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Abstract. We study in detail the dynamics of conformal Hamiltonian flows
that are defined on a conformal symplectic manifold (this notion was popu-

larized by Vaisman in 1976). We show that they exhibit some conservative

and dissipative behaviours. We also build many examples of various dynamics
that show simultaneously their difference and resemblance with the contact

and symplectic case.
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1. Introduction

Symplectic dynamics models many conservative movements. Yet, other phe-
nomena are dissipative and require another setting. This is the case of the damped
mechanical systems: they are modelled by conformal Hamiltonian dynamics, which
alter the symplectic form up to a scaling factor.

This notion of conformal symplectic dynamics can be placed in a broader context.
To define such a dynamics, we only need to know in charts an equivalence class of
2-forms for the relation ω1 „ ω2,

where ω1 „ ω2 if ω1 “ fω2 for some non-vanishing function f .

A manifold endowed with such an equivalence class of local 2-forms, one of
them being closed, is called a conformal symplectic manifold, a notion popularized
by Vaisman in [12]. An equivalent notion is the notion of conformal structure
pM,η, ωq, a manifold M endowed with a 1-form called the Lee form and a 2-form
called the conformal form, whose precise definition is given in section 2.1. A proof
of the equivalence of the two notions is given in [2].

We will study autonoumous conformal Hamiltonian flows (CHF in short) pϕsqsPR
of compact manifolds, see definition in Section 2.2. They alter the conformal form
up to a non-constant scaling factor. As the volume ωn can increase or decrease at
different points of the manifold under the action of the dynamics, we can expect dif-
ferent behaviours, some of them being conservative e.g. completely elliptic periodic
orbits, invariant foliations with compact leaves and some other being dissipative,
e.g. attractors or repulsors.

A precise definition of what we call conservative or dissipative requires the in-
troduction of a notion related to the shape of the orbits. The winding of a point
x PM through time is defined as the map t ÞÑ rtpxq (r stands for “rotation”),

rtpxq :“

ż t

0

ηpBsϕspxqqds, @t P R.

Then ϕ˚t ω “ ertω, see Lemma 1, and a point x PM is

‚ either (positively) dissipative when limtÑ`8 |rtpxq| “ `8;
‚ or (positively) conservative.

Our main result, Proposition 7, asserts that for every CHF pϕHt q, if D` is the set of
positively dissipative points and if C` the set of positively conservative points, then
up to a set of zero volume, C` coincides with the set of positively recurrent points,
and then D` with the set of positively non-recurrent points. Also, the ω-limit set
ωpxq of every x P D` is contained in tH “ 0u.
Some examples of conservative and dissipative points are

‚ every attractor intersects tH “ 0u, has non-trivial homology and almost
every point in its basin of attraction that doesn’t belong to the attractor is
in D`, Corollary 9;

‚ if x is a periodic points that is not a critical point of H, then
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– when x P C`, the first return map to a Poincaré section preserves a
closed 2-form and a foliation into (local) hypersurfaces;

– when x P D`, then Hpxq “ 0 and the first return map to a Poincaré
section alters a certain closed 2-form up to a constant factor that is
different from 1;

‚ every fixed point of the flow is conservative.

We will provide also an example of wild conservative points: points that are re-
current, in tH ‰ 0u but whose ω-limit set intersects tH “ 0u, see Section 3.5.
Hence these points satisfy lim inftÑ`8 |rtpxq| “ `8. The origin of most of our
examples is contact geometry. In particular, in Section 2.4, we introduce a notion
of twisted conformal symplectization that is crucial to the elaboration of examples
and counter-examples.
In a similar way, switching H to ´H, the set C´ of negatively conservative points
is the set of x P M such that limtÑ´8 |rtpxq| “ `8 and D´ “ MzC´ is the set
of negatively dissipative points. We prove in Proposition 10 that C´ and C` are
always equal up to a set of zero volume. It is not true that for a general flow, the
set of positively recurrent points is equal to the set of negatively recurrent points
up to a set of volume zero.

A CHF pϕtq is (positively) conservative when C` “M and dissipative when C`
has zero volume. We highlight a strong relation between the topology of tH “ 0u
and the property of being convervative: when tH “ 0u has a neighbourhood V such
that for every loop γ : T Ñ V ,

ş

γ
η “ 0, then pϕHt q is conservative, Section 4.2.

This contains the case when H doesn’t vanish, Section 4.1. But there exist some
examples of conservative CHF that are not in this case, Section 4.5. As the non-
vanishing property is open in C0-topology, we obtain C0-open sets Hamiltonians
H such that the associated CHF flows are conservative.

Among the conservative CHF, the Lee flows are those that correspond to the
Hamiltonian H “ 1 for some choice of representative pη, ωq of the conformally
symplectic structure. They are an extension of the Reeb flows in the contact setting.
We will provide in every dimension examples of Lee flows

‚ that are transitive, Section 4.3; this is different from the Hamiltonian sym-
plectic case, where the level sets of H are preserved;

‚ that have no periodic orbits, Section 4.4; Weinstein conjecture in the con-
tact setting and Arnol’d conjecture in the symplectic setting assert the
existence of periodic orbits. This example emphasizes one difference be-
tween the CHF and the Reeb flows as well as the symplectic Hamiltonian
flows.

We will give a 2-dimensional example of Lee flow that is minimal (Section 1.1.2),
but we don’t know if there is such an example in higher dimension.

We will give in Part 5.2.1 of Section 5.2 an example of dissipative CHF, with
one normally hyperbolic attractor that is a Lagrangian submanifold, one normally
hyperbolic repulsor that is also a Lagrangian submanifold and the remaining part
of the manifold that is filled with heteroclinic connections. This gives a C1-open
set of CHF that are dissipative. See also Section 1.1.1.

There also exist C1-open sets of CHF such that both C` and D` have positive
volume. This happens when there is a normally hyperbolic periodic attractor and
one non degenerate local minimum of eθH where θ is a local primitive of η.

Another feature of the conformally symplectic dynamics is that they preserve
isotropy (this is even a characterization of these dynamics). This is a common
point with symplectic dynamics and contact dynamics. Therefore, we extend or
amend some classical results for the invariant submanifolds of Hamiltonian flows.



4 S. ALLAIS AND M.-C. ARNAUD

In Section 2.5, we prove that the CHF have a codimension 1 invariant foliation and
explain in Section 6.2 the relation for a submanifold between being tangent to this
foliation, being invariant and being isotropic (or coisotropic). This is reminiscent
of Hamilton-Jacobi equation in the usual Hamiltonian setting.
We deduce that on a conformal cotangent bundle (see Section 2.3), a Lagrangian
invariant graph is necessarily contained in the zero level set, which is a major
difference with the usual Hamiltonian setting.
Motivated by the result of Herman in the exact symplectic setting, [6], which asserts
that every invariant torus on which the dynamics is C1-conjugate to a minimal
rotation is isotropic, we consider tori T that are invariant by a CHF and such that
the restricted dynamics is topologically conjugate to a rotation. In Section 6.2, we
recall the definition of the asymptotic cycle of an invariant measure and introduce
in a similar way the asymptotic cycle for flows on tori that are C0-conjugate to a
non necessarily minimal rotation. We prove that if the product of the cohomology
class of the Lee form by the asymptotic cycle of T is non-zero, then T is isotropic.
In particular, when the cohomology class of the Lee form is rational and when the
rotation is minimal, the invariant torus is isotropic.

1.1. 2-dimensional examples.

1.1.1. A dissipative example. Let us discuss a simple two-dimensional dissipative
example that illustrates some of our results. Let pM,η, ωq “ pT2,dx, dx ^ dyq
where T2 denotes the 2-torus R2{Z2 and let H : T2 Ñ R be the Hamiltonian
function Hpx, yq “ sinp2πyq. We have pictured integral curves of the associated
dynamics on Figure 1. In this figure, we see that the only level set of H that is

Figure 1. Dynamics of Hpx, yq “ sinp2πyq in the fundamental
domain r0, 1s2

preserved is tH “ 0u and that it has two connected components: an attractive
circle and a repelling one. Such a picture can be drawn in any dimension: if the
Lee form is not exact, there exist Hamiltonian flows with attractive or repelling
hyperbolic orbits (cf. Proposition 24). Attractors (or repellers) are not necessarily
contained in tH “ 0u: lifting this dynamics on the cover R{ZˆR{2Z, one could see
any of the two cylinders bounding the two attracting circles as attractors. However,
as we will see attractors always intersect tH “ 0u. On Figure 1, we see that the
attractor is winding in the x’s direction. In general, the Lee form is not exact in
any neighborhood of the intersection of an attractor with tH “ 0u (cf. Corollary 9).
In particular, an attractor cannot be finite and must intersect tH “ 0u.
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1.1.2. A conservative example. In the opposite direction, let us point out the exis-
tence of conformal Hamiltonian dynamics that preserve the symplectic form ω but
the behavior of which nonetheless differs from the symplectic Hamiltonian case. As
a simple 2-dimensional example, let us consider the 2-torus T2 endowed with its
canonical area form ω “ dx ^ dy once again. Let us fix a, b P R and choose the
Lee form η :“ adx` bdy. The Hamiltonian flow of H ” 1, which is called the Lee
flow associated to the representative of the conformally symplectic structure (the
gauge) pη, ωq, is ϕtpx, yq “ px ` bt, y ´ atq. If a and b are rationally independent,
this flow is minimal. This is a striking difference with autonomous Hamiltonian
flows of symplectic manifolds, where trajectories are never dense and there usually
are plenty of periodic orbits. In general, we prove that there exist topologically tran-
sitive Lee flows in any dimension and that there exist Lee flows without periodic
orbit in any dimension (cf. Propositions 15 and 16). In both cases, the Lee form
η is not completely resonant (i.e. the set of its integrals along the loops is a dense
subgroup of R), which is necessary in order to have dense trajectories. One could
ask whether there always is a periodic orbit when η is completely resonant, but
this question is harder than solving the Weinstein conjecture (i.e. the existence of
a periodic orbit for any Reeb flow of a closed contact manifold).

1.2. Structure of the article.

‚ In section 2, we introduce the notions of conformal manifold and conformal
Hamiltonian dynamics and prove some of their properties, Then we give
some examples: the conformal cotangent bundle, the twisted conformal
symplectization, and describe the invariant foliation.

‚ In section 3, we characterize the global conservative-dissipative decomposi-
tion of the dynamics in term of recurrence. We prove the almost everywhere
coincidence of the behaviours in the past and in the future. We also prove
that the boundedness of the winding number implies the existence of invari-
ant measures. We also provide an example of orbits that are conservative
and have a strange oscillating behaviour.

