal spectra, we deduce that they
are orthogonally similar : P = UT M(a)U with U ∈ On. Then UT ∆U is a polytope
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of dimension (n−1)2, containing P and contained in Σ, by unitary invariance of the
norm.
In the general case, we use the polar decomposition of P , P = QH. It is well-
defined if P is non-singular and then Q ∈ On, H is symmetric positive definite. If
P is singular, compactness of On and density of GLn(IR) in Mn(IR) show that a
polar decompsition does exist, though possibly non-unique. From unitary invariance
of the norm, we have H ∈ Σ. We may apply our first analysis to H : there exists a
polytope K of dimension (n − 1)2, contained in Σ and containing H. Then QK is a
polytope K of dimension (n − 1)2, contained in Σ and containing P .

4. We use the method of Householder for the QR factorization of a matrix M . It consists
in multiplying at left by a matrix of rotation in the plane of coordinates xp, xq, in order
to replace the (p, q) entry by zero. If the choice of the planes is made in the right order,
one obtains a triangular matrix after n(n − 1)/2 such multiplications. In the case of
Hessenberg matrices, only n − 1 sub-diagonal entries have to be replaced by zeroes, and
it is done after n − 1 such multiplications. Thus R = P1 · · ·Pn−1M and Q = P T

n−1 · · ·P T
1 ,

where Pj denote the rotation matrices.

The QR iteration yields the Hessenberg matrix

M (1) = RQ = P1 · · ·Pn−1MP T
n−1 · · ·P T

1 ,

which can be computing by the successive conjugation by Pj.

In the tridiagonal case, a conjugation is very cheep. It modifies only eight entries. But,
the hermitian property being preserved, we really need to actualize only five entries. Each
actualization needs at most 10 operations, and often less. Thus the complexity of a QR
iteration is an O(n). The factor 20 takes in account not only the actualization, but also
the computation of the cosine and sine of each rotation.

5. In the proof of Theorem 10.1.1, the matrix Mn−r is hermitian. Therefore H is already
tridiagonal and there holds

B =
(

0n−r−1,r

ZT

)
.

Also, N is hermitian. When computing V −1Mn−rV , BS is already known, since it is the
hermitian adjoint of SZ. Thus there remains only the computation of SNS, for which
we only have to calculate the lower half. In all, it needs only about 7r2/2 operations.
Summing up from r = 1 to n − 2, the whole procedure needs 7n3/6 operations.

6. (a) There holds KT = tnnK, TK = t11K.

(b) Expanding with respect to the first row, we find that µ 	→ det(M − λIn − µK)
is affine, say aµ + b. Making µ = 0, we have b = det(M − λIn). Last, a is the
(n, 1)-cofactor, which is precisely (−1)n det(M − λIn)1.
We remark that, in this identity, In may be replaced by any other matrix in Mn(IR).
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(c) We use the previous formula :

(−1)nµ det(A − λIn)1 + det(A − λIn) = det(QR − λIn − µK)
= det R det(Q − λR−1 − µKR−1)

= det R det
(
Q − λR−1 − µ

rnn

K
)

= det R
(
(−1)n µ

rnn

det(Q − λR−1)1

+ det(Q − λR−1)).

Equating the powers of µ gives the desired identity.

(d) We perform a similar computation with A′ = RQ :

(−1)nµ det(A′ − λIn)1 + det(A′ − λIn) = det(RQ − λIn − µK)
= det R det(Q − λR−1 − µR−1K)

= det R det
(
Q − λR−1 − µ

r11
K
)

= det R
(
(−1)n µ

r11
det(Q − λR−1)1

+ det(Q − λR−1)).

Equating the powers of µ gives

det(A′ − λIn)1 =
det R

r11
det(Q − λR−1)1.

Using this identity and that of the previous question, there comes

rnn det(A′ − λIn)1 = r11 det(A − λIn)1.

(e) If � ≥ 1 is an integer, we consider the matrix

K =
(

0 L�

0 0

)
.

If T is upper triangular (block-triangular is sufficient), then

KT =
(

0 T+

0 0

)
, TK =

(
0 T−
0 0

)
,

where T− and T+ are the first and last diagonal blocks.
On an other hand, if

N =
(

0 L
0 0

)
,
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then det(M −λP −µN) is a polynomial in µ of degree �, whose leading order term is
ε(n, �)µ� det L det(M −λP )�. Applying this formula to both A and A′, with M = Q,
P = R−1 and either N = KR−1 or N = R−1K, we obtain the identity (rj denoting
rjj)

rn · · · rn−�+1 det(A′ − λIn)� = r1 · · · r� det(A − λIn)�.

Since none of the rj’s vanish, we deduce that the polynomial det(A−λIn)� keeps the
same roots and same multiplicities along a step of the QR algorithm. Let us remark
that all this analysis applies also to � = 0, where it just gives the invariance of the
eigenvalues, which the QR algorithm is designed for.
For a general matrix, det(A−λIn)� is a polynomial of degree n−2� whenever � ≤ n/2,
and is a constant otherwise. Thus we expect the invariance of n − 2� roots for every
such �. Summing up over �, we obtain that there are in general p(p + 1) (if n = 2p)
or (p + 1)2 (if n = 2p + 1) invariant roots.
For a Hessenberg matrix, these polynomials are constants for every � ≥ 1. Therefore,
we do not find other invariants than the eigenvalues.

7. (a) Since the determinant is invariant under transposition, we have PM(h; z) = PM(1 −
h; z). In other words, the polynomial PM(X + 1/2; z) is even with respect to X and
thus contains only powers of X2. This means that it also reads as RM(X2; z) where
RM is a polynomial. Then QM(Y ; z) := RM(−Y + 1/4; z) works.