‚ In section 4, we give some topological conditions on tH “ 0u that imply
that the dynamics is conservative. We gave some examples of such dynamics
that are transitive and some others that have no periodic orbit. We give
an example of a conservative dynamics for which the topological condition
for tH “ 0u is not satisfied.

‚ In section 5, we begin by studying some ergodic measures whose support is
dissipative. Then we give examples of dissipative dynamics with Lagrangian
attractors and repulsors, and also examples with periodic attractors and
repulsors. We also give sufficient conditions implying that some connected
component of tH “ 0u cannot be an atttractor.

‚ In section 6, we give some condition that implies that a component of
tH “ 0u is in the closure of a non-compact leaf of the invariant distribution.
Then we study invariant submanifolds from different points of view: their
position relatively to the invariant foliation, and when they are rotational
tori, the relations between their asymptotic cycle and their isotropy.

‚ Finally, there is an appendix dealing with isotropic submanifolds.

1.3. Acknowledgements. The authors are grateful to Ana Rechtman for listen-
ing some preliminary versions of this work, discussing them and pointing out the
link with classical results on foliations. The first author was supported by the
postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris.
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2. Preliminaries

2.1. Conformal symplectic manifolds. Given a closed 1-form η, the associated
Lichnerowicz-De Rham differential dη is defined on the differential forms α by
dηα :“ dα´ η ^ α. It satisfies d2

η “ 0 and dη`dfα “ efdηpe
´fαq. If dηα “ 0, one

says that α is η-closed.
Given an even dimensional manifold M , a conformal symplectic structure is an

equivalence class of couples pη, ωq where η is a closed 1-form of M and ω is a
non-degenerate 2-form that is η-closed, two such couples pηi, ωiq, i P t1, 2u, being
equivalent if there exists a map f : M Ñ R such that η2 “ η1 ` df and ω2 “ efω1.
A conformal symplectic manifold is an even dimensional manifold M endowed with
a conformal symplectic structure, we will often work with a specific representative
pη, ωq and write pM,η, ωq the conformal symplectic manifold. A notion that does
not depend on the specific choice of representative pη, ωq is called gauge invariant
or well defined up to gauge equivalence. The closed 1-form η is called the Lee
form of pM,η, ωq, its cohomology class rηs P H1pM ;Rq is gauge invariant. A
conformal symplectomorphism ϕ : pM1, η1, ω1q Ñ pM2, η2, ω2q is a diffeomorphism
ϕ : M1 Ñ M2 such that ϕ˚η2 “ η1 ` df and ϕ˚ω2 “ efω1 for some f : M1 Ñ R
(this notion is gauge invariant). When dimM ě 4, the second equality implies the
first one.

Similarly to the symplectic case, a submanifold N of a conformal symplectic
manifold pM,η, ωq is called isotropic if TN Ă TNω, coistropic if TNω Ă TN and
lagrangian if TN “ TNω (where Eω denotes the ω-orthogonal bundle of the bundle
E), this notion is gauge invariant.

A symplectic manifold pM,ωq has a natural conformal symplectic structure p0, ωq
(which is the same as p0, λωq for λ P R˚); conversely, a conformal symplectic
structure pη, ωq comes from a symplectic structure if and only if η is exact.

2.2. Hamiltonian dynamics. Given a map H : M Ñ R defined on a conformal
symplectic manifold pM,η, ωq, we define its associated Hamiltonian vector field X
by ιXω “ dηH, conversely H is the Hamiltonian of X. When the cohomology
class of η is not 0, then H is unique. This matching Hamiltonian-vector field does
depend on the choice of representative pη, ωq but not the algebra of Hamiltonian
vector fields: the previous vector field X is the same as the one induced by efH for
the Lee form η`df . One can extend this definition to time-dependent Hamiltonian
maps but we will focus on autonomous Hamiltonian in this paper. When H ” 1,
the associated vector field Lη is called the Lee vector field of η and its flow is called
the Lee flow.

Let us assume that the vector field X associated with H is complete. Let us
denote pϕtq its flow and

rHt pxq :“

ż t

0

ηpX ˝ ϕspxqqds, @x PM,@t P R.

When the choice of H is clear, we set rt :“ rHt .

Lemma 1. Given a complete Hamiltonian flow pϕtq on pM,η, ωq associated with
a Hamiltonian H, for all t P R,

ϕ˚t ω “ ertω, ϕ˚t dηH “ ertdηH, H ˝ ϕt “ ertH and ϕ˚t η “ η ` drt.

In particular, the level set tH “ 0u is invariant under the flow and 1
Hω is an

invariant 2-form on tH ‰ 0u.

Proof. By taking the Lie derivative of ω,

LXω “ dpdηHq ` ιXpη ^ ωq “ η ^ dH ` ηpXqω ´ η ^ pιXωq
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Thus,

LXω “ η ^ dH ` ηpXqω ´ η ^ dH ` η ^ ηH “ ηpXqω,

which implies the first equality of the statement.
We deduce that

ϕ˚t pdηHq “ ϕ˚t pιXωq “ ωpX ˝ ϕt,dϕt¨q “ ωpdϕtX,dϕt¨q

“ ιXpϕ
˚
t ωq “ ιXpe

rtωq “ ertdηH.

Injecting X in ιXω “ dηH, one gets dH ¨X “ ηpXqH, which implies that hptq :“
H ˝ ϕtpxq, for a fixed x P M , satisfies h1ptq “ ηpX ˝ ϕtpxqqhptq and the third
statement follows. Finally, the last statement is due to LXη “ dpηpXqq. �

We remark that the relations ϕ˚t ω “ ertω and ϕ˚t η “ η ` drt are also satisfied
in the time-dependent setting. This indeed implies that conformal Hamiltonian
diffeomorphisms are conformal symplectomorphisms.

2.3. Conformal cotangent bundles. Given a manifold L endowed with a closed
1-form β, one can define a conformal symplectic structure on T˚L denoted T˚β L

in the following way. Let π : T˚L Ñ L be the cotangent bundle map and λ the
associated Liouville form: λpq,pq ¨ ξ :“ ppdπ ¨ ξq. The conformal structure defining
T˚β L is pη, ωq :“ pπ˚β,´dηλq. The neighborhood of the 0-section of T˚β L is a model
of a neighborhood of a Lagrangian embedding of L pulling back the Lee form to β
(see Section A.2).

Let us recall how one can canonically extend diffeomorphisms and flows of M to
conformal symplectomorphisms and Hamiltonian flows of T˚βM . Let f : M Ñ N

be a diffeomorphism, one can symplectically extend it to f̂ : T˚M Ñ T˚N by the
well-known formula:

f̂pq, pq “
`

fpqq, p ˝ df´1
q

˘

, @pq, pq P T˚M.

Now if the diffeomorphism f : M Ñ N satisfies f˚β “ α ` dr, for closed 1-forms

α, β and some map r : M Ñ R, the extension f̂ : T˚αM Ñ T˚βN defined by

f̂pq, pq “ pfpqq, erpqqp ˝ df´1
q q, @pq, pq P T˚M

is conformally symplectic. Indeed, let us denote by πM , πN the associated cotangent

bundle maps, λM , λN the associated Liouville forms. Then f̂˚λN “ er˝πMλM :
´

f̂˚λN

¯

pq,pq
¨ ξ “ erpqqp ˝ df´1 ˝ dπN ˝ df̂ ¨ ξ “ erpqqp ˝ dπM ¨ ξ

as πN ˝ f̂ “ f ˝ πM . We deduce f̂˚pdπ˚Nβ
λN q “ er˝πMdπ˚Mα

λM :

f̂˚pdλN ´ π
˚
Nβ ^ λN q “ dper˝πMλM q ´ π

˚
M pα` drq ^ per˝πMλM q

“ er˝πM pdλM ´ π˚Mα^ λM q.

Now given a flow ft : M ÑM , with f0 “ id, of associated vector field Xt, one has

f˚t β “ β`drt with rtpqq :“
şt

0
βpXs˝fspqqqds so the associated conformal symplectic

flow pf̂tq is well-defined and one checks that it corresponds to the Hamiltonian flow
of Htpq, pq “ ppXtpqqq.

2.4. Twisted conformal symplectizations. A large class of conformal symplec-
tic manifold that are non-symplectic is given by the conformal symplectizations of
contact manifolds. Let pY 2n`1, αq be a manifold endowed with a contact form α
(i.e. a 1-form satisfying α ^ pdαqn ‰ 0), its conformal symplectization SconfpY, αq
is the manifold Y ˆS1 endowed with the structure pη “ ´dθ, ω “ ´dηpπ

˚αqq where
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S1 “ R{Z whereas θ : Y ˆ S1 Ñ S1 and π : Y ˆ S1 Ñ Y are the canonical projec-
tions. The conformal symplectization only depends on the oriented contact distri-
bution kerα. Indeed, when pη1, ω1q “ pη ´ df,´dη1pe

´fαqq, px, θq ÞÑ px, θ ´ fpxqq
is a conformally symplectic diffeomorphism between pω, ηq and pω1, η1q.

Given a closed 1-form β of Y , we also define the β-twisted conformal symplec-
tization of pV, αq by replacing η in the previous definition with η “ π˚β ´ dθ, we
denote it Sconf

β pY, αq. We check that ω is non-degenerate by showing that ωn`1

does not vanish:

p´1qn`1ωn`1 “ pn`1qpdθ´π˚βq^π˚α^pdpπ˚αqqn “ pn`1qdθ^π˚pα^pdαqnq ‰ 0,

the second equality comes from the fact that β^α^pdαqn “ 0 for a degree reason
and the contact hypotheses implies the non-vanishing of the last expression. When
the choice of the contact form α is clear, the couple pη, ωq “ pπ˚β´ dθ,´dηpπ

˚αqq
as well as the associated Lee vector field and Hamilton equations will be implicitly
chosen or referred to as standard.

Let us show how the study of conformal Hamiltonian dynamics will also inform
us about contact Hamiltonian dynamics , see also Proposition 23. We recall that
the contact Hamiltonian vector field X associated with the contact Hamiltonian
map H : Y Ñ R is defined by

(1)

#

αpXq “ H,

ιXdα “ pdH ¨Rqα´ dH,

whereR is the Reeb vector field defined by αpRq “ 1 and ιRdα “ 0 (the Hamiltonian
vector field associated with H “ 1).

Lemma 2. Let H : Y Ñ R be a contact Hamiltonian map of the contact manifold
pY, αq with fixed contact form α associated with the Reeb vector field R and let X
be the associated Hamiltonian vector field. The conformal Hamiltonian vector field

on Sconf
β pY, αq associated with rH : px, θq ÞÑ Hpxq is

rX “ X ‘ pβpXq ´ dH ¨RqBθ P TY ‘ TS
1.

In particular, the standard Lee vector field is L :“ R‘ βpRqBθ.

Proof. Let us first derivate the expression of the Lee vector field L. Let η :“
π˚β ´ dθ be the Lee form and ω :“ ´dηpπ

˚αq be associated symplectic form. Let
us write L “ V ‘ fBθ, V being a vector field of Y and f : Y Ñ R. Since ιLω “ ´η,
one has ηpLq “ 0, that is f “ βpV q. Developing the Lee equation, one then gets

ιLdpπ˚αq ` αpV qpπ˚β ´ dθq “ π˚β ´ dθ.

By identification, αpV q “ 1 and ιV dα “ β ´ αpV qβ “ 0, therefore V “ R. The
general case is also deduced by identification, once we have remarked that

ηp rXq “ ωp rX,Lq “ d rH ¨ L´ rHηpLq “ dH ¨R.

�

Therefore the conformal Hamiltonian flow pΦtq of Sconf
β pY, αq lifting the contact

Hamiltonian flow pϕtq is Φtpx, θq “ pϕtpxq, θ ` ρtpxq ´ rtpxqq where

rtpxq “ r
ĂH
t px, θq “

ż t

0

pdHpϕspxqq ¨Rqds and ρtpxq “

ż t

0

βpBsϕspxqqds.

The expression of rt is consistent with the following general fact for conformal
Hamiltonian vector fields X of pM,η, ωq:

ηpXq “ ωpX,Lq “ dH ¨ L´ ηpLqH “ dH ¨ L,
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where L is the Lee vector field. An isotropic embedding i : L ãÑ pY, αq is by
definition an embedding such that i˚α “ 0, it is Legendrian when the dimension of L
is maximal: 2 dimL`1 “ dimY . One can associate to every isotropic submanifold
L Ă Y the isotropic lift L ˆ S1 Ă Sconf

β pY, αq. Therefore, dynamical properties of
contact Hamiltonians can be deduced from properties of conformal Hamiltonians
“by projection Sconf

β pY, αq Ñ Y ”. See Part 5.2.1 of section 5.2.

2.5. The invariant distribution F . In the conformal setting, the Hamiltonian
map H is not an integral of motion. But the (singular) distribution F :“ ker dηH
is still invariant since ϕ˚t dηH “ ertdηH (Lemma 1). Moreover, we have

d
`

dηHq “ η ^ dH “ η ^ dηH

hence by Frobenius theorem, at every regular point the Pfaffian distribution ker dηH
is integrable.

However, in dynamical systems with dissipative behaviors, its regular leaves are
often non-compact (the important exception being tH “ 0u). Let us describe the
major properties of F .

Lemma 3. If γ : r0, 1s ÑM is a path tangent to F , then Hpγp1qq “ e
ş

γ
ηHpγp0qq.

Proof. Similarly to the proof of Lemma 1, h :“ H ˝ γ satisfies h1 “ ηp 9γqh. �

Corollary 4. Every connected submanifold L ĂM tangent to F is either included
in tH “ 0u or in tH ‰ 0u. In the case where the pull-back of the Lee form to L is
not exact, L is included in tH “ 0u.

In the symplectic case, regular levels of H admit invariant volume forms (see
e.g. [3, §I.8]), the following proposition generalizes this phenomenon.

Proposition 5. Let pM,η, ωq be a 2n-dimensional closed conformal symplectic
manifold and H : M Ñ R a Hamiltonian, the flow of which is pϕtq. Let i : Σ ãÑM
be an embedded leaf tangent to F . Then there exists a volume form µ of Σ such
that ϕ˚t µ “ epn´1qrtµ. Moreover, there exists a p2n ´ 1q-form µ0 on M such that
µ “ i˚µ0 and µ0 ^ dηH “ ωn in the neighborhood of Σ.

Proof. Let µ1 be a p2n´1q-form on M such that i˚µ1 is a volume form of Σ (which
is oriented by dηH). By assumption, pdηHqx ‰ 0 for x P Σ whereas i˚dηH “ 0 so
pµ1^dηHqx ‰ 0 for every x P Σ. Since Σ is an embedded leaf, there exists an open
neighborhood U of Σ on which µ1^ dηH does not vanish. There exists f : M Ñ R
that does not vanish on U such that fµ1 ^ dηH “ ωn restricted to U . Let us show
that µ0 :“ fµ1 and the volume form µ :“ i˚µ0 are the desired forms.

Let us recall that LXω “ ηpXqω and LXdηH “ ηpXqdηH (Lemma 1). Let us
apply LX to the equation µ0 ^ dηH “ ωn:

pLXµ0q ^ dηH ` µ0 ^ ηpXqdηH “ nηpXqωn.

Therefore,
pLXµ0q ^ dηH “ pn´ 1qηpXqµ0 ^ dηH

so that
i˚pLXµ0q “ pn´ 1qηpXqi˚µ0.

Since the flow pϕtq preserves Σ, i˚pLXµ0q “ LXpi˚µ0q and the conclusion follows.
�

Corollary 6. Every embedded leaf of F outside tH “ 0u admits an invariant
volume form

Proof. Let µ be the volume form associated with Σ by Proposition 5. The volume
form µ

Hn´1 is invariant. �
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When the embedded leaf of F is not compact, this invariant volume can be
unbounded.

3. A global decomposition of the phase space: conservative versus
dissipative

Let us introduce three notions of attractors that will be used in different parts
of this article.

‚ An invariant compact subset A Ă M is a weak attractor if there exists an
open subset U Ą A, called a basin of attraction of A, such that

Ť

xPU ωpxq Ă
A where ωpxq is the omega-limit set of x. The basin of attraction is not
necessarily unique.

‚ A subset A ĂM is a strong attractor if there exists an open subset U Ą A,
such that @t ą 0, ϕtpUq Ă U and A “

Ş

tą0 ϕtpUq (which implies that A is
compact and invariant).

‚ an invariant closed submanifold N ĂM is normally hyperbolically attractive
if there exists a tubular neighbourhood V “ jpN ˆ r´ε0, ε0sq of N where
j : N ˆ r´ε0, ε0s ãÑ M is an embedding, τ ą 0 and a P p0, 1q such that
ϕHτ pV q Ă IntpV q and if we denote Vε “ jpN ˆ r´ε, εsq, then

@ε P p0, ε0s, ϕ
H
τ pVεq Ă Vaε.

Observe that a strong attractor is always a weak attractor.

3.1. The conservative-dissipative decomposition. We defined in the intro-
duction the partition in invariant sets M “ C` \D` with

(2) C` :“

"

x PM | lim inf
tÑ`8

|rtpxq| ă `8

*

“

"

x PM | lim inf
pÑ`8

|rppxq| ă `8

*

and

(3) D` :“

"

x PM | lim
tÑ`8

|rtpxq| “ `8

*

.

The second definition of C` is to be understood with p P N; the equality between
both definitions is due to |Btrtpxq| ď }ηpXq}8 ă `8 (see Lemma 1).

Proposition 7. Up to a set with zero Lebesgue measure, the set of positively recur-
rent points coincides with C`. The ω-limit set of every point in D` is in tH “ 0u.
Almost every point in D` is in tH ‰ 0u and if x P D` X tH ‰ 0u, rtpxq Ñ ´8 as
tÑ `8 and every neighbourhood of ωpxq “ A contains a closed curve γ such that
ş

γ
η ‰ 0. Hence A is infinite.

Moreover, for every embedded leaf Σ included in tH ‰ 0u with a proper inclusion
map, up to a set with zero pn´ 1q-dimensional volume, C` X Σ coincides with the
set of positively recurrent points in Σ.

Proof. Let us first remark that ωn-almost every point of tH “ 0u is trivially re-
current and in C`: every point of the subset tH “ 0u X tdH “ 0u is fixed by the
dynamics whereas tH “ 0u X tdH ‰ 0u is negligible.

Since H ˝ ϕt “ ertH by Lemma 1, a point x P M satisfying rtpxq Ñ `8 must
be in tH “ 0u X tdH ‰ 0u which is a negligible set. Hence if x P D` X tH ‰ 0u,
rtpxq Ñ ´8 as t Ñ `8 and then limtÑ8Hpϕtxq “ 0 and x is not positively
recurrent.

Let us now show that almost every point of C1` :“ C` X tH ‰ 0u is recurrent.
According to Lemma 1, H ˝ ϕt “ ertH, so

C1` “
"

x PM | lim sup
pÑ`8

|Hpϕppxqq| ‰ 0

*

.
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For k P N˚, let us define the following compact sets

Hk :“

"

x PM | |Hpxq| ě
1

k

*

.

Then C1` is the increasing union of the C1k’s defined by

C1k :“ Hk X
č

NPN

ď

pěN

ϕ´1
p pHkq, @k P N˚.

For each k P N˚, there is a well-defined first-return measurable map fk : C1k ý,
fkpxq :“ ϕnpxqpxq where npxq :“ mintp P N˚ | ϕppxq P Hku. Since the 2-form ω

H
of tH ‰ 0u is preserved by ϕp for all p P N (Lemma 1), the measurable maps fk’s

are preserving the measure ν : A ÞÑ
ş

A
ωn

Hn . Since, for k P N˚, C1k has a countable
basis of open sets and a measure νpC1kq ď νpHkq ď knωnpMq which is finite, the
Poincaré’s recurrence theorem implies that almost every point of C1k is recurrent for
fk.
Let us prove that if x P D` X tH ‰ 0u, every neighbourhood V of ωpxq contains a
closed curve γ such that

ş

γ
η ‰ 0. By compacity of ωpxq, one can assume that V

is a finite union of path-connected contractible open sets Vj . Let K ą 0 be such
that |

ş

γ
η| ă K for every γ : r0, 1s Ñ Vj and every j (where η denotes the Lee

form). Let T ą 0 be such that for all t ě T , ϕtpxq P V and let j0 be such that
there exist arbitrarily large t’s satisfying ϕtpxq P Vj0 . Let t1 ą t0 ą T be such that
rt0pxq ´ rt1pxq ą K and ϕtipxq P Vj0 for i P t0, 1u. Then concatenating t ÞÑ ϕtpxq,
t P rt0, t1s, with a path of Vj0 connecting ϕt1pxq to ϕt0pxq, one gets a loop γ : I Ñ V
satisfying

ş

γ
η ‰ 0. The conclusion follows.