(b) Since
(1 − h)N + hNT − zIn = QT ((1 − h)M + hMT − zIn)Q,

there holds PN = PM and therefore QN = QM . Hence QM remains constant along
the QR algorithm.

(c) In particular, the coefficients Jrk(M) of the monomials Y kzn−r in QM remain con-
stants along the QR algorithm. Since PM is also polynomial in the entries of M ,
each Jrk is a polynomial function. For k = 0, these are the coefficients of QM(0; ·),
that is of the characteristic polynomial of M . This just confirms the fact that the
algorithm was designed in such a way that the spectrum be preserved.

(d) When r = n, we only need to compute det((1 − h)M + hMT ). We find here J21 =
−(m12−m21)2. When Theorem 10.2.1 applies, the entries m11, m22 and m21 converge
towards λ2, λ1 and 0. From the invariance of J21, there follows that m2

12 converges
towards −J21. Hence the sequence has at most two cluster points of the form(

λ2 ±c
0 λ1

)
.

From the continuity of the QR factorization, we know that

Qk → diag(sgnλ2, sgnλ1).

Since det A > 0, this limit is ±I2, so that Ak+1 − Ak tends to zero. Having at most
two cluster points, the sequence Ak must therefore converge.
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(e) Again, J21 is the coefficient of h(1−h)zn−2 in PM . The coefficient of zn−2 is the sum
of the principal minors of size 2 in (1 − h)M + hMT . Thus we are gone back to the
2 × 2 case done above. We find

J21(M) = −
∑
i<j

(mij − mji)2 = −1
2
Tr
(
(M − MT )2

)
.

If Ak converges to a diagonal matrix D, then the invariance of J21 gives J21(A) =
J21(D), that is J21(A) = 0, which means that A is symmetric.

8. The convergence of A(k), together with the formula (10.4) and the fact that the angle θk

belongs to [−π/4, π/4), show that θk tends to zero, with θk = O(‖Ek‖). From Theorem
10.3.1, we deduce θk = O(ρk). Therefore R(k) −In = O(ρk). Thus the series

∑
k(R(k) −In)

is convergent, and this implies that the product
∏

k R(k) converges.

9. Such a matrix is unitary if and only if |z1|2+ |z3|2 = 1, |z2|2+ |z4|2 = 1 and z̄1z2+ z̄3z4 = 0.
Using it in the same way as in the real Jacobi method, one vanishes the (p, q)-entry
provided

z̄1(z2hpp + z4hpq) + z̄3(z2hqp + z4hqq) = 0.

One may specialize to matrices where z4 = z1 is real and z3 = −z̄2. Then the sole
constraint is z2

1 + |z2|2 = 1, which means that there are angles θ, φ such that z1 = cos θ
and z2 = eiφ sin θ. To vanish the (p, q)-entry, we need �(e−iφhpq) = 0 and sc(hpp − hqq) +
(c2 − s2)�(e−iφhpq) = 0. The correct choice is eiφ = h̄pq/|hpq| and

cot 2θ =
hpp − hqq

2|hpq|

with θ ∈ [−π/4, π/4). Remark that the other choice (φ + π, −θ) gives exactly the same
unitary conjugation.

10. (a) The decay of ‖Ek‖ was proved in Theorem 10.3.1 without assuming a specific choice
of θk. Hence it holds true as well in the present case. Since the matrices A(k) are
unitary similar to A, they form a relatively compact sequences, whose cluster values
are unitary similar to A and are actually the cluster values of Dk. Hence they are
diagonal, with the eigenvalues of A as diagonal entries.

(b) Since the eigenvalues are simple, Formula (10.4) shows that tan 2θk tends to zero.
Since π/4 ≤ |θk| ≤ π/2, we deduce that θk tends towards π/2. Thus

ak+1
pp − ak

qq = c2(app − aqq)(k) − 2csa(k)
pq → 0,

and similarly ak+1
qq − ak

pp → 0.
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11. Without loss of generality, we may assume that a0 = 1. Then let us form a companion
matrix for the polynomial :

M =




0 1 . . . ...
... . . . . . . 0
0 · · · 0 1

−an · · · · · · −a1


 .

The vector xk := (zk, . . . , zk+n−1)T satisfies the induction xk+1 = Mxk. Up to the normal-
ization, this is the power method. Hence, if the polynomial has only one root of maximal
modulus, and if it is simple, the ratio zk+1/zk converges to that one.

12. (a) Since ‖Mxk‖ = ‖Mk+1x0‖/‖Mkx0‖, the expression equals

1
m

log
‖Mmx0‖

‖x0‖ .

(b) The upper bound comes from the Householder Theorem. Applying Householder
Theorem to (M |E)−1 gives the lower bound for ‖Mky0‖. Without loss of generality,
we may assume that µ > ρ(M |F ). Then a third use of the same Theorem gives
‖Mkz0‖ = o(µk), hence the result.

(c) The last result tells that

1
m

log ‖Mmx0‖ → log ρ(M).

Therefore
1
m

m−1∑
k=0

log ‖Mkx0‖ → log ρ(M),

which exactly tells that log ‖Mkx0‖ converges in the mean (in the Cesaro sense)
towards log ρ(M).

13. Let us recall (Theorem 4.5.1) that M admits exactly one, simple, eigenvalue λ in the disc
Dl.

Without loss of generality, we may assume mll = 0. Let r be the radius od Dl. We use
µ = 0 as a coarse approximation of λ. Computing det M , we may check whether λ = 0.
If so, then we are done. If not, then the inverse power method consists in applying the
power method to M−1 ; at each step, one has to solve a linear system Mx = b. Since 1/λ
is the unique, simple, eigenvalue of maximal modulus of M−1 by assumption, the method
converges and gives the eigenvalue, hence it inverse λ.
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