Finally, let Σ Ă tH ‰ 0u be an embedded leaf of F with a proper inclusion map.
We have seen that no point in D`XΣ is positively recurrent. Since C`XΣ “ C1`XΣ,
it is enough to prove that almost every point of C1k XΣ is recurrent, for all k P N˚.
Let µ be the volume form associated with Σ by Proposition 5, then the first return
maps fk|ΣXC1k are preserving the measure νΣ : A ÞÑ

ş

A
µ

Hn´1 defined on Σ. Since

Σ ãÑ tH ‰ 0u is proper, the Σ X C1k’s are compact, so the νΣpΣ X C1kq’s are finite.
The conclusion follows. �

We recall that U ĂM is a wandering set if DT ą 0, @t ě T, ϕtpUq X U “ H.

Corollary 8. Let U be a wandering set. Then almost every point of U belongs to
D` XD´ and satisfies limtÑ`8Hpϕ

H
t pxqq “ limtÑ´8Hpϕ

H
t pxqq “ 0.

Corollary 9. Let A be a weak attractor with basin U , then for almost every point
x of UzA, rtpxq Ñ ´8 as tÑ `8. In particular, the Lee form is not exact in any
neighborhood of AX tH “ 0u.

As a consequence, an attractor (or repeller) of pϕtq is never a finite set.

Proof of Corollary 9. By definition, points of UzA are not recurrent so almost every
point of UzA is in D` by Proposition 7. The same proposition implies the other
results. �

3.2. Almost everywhere coincidence of past and future. In the remaining of
the article, we will say that a property is almost everywhere satisfied with reference
to every volume form. We have of course that C´ coincides with the set of negatively
recurrent points. What is surprising is that the set of negatively recurrent points
coincide with the set of positively recurrent points up to a set with zero volume.

Proposition 10. The sets C` and C´ coincide up to a set with zero volume.
Moreover, for every embedded leaf Σ included in tH ‰ 0u with a proper inclusion
map, up to a set with zero pn´ 1q-dimensional volume, C` X Σ coincides C´ X Σ.
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Proof. We will prove that up to a set with zero volume C` Ă C´ and we will deduce
the first part of Proposition 10. We keep the notation of the proof of Proposition
7. The first return map fk : C1k ý preserves the finite volume 1

Hnω
n, hence almost

every point of C1k is negatively recurrent for fk. This implies that up to a set with
zero volume, C1` and hence C` is a subset of C´.
The proof of the last part is similar. �

3.3. An example where C` ‰ C´. Adapting the construction made in Section
3.5 and the shadowing lemma, it is not hard to obtain an orbit that is negatively
dissipative and positively conservative, i.e. such that C´ ‰ C`.

3.4. Boundedness of rt and invariant measures. Let us assume that L Ă

M is an invariant measurable set of the dynamics on which pt, xq ÞÑ rtpxq is a
bounded map RˆLÑ R (in particular L Ă C` X C´). Inspired by the proof of [7,
Theorem 5.1.13], let us define the bounded measurable map h : LÑ R,

(4) hpxq :“ sup
tPR

rtpxq.

Then h ˝ ϕt “ h´ rt, so that for instance Lemma 1 implies that, restricted to L,

ϕ˚t pe
hωq “ ehω, ϕ˚t pe

hdηHq “ ehdηH and pehHq ˝ ϕt “ ehH, @t P R.

Corollary 11. An invariant measurable set L Ă M of positive measure on which
pt, xq ÞÑ rtpxq is bounded admits an invariant Borel measure of positive density.

Proof. The measure A ÞÑ
ş

A
enhωn is positive and invariant. �

Corollary 12. If L is an embedded leaf of F on which pt, xq ÞÑ rtpxq is bounded,
then it admits an invariant Borel measure of positive density.

Proof. The desired measure is A ÞÑ
ş

A
epn´1qhµ, where µ is given by Proposition 5.

�

We will see in Section 4.2 that when η is exact in the neighborhood of tH “ 0u,
the flow is conservative and Corollaries 11 and 12 apply.

One of the dynamical importance of these corollaries is signified by Poincaré’s re-
currence theorem: if the invariant measures in question are also finite, almost every
point of the invariant set is recurrent. However, with the exception of regular leafs
of F included in tH “ 0u, the recurrence can also be deduced from Proposition 7.

3.5. An oscillating behavior. In this subsection, we give an example of a flow
possessing orbits included in C` that are in tH ‰ 0u, positively recurrent and whose
ω-limit set intersects tH “ 0u. Hence they have an unbounded associated winding
t P r0,`8q ÞÑ rtpxq.

Proposition 13. There exists a Hamiltonian map H : M Ñ R on some conformal
symplectic manifold, the flow of which satisfying

lim sup
tÑ`8

rtpxq ą lim inf
tÑ`8

rtpxq “ ´8,

for some point x P tH ‰ 0u.

In order to prove this proposition, let us briefly recall the statement of the
Shadowing Lemma for flows (see e.g. [7, Theorem 18.1.6]). Let pϕtq be a smooth
flow on a Riemannian manifold M , the infinitesimal generator of which is Xt. A
differentiable curve c : I Ñ R, I Ă R interval, is called an ε-orbit if } 9cptq ´
Xtpcptqq} ď ε for all t P I. A differentiable curve c : I Ñ R is said to be δ-
shadowed by the orbit pϕtpxqqtPJ if there exists s : J Ñ I with |s1 ´ 1| ă δ such
that dpcpsptqq, ϕtpxqq ă δ for all t P J (d denoting the Riemannian distance).
The Shadowing Lemma states that, given a hyperbolic set Λ of pϕtq, there is a
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neighborhood U Ą Λ, so that for every δ ą 0 there is an ε ą 0 such that every
ε-orbit included in U is δ-shadowed by an orbit of pϕtq.

Proof. Let Σ be a closed hyperbolic surface, let us denote π : T 1Σ Ñ Σ the associ-
ated unit tangent bundle and let β be a non-exact closed 1-form of Σ. Let us denote
pGtq the geodesic flow on T 1Σ and X the associated vector field. Let pM,η, ωq be
a conformal symplectic closed manifold associated with pT 1Σ, π˚βq by Lemma 35
in Appendix A: that is one may assume that L :“ T 1Σ ˆ S1 is a Lagrangian sub-
manifold of M and that the restriction of η to this submanifold is α :“ π˚β ´ dθ
(we identify π˚β with its pull-back by the projection by a slight abuse of notation).
Let W be a Weinstein neighborhood of L: identifying the 0-section of T˚αL with L,
one can see W as a neighborhood of the 0-section of T˚αL (see [2, Theorem 2.11] or
Section A.2). Let us identify the vector field X of T 1Σ with the vector field X ‘ 0
of L and let H : M Ñ R be a Hamiltonian function satisfying Hpq, pq “ ppXpqqq on
W Ă T˚αL (shrinking W if necessary). Let us prove that H satisfies the statement
of the proposition.

Let us first find an orbit pγ, 9γq : R` Ñ T 1Σ of the geodesic flow pGtq such that

(5)

#

DK ą 0,@t ą 0,
ş

γ|r0,ts
β ď K,

lim suptÑ`8
ş

γ|r0,ts
β ą lim inftÑ`8

ş

γ|r0,ts
β “ ´8.

Such an orbit can be found applying the Shadowing Lemma to pGtq. Indeed, let
us fix δ P p0, 1q and take an ε ą 0 associated by the Shadowing Lemma. Let
a : R{TZ Ñ Σ be a closed geodesic of unit speed such that

ş

a
β ą 0 (up to

reparametrization, such an a can be obtained as a minimizer of the energy functional
among loops homotopic to a loop b satisfying

ş

b
β ą 0). By topological transitivity

of pGtq, there exists an ε{2-orbit pc, 9cq : r0, T 1s Ñ T 1Σ such that 9cp0q “ 9ap0q
and 9cpT 1q “ ´ 9ap0q. By successively concatenated c or c´1 with higher and higher

iterations of a and a´1, one can thus build an ε-orbit pγ̃, 9̃γq : R` Ñ T 1Σ satisfying
conditions (5) where γ is replaced with γ̃. The Shadowing Lemma applied to this
ε-orbit gives us the desired γ.

According to Section 2.3, on W Ă T˚αL, the Hamiltonian flow pϕtq of H takes
the form

ϕtpq, p; zq “ pGtpqq, e
rtpqqp ˝ pdGtpqqq

´1; zq,

where pq, pq P T˚pT 1Σq, z P T˚S1 and

rtpqq :“

ż t

0

π˚βpBsGspqqqds,

as long as ϕspq, p; zq stays inside W for s P r0, ts. As pGtq is Anosov, one has the
bundle decomposition T pT 1Σq “ Es ‘ RX ‘ Eu which is preserved by pGtq with
dGt ¨ X “ X ˝ Gt. Let q ÞÑ Pq be the section of T˚pT 1Σq vanishing on Es ‘ Eu

and such that P pXq ” 1; it satisfies Pq ˝ pdGtpqqq
´1 “ PGtpqq for all q. For fixed

z P T˚S1 and λ ą 0, let us consider the R`-orbit generated by p 9γp0q, λP 9γp0q; zq
(where γ satisfies (5)). By the first condition of (5), rtp 9γp0qq is bounded from
above so this orbit keeps inside W for a sufficiently small λ. The second condition
of (5) implies the statement for x “ p 9γp0q, λP 9γp0q; zq (the orbit is in tH ‰ 0u since
P pXq ” 1). �

4. Global conservative behaviors

As we have seen in Corollary 9, a necessary condition for attractors to appear
is the non-exactness of the Lee form in the neighborhood of tH “ 0u. Here,
we study the opposite case: Hamiltonian flow pϕtq of H on a closed conformal
symplectic manifold pM2n, η, ωq in the case where η is exact in the neighborhood
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of the invariant set tH “ 0u. That is, we assume that there exists an open set
U containing tH “ 0u such that rη|U s “ 0 in H1pU ;Rq. This hypotheses is thus
gauge invariant.

4.1. When H does not vanish. Let us first assume that H does not vanish and
denote Xη

H its associated vector field for the Lee form η. Possibly reversing time,

we will assume that H is positive. Since Xη
H “ Xη`df

efH
, by setting f “ ´ log ˝H,

we see that Xη
H is the Lee vector field of η1 “ η´dpln ˝Hq. Therefore, Hamiltonian

flows of non-vanishing H are Lee flows.
We now assume that H ” 1 for the choice of gauge pη, ωq, so that the vector

field is Lη. Since ηpLηq “ 0, rt ” 0 and C` “ C´ “ M , i.e. the flow is positively
and negatively conservative with the terminology given in the introduction. Thus
almost every point is positively and negatively recurrent.

Lemma 1 implies that ω is preserved by the flow. Let us point out that this flow
is not conjugated to a symplectic flow in general since one can have H2pM ;Rq “ 0
(e.g. the conformal symplectization of the contact sphere pS2n´1, 1

2 pxdy ´ ydxqq).
The volume form ωn is preserved so almost every point is recurrent according to
Poincaré’s recurrence theorem. More precisely, almost every point of a proper
embedded leaf of F is recurrent according to Proposition 7 and Corollary 12. Let
us remark that in the case where η is completely resonant, (i.e. the subgroup
t
ş

γ
η; γ : S1 ÑMu is discrete), there exists k P R˚ and a map θ : M Ñ R{kZ such

that η “ dθ and the invariant foliation pθ´1psqqsPR{kZ has compact leafs.

4.2. When η is exact in the neighborhood of tH “ 0u. Let us move on to the
general case: there exists an open neighborhood U of tH “ 0u on which η|U “ dθ
for some θ : U Ñ R.

Proposition 14. Under the hypotheses of this section, the map pt, xq ÞÑ rtpxq is
bounded on RˆM .

Proof. Let ε0 ą 0 be such that the neighborhood V0 :“ H´1pr´ε0, ε0sq is included
in U and let V :“ H´1pr´ε, εsq for some ε P p0, ε0q. Let A :“ maxV0

θ ´minV0
θ,

b :“ infMzV |H| and B :“ supMzV |H|. We will show that

|rtpxq| ď 2A` logpB{bq, @pt, xq P RˆM.

Let pt, xq P R ˆM , if ϕspxq P V0 for all s P r0, ts (rt, 0s if t ă 0), then |rtpxq| ď
A. If x P MzV and ϕtpxq P MzV , then b{B ď |Hpϕtpxqq{Hpxq| ď B{b so
|rtpxq| ď logpB{bq according to Lemma 1. If x P V and ϕtpxq R V , we assume
t ą 0, let t0 P r0, ts such that ϕspxq P V0 for all s P r0, t0s and ϕt0pxq P MzV ,
then |rt0pxq| ď A whereas |rt´t0pϕt0pxqq| ď logpB{bq by the above case, implying
|rtpxq| ď A ` logpB{bq. The same is symmetrically true for t ă 0 and with x
and ϕtpxq intertwined. The last case is when x P V and ϕtpxq P V , we assume
t ą 0 (the other case is symmetrical), and ϕs0pxq R V0 for some s0 P r0, ts. One
can find t1 ă s0 ă t2 such that Hpϕt1pxqq “ Hpϕt2pxqq “ ε and ϕspxq P V for
s P r0, t1s Y rt2, ts. By Lemma 1, rt2pxq “ rt1pxq and the conclusion follows from
the first case treated. �

Therefore, according to the conservative-dissipative decomposition of Section 3.1,
M “ C´ “ C` and almost every points of M or an embedded leaf of F in tH ‰ 0u
is positively and negatively recurrent. Moreover, according to Corollaries 11 and
12, M and every embedded leaf of F in tH ‰ 0u admits an invariant Borel measure
of positive density. In particular, almost every point of a closed regular leaf of F
in tH “ 0u is also positively and negatively recurrent.
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4.3. A topologically transitive Lee flow. Our goal is to provide examples of
topologically transitive Lee flow in every dimension.

We have seen in Section 1.1.2 that in dimension 2, there are very simple examples
of minimal Lee flow. We recall it. Let T2 “ R2{Z2 denote the 2-torus with canonical
coordinates x, y P R{Z. Let us fix a, b P R and endow T2 with the conformal
symplectic structure pη, ωq “ padx`bdy,dx^dyq, the Lee flow of which is ϕtpx, yq “
px`bt, y´atq. This flow is minimal if and only if a and b are rationally independent.

One way to extend this example is to remark that in the case a “ ´1, it corre-
sponds to the β-twisted conformal symplectization of the contact manifold pS1,dyq
with β “ bdy.

Proposition 15. Let pY, αq be a closed connected contact manifold with a fixed
contact form, the Reeb flow of which is Anosov and possess a periodic orbit γ such
that

ş

γ
β is irrational for some closed 1-form β. Then, the standard Lee flow of

Sconf
β pY, αq is topologically transitive.

Such a pY, αq can be found in every dimension. Indeed, let N be a closed Rie-
mannian manifold with negative sectional curvature and a non-trivial real homology
group of degree 1: H1pN ;Rq ‰ 0. Let thus β1 be a non-exact closed 1-form such
that

ş

c
β1 is irrational for some loop c. Let π : T 1N Ñ N be the unit sphere bundle

of N endowed with its usual contact structure (the Reeb flow of which is the geo-
desic flow), the β-twisted conformal symplectization of Y :“ T 1N with β :“ π˚β1

follows the hypothesis of the statement. Indeed, by taking a minimum of the energy
functional among loops homotopic to c, one gets a closed geodesic homotopic to c,
so a periodic orbit γ of the geodesic flow such that

ş

γ
β “

ş

c
β1.

However, Lee flows induced by these choices of pY, αq have a lot of periodic orbits
in dimension 2n ě 4 so are not minimal.

Proof of Proposition 15. Let pϕtq be the Reeb flow of Y . According to Lemma 2,
the Lee flow pΦtq of Sconf

β pY, αq “ Y ˆ S1 takes the following form: for all px, θq P

Y ˆ S1, t P R,

Φtpx, θq “ pϕtpxq, θ ` ρtpxqq, where ρtpxq :“

ż t

0

βpBsϕspxqqds.

In order to show topological transitivity, it is enough to prove that for every pair
of product non-empty open sets Ui ˆ Vi Ă Y ˆ S1, i P t1, 2u, there is some px, θq P
U1 ˆ V1 and some t P R such that Φtpx, θq P U2 ˆ V2 (see e.g. [7, Lemma 1.4.2]).
We can assume that the Vi are arcs of length ` ą 0.
By hypothesis, there exists a point y P Y such that ϕt2pyq “ y for some t2 ą 0 and
ρt2pyq is irrational.
We choose xi P Ui for i “ 1, 2. Let δ ą 0 be so small that if a curve c : ra, bs Ñ Y
with cpaq “ x1 and cpbq “ x2 is δ-shadowed by an orbit ν : ra1, b1s Ñ Y , then
νpa1q P U1, νpb1q P U2 and |

ş

c
β ´

ş

ν
β| ă `{3.

By assumption, pϕtq is a topologically transitive Anosov flow (contact Anosov
flows on connected manifolds are topologically mixing [7, Theorem 18.3.6]).

Let ε ą 0 be associated with δ by the Shadowing Lemma. By transitivity, there
exist ε{2-orbits c1 : r0, t1s Ñ Y , c3 : r0, t3s Ñ Y , with c1p0q “ x1, c1pt1q “ y
and c3p0q “ y, c3pt3q “ x2. Then (up to a small deformation at the connecting
points) the concatenated paths νk :“ c1 ¨ c

k
2 ¨ c3, k P N, are ε-orbits for pϕtq. Let

Rk :“
ş

νk
β mod 1 P S1. Since

ş

c2
β is irrational, pRkq is dense in S1. Let us

fix k P N such that θ ` rRk ´ `{3, Rk ` `{3s P V2 for some θ P V1 (the length of
the arcs Vi’s being ą `). Applying the Shadowing Lemma to νk, we find an orbit
ν : r0, T s Ñ Y such that νp0q P U1, νpT q P U2 and

ş

ν
β mod 1 is `{3-close to Rk so

that θ `
ş

ν
β P V2. �
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4.4. A Lee flow with no periodic orbit. Relaxing the transitivity hypothesis,
one can easily produce a Lee flow without periodic orbit.

Proposition 16. Let Tn be the flat n-torus with canonical coordinates xi P R{Z,
and let β :“ a1dx1 ` ¨ ¨ ¨ ` andxn for some fixed ai P R. The standard Lee flow of
Sconf
β pT 1Tnq does not have any periodic orbit if and only if the family p1, a1, . . . , anq

is rationally independent.

This flow is clearly not minimal and, in general, there is not much hope for
the standard Lee flow of a closed twisted conformal symplectization to be minimal
in dimension 2n ě 4. Indeed, the Weinstein conjecture states that every Reeb
flow of a closed contact manifold pY, αq should possess a closed orbit γ, so γ ˆ S1

would be a closed invariant set of the standard Lee flow of the twisted conformal
symplectizations of pY, αq.

Proof of Proposition 16. The Reeb flow of T 1Tn » Tn ˆ Sn´1 is ϕtpx, vq :“ px `

tv, vq. The associated ρtpx, vq :“
şt

0
βpBsϕspx, vqqds mod 1 satisfies ρtpx, vq “

ř

i aitvi mod 1. Therefore, a point px, v, θq P T 1Tn ˆ S1 is a τ -periodic point
of the Lee flow if and only if τv P Zn and

ř

i aiτvi P Z. �

4.5. A conservative behavior with η|tH“0u non exact.

Proposition 17. Let Tn be the flat n-torus with canonical coordinates qi P R{Z,
and let us consider on SconfpT 1Tnq the Hamiltonian Hpq1, . . . , qn, p1, . . . , pn, θq “
p1. The Hamiltonian flow is

ϕHt pq1, . . . , qn, p1, . . . , pn, θq “ pq1 ` t, q2, . . . , qn, p1, . . . , pn, θq.

This flow preserves the conformal 2-form and the zero level tH “ 0u contains a
loop γ such that

ż

γ

η ‰ 0.

Proof. The contact form is the restriction of the Liouville 1-form λ to T 1Tn and the
Reeb vector field R at pq, pq is pp, 0q. Hence dH ¨R “ 0 and the contact Hamiltonian
flow XH satisfies ιXHdλ “ ´dp1 and XH “ p1, 0, . . . , 0q. As dH ¨R “ 0, we deduce
from Lemma 2 that the conformal Hamiltonian vector field is p1, 0, . . . , 0q. �

5. Dissipative behaviors

5.1. Dissipative ergodic measures. Let ν be an ergodic measure and let us
denote

r̄pνq :“

ż

M

ηpXqdν.

The following proposition is the ergodic counterpart of Corollary 4.

Proposition 18. Given an ergodic measure ν, νptH “ 0uq P t0, 1u and in the case
where r̄pνq ‰ 0, the support of ν is included in tH “ 0u.

Proof. The first statement is obvious since tH “ 0u is an invariant set. If r̄pνq ‰ 0
and supp ν Ć tH “ 0u, there exists x P tH ‰ 0u such that rtpxq „ tr̄pνq as tÑ ˘8.
However H is bounded and H ˝ ϕt “ ertH (Lemma 1), a contradiction. �

Let us recall the result of Liverani-Wojtkowski about the Lyapunov spectrum
of conformally symplectic cocycles [8]. We state the results in the invertible case.
Let pM,νq be a probability space with an inversible ergodic map T : M Ñ M
and let A : M Ñ GLpR2nq be a measurable map such that both measurable maps
log` }A

˘1} are integrable defining the cocycle Ampxq :“ ApTm´1xq ¨ ¨ ¨Apxq for
m P Z. According to Oseledets multiplicative ergodic theorem, there exists real
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numbers λ1 ă ¨ ¨ ¨ ă λs called the Lyapunov exponents of A and an associated
decomposition of R2n (that we will call the Lyapunov decomposition of R2n) in
linear subspaces F1pxq ‘ ¨ ¨ ¨ ‘ Fspxq defined for ν-almost every x PM , such that

lim
mÑ˘8

1

m
log }Ampxqv} “ λk, @v P Fkpxq,@k P t1, . . . , su.

The positive integer dk :“ dimFk is well-defined and called the multiplicity of λk,
these multiplicities satisfy

s
ÿ

k“1

dkλk “

ż

M

log |detA|dν.

Liverani-Wojtkowski showed a symmetry of the Lyapunov spectrum in the case
where A takes its values in the conformally symplectic linear group CSpp2nq :“
CSppR2n, ω0q. A conformally symplectic linear map S P CSppE,ωq is a linear map
of a symplectic linear space pE,ωq satisfying S˚ω “ βω for some β P R˚ called the
conformal factor of S.

Theorem 19 ([8, Theorem 1.4]). Let pM,νq be a probability space with an invertible
ergodic map T : M Ñ M and let A : M Ñ CSpp2nq be a measurable cocycle such
that log` }A

˘1} are integrable. Let β : M Ñ R˚ be such that Apxq˚ω0 “ βpxqω0

for all x P M . Then we have the following symmetry of the Lyapunov spectrum
λ1 ă ¨ ¨ ¨ ă λs of A:

λk ` λs´k`1 “ b, where b :“

ż

M

log |β|dν,

for every k P t1, . . . , su. Moreover, the subspace F1‘¨ ¨ ¨‘Fs´k is the ω0-orthogonal
complement of F1 ‘ ¨ ¨ ¨ ‘ Fk.

Let us come back to our setting and consider an ergodic measure ν of M for
the Hamiltonian flow pϕtq. Let us fix a Riemannian metric g on M . By taking a
measurable symplectic trivialization of TM , one naturally extends the Oseledets
multiplicative ergodic theorem for measurable maps A : M Ñ GLpR2nq such that
log` }A

˘1} are integrable for ν to measurable section A : M Ñ GLpTMq of the
fiber bundle GLpTMq such that log` }A

˘1} are integrable where } ¨ } is the Rie-
mannian operator norm associated with g. The section A : x ÞÑ dϕ1pxq satisfies
the integrability condition and the cocycle Am corresponds to dϕm for m P Z. The
associated Lyapunov exponents λ1 ă ¨ ¨ ¨ ă λs define the Lyapunov exponents of the
flow pϕtq for the ergodic measure ν. By compactness of M , t ÞÑ Btplog }dϕtpxqv}q
is bounded, x PM and v P TxMzt0u being fixed, so

lim
mÑ˘8

1

m
log }dϕmpxqv} “ lim

tÑ˘8

1

t
log }dϕtpxqv},

for every px, vq P TM for which one of the limit is defined, where m P Z˚ and
t P R˚.

Corollary 20. Let ν be an ergodic measure of the Hamiltonian flow pϕtq of the
closed conformal symplectic manifold M . Let λ1 ă ¨ ¨ ¨ ă λs be the associated
Lyapunov spectrum and F1, . . . , Fs be the associated Lyapunov decomposition of
TM . For every k P t1, . . . , su,

λk ` λs´k`1 “ r̄pνq

and the subbundle F1‘¨ ¨ ¨‘Fs´k is the ω-orthogonal complement of F1‘¨ ¨ ¨‘Fk.

Proof. We apply Theorem 19 to the section x ÞÑ dϕ1pxq of the subbundle of con-
formally symplectic linear maps of TM , with associated conformal factor β : x ÞÑ
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er1pxq. We only need to prove that b :“
ş

M
log |β|dν equals r̄pνq. By Fubini’s

theorem and invariance of ν,

b “

ż

M

r1dν “

ż

M

ż 1

0

ηpX ˝ ϕtpxqqdtdνpxq “

ż 1

0

ż

M

ηpXqdνdt “ r̄pνq.

�

Let us remark that the fact that F1‘¨ ¨ ¨‘Fs´k is the ω-orthogonal complement
of F1 ‘ ¨ ¨ ¨ ‘ Fk for every k implies that

(6) Fωk X Fs´k`1 “ 0, @k P t1, . . . , su,

ν-almost everywhere.

Corollary 21. Let ν be an ergodic measure of a Hamiltonian flow pϕtq of the
closed conformal symplectic manifold M . There is a measurable sub-bundle F of
the Lyapunov decomposition of TM which is transverse to F on which, for ν-almost
every x PM ,

lim
tÑ˘8

1

t
log }dϕtpxqv} “ r̄pνq, @v P F pxqzt0u.

Proof. Let λ1 ă ¨ ¨ ¨ ă λs be the associated Lyapunov spectrum and F1, . . . , Fs be
the associated decomposition of TM . Let X be the vector field of pϕtq. Since RX
is invariant with dϕ ¨ X “ X ˝ ϕ, there is k P t1, . . . , su such that λk “ 0 and
RX Ă Fk ν-almost everywhere. Let us show that F :“ Fs´k`1 is the desired sub-
bundle. According to Corollary 20, λs´k`1 “ r̄pνq. According to (6), ωpX, vq ‰ 0
for some v P F zt0u when X ‰ 0. Since dηH “ ιXω, the conclusion follows. �

Let r P t1, . . . , su be the maximal integer such that λr ă 0. According to the
non-linear ergodic theorem of Ruelle [10, Theorem 6.3], for every k P t1, . . . , ru and
for ν-almost every x PM , the set

Vkpxq :“

"

y PM | lim sup
tÑ`8

1

t
log dpϕtpxq, ϕtpyqq ď λk

*

,

where d denotes the Riemannian distance, is the image of F1pxq ‘ ¨ ¨ ¨ ‘ Fkpxq by
a smooth injective immersion tangent to identity at x. Therefore the last corollary
implies the following proposition.

Corollary 22. Let ν be an ergodic measure of a Hamiltonian flow pϕtq of the
closed conformal symplectic manifold M such that r̄pνq ă 0 and such that supp ν
is included in a connected component Σ of tH “ 0u without critical point of H.
For ν-almost every point x of Σ, there exists an immersed submanifold V Ă M
transverse to Σ and containing x such that

lim sup
tÑ`8

dpϕtpxq, ϕtpyqq ď r̄pνq, @y P V.

5.2. Examples of isotropic attractors.

5.2.1. Legendrian attractors. Contact Hamiltonian dynamical systems can provide
examples of conformal dynamical systems by taking their lift to the conformal
symplectization (which is closed if the contact manifold is closed).

Proposition 23. Every Legendrian submanifold is a hyperbolic attractor for some
autonomous contact Hamiltonian flow.

Proof. Let L be a Legendrian submanifold of a contact manifold. According to the
contact Weinstein neighborhood theorem, one can assume that L is the 0-section
of pT˚L ˆ R,dz ´ ydxq, with local coordinates px, yq P T˚L and z P R (see e.g.
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[4, Corollary 2.5.9 and Example 2.5.11]). Given H : T˚L ˆ R Ñ R, the contact
Hamilton equations (1) takes the form

$

’

&

’

%

9x “ ´ByH,

9y “ BxH ` yBzH,

9z ´ y 9x “ H.

Choosing Hpx, y, zq “ ´z, the flow is ϕtpx, y, zq “ px, e
´ty, e´tzq. �

Let us give some explicit global examples. Let us first consider the standard
contact sphere pS2n´1, 1

2 pxdy´ ydxqq. Since pCnz0,dx^ dyq is the symplectization
of the standard sphere, every contact Hamiltonian flow can be obtained in the
following way: let H : Cnzt0u Ñ R be a positively 2-homogeneous Hamiltonian,
the flow of which is pΦtq, then

ϕtpzq :“
Φtpzq

}Φtpzq}
, @z P S2n´1,@t P R,

defines a contact Hamiltonian flow of S2n´1. Let Hpx, yq :“ 1
2 p}x}

2 ´ }y}2q, so
that Φtpx, yq “ pcoshptqx ` sinhptqy, sinhptqx ` coshptqyq. The associated contact
flow has one Legendrian attractor L` :“ tx “ yu and one Legendrian repeller
L´ :“ tx “ ´yu, every point outside of them having its α-limit set inside L´ and
its ω-limit set inside L`.

Let us now consider a vector field X on some closed manifold M generating
a flow pftq. According to Section 2.3, this flow extends to a Hamiltonian flow

pf̂tq (identifying the 0-section with M) on T˚M which is fiberwise homogeneous:

f̂tpq, apq “ af̂tpq, pq, @pq, pq P T
˚M , @a P R. Let us endow M with a Riemannian

metric, the flow pf̂tq induces a Contact Hamiltonian flow pϕtq on the unit cotangent
bundle pS˚M, i˚λq (λ being the Liouville form and i : S˚M ãÑ T˚M the inclusion)
by

ϕtpq, pq :“
f̂tpq, pq

}f̂tpq, pq}
, @pq, pq P S˚M.

A hyperbolically attracting (resp. repelling) fixed point x PM of pftq corresponds
to a normally hyperbolically attracting (resp. repelling) Legendrian fiber S˚xM of

pf̂tq.
Let us remark that in both examples, one can directly work in the conformal

symplectization by taking the flow induced by pΦtq (resp. pf̂tq) on the quotient
space pCnzt0uq{pz „ ezq (resp. pT˚Mzt0uq{ppq, pq „ pq, epqq), where e :“ expp1q.

5.2.2. Hyperbolic attractive and repulsive closed orbit in every non-symplectic man-
ifold. Here, by a non-symplectic manifold, we mean a conformally symplectic man-
ifold, the conformal structure of which is not „ p0, ωq.

Proposition 24. Let pM,η, ωq be a conformally symplectic manifold and let γ :
S1 ãÑ M be an embedded loop such that

ş

γ
η ă 0. There exists a Hamiltonian

H : M Ñ R admitting γ as a hyperbolic attracting periodic orbit.

In particular, every non-symplectic manifold admits a conformal Hamiltonian
flow that has a hyperbolic attractive periodic orbit and a hyperbolic repulsive pe-
riodic orbit Hamiltonian.

Proof. Let us first remark that γ is included in an open Lagrangian submanifold.
According to Theorem 36 in Appendix A, using a cut-off function to define H
globally, one can replace M with the normal bundle N Ñ S1 of γ » S1, identified
with the 0-section. As a vector bundle N equals W‘T˚S1, where W is a symplectic
vector bundle. Since the Lagrangian Grassmannian is connected, one can find a
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lagrangian subbundle L ĂW . Then L is a Lagrangian submanifold of N containing
γ.

One can thus assume that M “ T˚β L with γ included in the 0-section identified
with L. The closed form β of L is the pull-back of the Lee form η to L, in particular
r :“

ş

γ
β ă 0. Let X be a complete vector field of L inducing a flow pftq for which

γ is a 1-periodic hyperbolic orbit such that the eigenvalues µ’s of df1pγp0qq satisfy

er ă µ ă 1. Let pf̂tq be the lifted Hamiltonian flow of T˚β L properly cut-off outside

a neighborhood of γ (see the end of Section 2.3). The differential of f̂1 at γp0q is
equivalent to df1pγp0qq ‘ e

rpdf1pγp0qqq
´1 so its eigenvalues are in p0, 1q. �

5.3. Connected components of tH “ 0u and attraction. Here we wonder if
a connected component of tH “ 0u can be an attractor. In Section 1.1.1, we gave
a 2-dimensional example where a connected component of tH “ 0u is attractive.
This is the only example that we know, and here we give conditions that ensure
that such a component cannot be attractive. We will say that a subset Σ of M
separates locally M in two connected components if in every neighbourhood V of
Σ, there exists an open neighbourhood U Ă V of Σ such that UzΣ has exactly two
connected components. The manifold M being connected, we say that Σ separates
globally M if MzΣ is not connected.

Proposition 25. Assume that Σ is an isolated connected component of tH “ 0u
that separates globally and locally M in two connected components. Then Σ cannot
be a strong attractor.

Proof. Let us assume that Σ is a strong attractor. Then there exists an open
neighbourhood U0 of Σ such that U0 X tH “ 0u “ Σ. As Σ separates locally M in
two connected components, there exists a neighbourhood U of Σ such that U Ă U0

has two connected components, U´ and U`. We denote by ε˘ P t´1, 1u the sign of
H|U˘ .

We know that MzΣ is not connected, and the boundary of each of its connected
components intersects Σ and thus contains U´ or U`. This implies that MzΣ has
exactly two connected components, M´ that contains U´ and M` that contains
U`. We denote by ε : MzΣ Ñ t´1, 1u the function such that ε|M˘ “ ε˘.

We choose a smooth bump function χ : M Ñ r0, 1s such that χ is equal to
1 in a neighbourhood of Σ and the support of χ is contained in U . Then the
Hamiltonian K : M Ñ R is defined by K “ χH ` p1´χqε. We have Σ “ tK “ 0u.
The Hamiltonian flow of K coincides with the flow of H in a neighborhood of
Σ and then Σ is also a strong attractor for pϕKt q. If x is a generic point in the
basin of attraction of Σ for K but not in Σ, x is wandering. Observe that a
wandering point is wandering for pϕKt q and pϕ´Kt q. We deduce from Corollary 8
that limtÑ´8Kpϕ

K
t pxqq “ 0 since x was taken generically. But as Σ “ tK “ 0u is

a strong attractor, this is not possible. �

We do not know whether a similar statement is true without the separation
assumption. We obtain the following result when we assume normal hyperbolic
attraction.

Theorem 26. Let us assume pM,η, ωq has dimension 2n ě 4 and let H : M Ñ R
be Hamiltonian. Let Σ be a closed connected component of tH “ 0u without critical
point of H. Then Σ cannot be hyperbolically normally attracting.

Proof. Let us assume that such a Σ is hyperbolically normally attracting and reach
a contradiction. Let us restrict ourself to a neighborhood of Σ. One can assume
that Σ “ tH “ 0u and that M “ Σ ˆ p´ε0, ε0q for some ε0 ą 0 with Hpx, yq “ y
for all px, yq P Σˆ p´ε0, ε0q by a change of variables in a tubular neighborhood of
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Σ. Let Vε :“ Σ ˆ p´ε, εq, then Σ being normally hyperbolic means that one can
assume that there exists a P p0, 1q and τ ą 0 such that

(7) ϕτ pVεq Ă Vaε, @ε P p0, ε0q.

According to Proposition 5 applied to the leaf Σ, there exists a volume form µ
of Σ such that ϕ˚t µ “ epn´1qrtµ and which is the pull-back of a form µ0 of M such
that µ0 ^ dy “ ωn in the neighborhood of Σ. Let π : M Ñ Σ be the projection on
the first factor. By decreasing ε0, one can assume that π˚µ ^ dy does not vanish
so that there exists a non-vanishing map f : M Ñ R`

such that fπ˚µ ^ dy “ ωn. Since µ0 ^ dy “ ωn and µ0 and π˚µ agree on TΣ,
f |Σ ” 1. By (7),

(8) ωnpϕτ pVεqq ď ωnpVaεq, @ε P p0, ε0q.

On the one hand,

(9) ωnpVεq “

ż

xPΣ

ˆ
ż ε

´ε

fpx, yqdy

˙

µx
εÑ0
„ 2ε ¨ µpΣq.

On the other hand,

(10) ωnpϕτ pVεqq “

ż

Vε

enrτωn
εÑ0
„ 2ε

ż

Σ

enrτµ.

Therefore, (7),(9), (10) imply

(11)

ż

Σ

enrτµ ď aµpΣq.

By Hölder’s inequality,

ż

Σ

epn´1qrτµ ď

ˆ
ż

Σ

1nµ

˙
1
n
ˆ
ż

Σ

enrτµ

˙

n´1
n

,

since ϕ˚τµ “ epn´1qrτµ, it follows from (11) that

µpΣq “ µpϕτ pΣqq ď µpΣq
1
n a

n´1
n µpΣq

n´1
n ,

so a ě 1, a contradiction. �

6. Invariant distribution and submanifolds

We introduced in section 2.5 the invariant distribution F .

6.1. Holonomy of embedded leafs of F . Let us study the holonomy of a regular
leaf F of F . By definition, one can find an open neighborhood U of F on which F
defines a non-singular foliation. The holonomy of F is well-defined as the holonomy
of F in U for this foliation.

Let us recall the definition of the holonomy π1pF q Ñ G of a leaf F of a foliation
G of codimension p on a manifold Nn. We refer to [5]. A distinguished map
f : V Ñ Rp of G is a map on a trivialization neighborhood V » Rp ˆ Rn´p
that factors by the projection Rp ˆ Rn´p Ñ Rp. Given a point z P F , let G be
the group of germs of local homeomorphisms of Rp fixing 0 defined up to internal
automorphisms (i.e. up to conjugacy by such germs). Given a loop γ : S1 Ñ F
based at z and a germ of distinguished map f sending z to 0, there is a unique
continuous lift pftq of γ in the space of germs of distinguished maps such that f0 “ f
and ft sends γptq to 0. There exists a unique germ g : Rp Ñ Rp fixing the origin
such that f1 “ g ˝ f0. This germ only depends on f and the homotopy class of γ.
If one takes another germ f 1 of distinguished map at z, the same procedure will
give a germ g1 : Rp Ñ Rp fixing the origin that is conjugated to g. Therefore, one
defines the holonomy of F (based at z) as the morphism π1pF, zq Ñ G sending the
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class of the loop γ to the class of the germ g. The holonomy group of F is the
image of the holonomy. Up to isomorphisms, these notions do not depend on the
base point z (a leaf being path-connected).

Proposition 27. The holonomy of an embedded leaf outside tH “ 0u is trivial.
Let Σ Ă tH “ 0u be a connected component of tH “ 0u without critical point of H,
the holonomy of Σ is

rγs ÞÑ
”

y ÞÑ e
ş

γ
ηy
ı

.

In particular, the holonomy group of Σ is isomorphic to the subgroup xrηs, π1pΣqy
of R.

Proof. One can prove this proposition by considering the global distinguished map

e´θH ˝ p defined on the universal cover p : ĂM Ñ M with dθ “ p˚η. Let us give a
more intrinsec proof.

If F is an embedded leaf outside tH “ 0u, the pull-back of the Lee form η to
F is exact according to Corollary 4, so η “ dθ on a tubular neighborhood U of F .
Therefore F is trivially fibered by e´θH in U and the holonomy is thus trivial.

Let Σ be a connected component of tH “ 0u without critical point. Let i :
Σ ãÑ M be the inclusion map. If i˚η is exact, the holonomy is trivial, as above.
Otherwise, let us fix z P Σ such that pi˚ηqz ‰ 0, which implies that ker ηz is
transversed to TzΣ. Let T Ă M be an open connected 1-dimensional manifold
containing z and tangent to ker η. By shrinking T , one can assume that H induces
an isomorphism H|T : T Ñ p´ε, εq sending z to 0, for some ε ą 0. Let us remark
that there exist a distinguished map f in the neighborhood of z such that f |T “
H|T . Indeed, in the neighborhood of z, let θ be such that θpzq “ 0 and dθ “ η,
then f :“ e´θH is a distinguished map. Since T is tangent to ker η, θ|T » 0 so that
f |T “ H|T .

Let γ : r0, 1s Ñ Σ be a smooth loop based at z. According to [5, §2.5] for every
x PW a connected neighborhood of z in T , there are smooth paths γx : r0, 1s ÑM
tangent to F and C0-close to γ such that, γxp0q “ x, γxp1q P T and the image of
the holonomy π1pΣ, zq Ñ G at rγs is the class of the germ

y ÞÑ H
´

γH|´1
T pyqp1q

¯

,

(here, we used that H|T “ f |T where f is a distinguished map). According to
Lemma 3,

H
´

γH|´1
T pyqp1q

¯

“ e
ş

γx
ηy, with x :“ H|´1

T pyq.

Since T is tangent to ker η, by concatenating γx with the image of the segment
rHpγxp0qq, Hpγxp1qqs under H|´1

T , one gets a loop γ̃x such that
ş

γ̃x
η “

ş

γx
η. Since

γx is C0-close to γ, one can reparametrize γ̃x such that this loop is C0-close to γ,
so γ̃x is homotopic to γ and the conclusion follows. �

A consequence is the following (see [5, §2.5]).

Corollary 28. Let Σ Ă tH “ 0u be a connected component of tH “ 0u without
critical point of H. If the pull-back of the Lee form to Σ is not trivial, there exist
leafs of F different from Σ, the closure of which contains Σ.

Examples 1.1.2 and 4.3 show that a non-compact leaf can go far away from
tH “ 0u.

6.2. Invariance and isotropy.

Proposition 29. Let L be a submanifold of M .

(1) If L is isotropic and invariant, then it is tangent to F .
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(2) If L is coisotropic and tangent to F , then it is invariant.
(3) If L is invariant and tangent to F , then the pull-back of ω to L is degenerate.

In particular, if L is of even dimension 2k, the pull-back of ωk to L is zero.
An invariant surface tangent to F is thus isotropic.

Proof. If L is an invariant isotropic submanifold, then X is tangent to L so @v P TL,
dηH ¨ v “ ωpX, vq “ 0. Conversely, if L is coisotropic and tangent to F , for x P L,
TxL Ą pTxLq

ω Ą pFxqω “ RXpxq so L is invariant. If i : L ãÑ M is invariant and
tangent to F , then X|L is in the kernel of i˚ω. �

Combining Proposition 29 and Corollary 4, one gets the following result.

Corollary 30. An isotropic invariant submanifold on which the pull-back of the
Lee form is not exact is included in tH “ 0u.

Corollary 30 can be applied to Lagrangian graphs of T˚βQ for a non-exact closed
1-form β of Q. Indeed, for every β-closed 1-form α of Q, q ÞÑ αq defines a La-
grangian section Q ãÑ T˚βQ pulling back the Lee form to the non-exact form β.

We now are interested in how the dynamics can force the isotropy.
Following [11], we recall that a point x PM is quasi-regular if for every continuous
map f : M Ñ R, the following limit exists

lim
tÑ`8

1

t

ż t

0

fpϕsxqds.

Then we can associate to every quasi-regular point its asymptotic cycle Apxq P
H1pM,Rq that satisfies for every continuous closed 1-form ν on M

xrνs, Apxqy “ lim
tÑ8

1

t

ż t

0

νpXH ˝ ϕspxqqds.

Moreover, if µ is an invariant Borel probability by pϕtq, µ almost every point is
quasi-regular and the asymptotic cycle Apµq P H1pM,Rq of µ is defined by

xrνs, Apµqy “

ż

xrνs, Apxqydµpxq.

We have

Proposition 31. Let pRtαqtPR the flow of rotations of Tn with vector α P Rn that
is defined by

Rtαpθq “ θ ` tα.

We identify H1pTnq with Rn in the usual way. Then every point of Tn is quasi-
regular, and the asymptotic cycle of every point of Tn and of every invariant prob-
ability measure is α.

Observe that when two flows pftq : M ý and pgtq : N ý are conjugated via
some homeomorphism h : M Ñ N , then the quasi-regular points of pgtq are the
h-images of the quasi-regular points of pftq and that when x P M is quasi-regular,
we have

h˚Apxq “ Aphpxqq.

This allows us to introduce a notion of rotational torus T for a flow pftq : M ý. A
rotational torus is a C0-embedded torus j : Tm ãÑ M such that pj´1 ˝ ft ˝ jq is a
flow of rotation. When j is a C1-embedding, T is a C1-rotational torus. Thanks
to Proposition 31, all the points of a rotational torus are quasi-regular with the
same asymptotic cycle that we denote by ApT q P H1pMq and every measure with
support in T has also the same asymptotic cycle.

Let us prove a result that is reminiscent of a result of Herman in the symplectic
setting [6].
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Proposition 32. Assume that jpTmq “ T is a C1-rotational torus for a conformal
Hamiltonian flow pϕtq of pM,η, ωq. Then

‚ if the flow restricted to T is minimal, ω “ dηλ is η-exact and j˚η is exact,
then T is isotropic;

‚ if T is not isotropic, then xrηs, ApT qy “ 0.

In particular, when the cohomological class of η is rational and non zero and when
the flow restricted to T is minimal then T is isotropic.

Proof. We use the notation Rtα “ j´1 ˝ ϕt ˝ j.
Let us prove the first point. As j˚η “ df is exact, we have

dpe´f j˚λq “ e´f pj˚dλ´ df ^ j˚λq “ e´f j˚pdηλq “ e´f j˚ω.

Hence e´f j˚ω is exact. Observe that j˚XH “ α. Hence @x P Tm, @t P R,

rtpjpxqq “

ż t

0

ηpϕspjpxqqqXHpϕspjpxqqqds “

ż t

0

dfpRsαpxqqαds “ fpx` tαq´ fpxq.

Because pϕHt q
˚ω “ ertω and ϕHt ˝ j “ j ˝Rtα, we deduce

R˚tαpj
˚ωq “ ert˝jj˚ω

and then

R˚tαpe
´f j˚ωq “ e´f j˚ω.

If we write e´f j˚ω “
ř

1ďiăjďm ai,jdxi ^ dxj , we deduce that every continuous

function ai,j is invariant by pRtαq, and then constant because the flow is minimal.
The form e´f j˚ω is constant and exact, it is then the zero form and T is isotropic.

Let us prove the second point. We assume that T is not isotropic. Hence j˚ω
is not zero. There exists a sequence ptnq of real numbers that tends to `8 and
satisfies

lim
nÑ8

tnα “ 0 in Tm.

Then pRtnαq tends to idTm in topology C1. We deduce that pR˚tnαpj
˚ωqq tends to

j˚ω. Moreover, we also have

R˚tnαpj
˚ωq “ ertn˝jj˚ω

where, as ϕs ˝ j “ j ˝Rsα (so X ˝ j “ dj ¨ α),

rtn ˝ jpxq “

ż tn

0

ηpdjpRsαpxqqαqds “ tnxrj
˚ηs, αy ` op1q.

As j˚ω is not the zero form, we have then 0 “ limnÑ8 rtnpxq which implies that
rj˚ηs is orthogonal to α i.e. xrηs, ApT qy “ 0. �

If we assume that the invariant torus is C3, we can relax the hypothesis on the
dynamics for the second point of Proposition 32, asking only a C0-conjugacy. The
main argument that we use is very similar to part 3 of [1].

Proposition 33. Assume that T Ă M is a C3-submanifold of M that is a C0-
rotational torus of a conformal Hamiltonian flow pϕtq of pM,η, ωq such that xrηs, ApT qy ‰
0. Then T is isotropic.

In particular, when the cohomological class of η is rational and non zero and
when the flow restricted to T is minimal, then T is isotropic.

Proof of Proposition 33. We denote the canonical injection T ãÑ M by j. We
endow T with a Riemannian metric and denote by dG the distance along the leaves
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of the characteristic foliation G of j˚ω. We assume that T is not isotropic. We
denote the maximum rank of j˚ω by r and by U the open set

U “ tx P T | rank pj˚ωpxqq “ ru

As ϕ˚t pj
˚ωq “ ertj˚ω, this set is invariant by the flow.

A result of Proposition 31 is

(12) rnpxq “ n pxrηs, ApT qy ` onÑ8p1qq , @x P T .

There are two cases:

‚ either U “ T is compact; we choose x P U and K :“ U ;
‚ or U ‰ T . Then the closure of the orbit of a fixed point x P U is home-

omorphic to a torus with dimension k ă m. As pϕt|T q is conjugate to a
flow of rotation, there exists a compact invariant neighbourhood K of x in
U that is homeomorphic to Tk ˆ r´1, 1sm´k.

In K, we consider the characteristic foliation G of ω. We now follow the arguments
and notation of [1] (except that F and the Fi’s are here denoted G and Gi). We
use a finite covering of K by foliated charts W1, . . . ,WI in U and denote by Gi
the foliation restricted to Wi. Then there exists a constant µ ą 0 such that every
pm´ rq-submanifold S of Wi that intersects every leaf of Gi at most once satisfies
|ω

r
2 pSq| ď µ.

Moreover, we may assume that there exists ε ą 0 such that:

(i) if x, y are in some Wi, and such that dGpx, yq ă ε, then x and y are in the
same leaf of Wi

where dG is the distance along the leaves.
We also have the existence of ν P p0, εq such that

(13) dGpx, yq ă ν ñ dGpϕ´1pxq, ϕ´1pyqq ă ε, @x, y P K.

We then use a decomposition pQjq1ďjďJ of K into submanifolds with corners
that may intersect only along their boundary such that every Qj is contained in at
least one Wi that satisfies:

(ii) if Qj ĂWi, then if x, y P Qj are in the same leaf of Wi, we have dGpx, yq ă ν.

If S is a piece of r-dimensional submanifold contained in some Qj0 Ă Wi0 that
is transverse to G and intersects every leaf of Gi0 at most once, let us consider
S 1 “ ϕ1pS XQj0q XQj1 for some j1. Then S 1 is also transverse to G. Let Wi1 that
contains Qj1 and let us assume that x, y P S 1 are in a same leaf of Gi1 . Because
of (ii) and (13), dGpϕ´1pxq, ϕ´1pyqq ă ε and by (i), we have ϕ´1pxq “ ϕ´1pyq and
x “ y. Iterating this argument, we deduce that all the sets

S 1 “ ϕkpS XQj0q X ϕk´1pQj1q X ¨ ¨ ¨ XQjk

are such that if Qjk Ă Wik , S 1 intersects every leaf of Fik at most once and then
|ω

r
2 pS 1q| ď µ.

If now Nk is the number of k-uples pj1, . . . , jkq such that ϕkpSXQj0qXϕk´1pQj1qX
¨ ¨ ¨ XQjk ‰ H, then we have

(14) |ω
r
2 pϕkpSqq| ď Nkµ.

By (12), we have

(15) ω
r
2 pϕkpSqq “ exp

´

k
r

2

`

xrηs, ApT qy ` okÑ8p1q
˘

¯

ω
r
2 pSq.

Combining (14) and (15), we deduce that

lim sup
kÑ8

1

k
logpNkq ě |xrηs, ApT qy| ą 0
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is a lower bound for the topological entropy of pϕt|T q. But this contradicts the fact
that pϕt|T q is C0-conjugate to a flow of rotation and has zero entropy. �

Appendix A. Isotropic submanifolds

A.1. Isotropic embeddings.

Lemma 34. Given a manifold N endowed with a closed 1-form β, there exists
a Legendrian embedding of N in a contact manifold pV, αq endowed with a closed
1-form, the pull-back to N of which is β. This contact manifold is closed if N is
closed.

Proof. Given a submanifoldM 1 of a Riemannian manifold pM, gq, we denote ν1M 1 Ă

T 1M its unit normal bundle. Let us endow N and S1 with Riemannian metrics
and let us consider unit tangent bundle V of the product Riemannian manifold
pN ˆS1, gq endowed with its standard contact form. Let us recall that unit normal
bundles of submanifolds of N ˆ S1 are Legendrian submanifolds of V . Therefore,
ν1pN ˆ txuq, x P S1 fixed, is a Legendrian submanifold, it is the disjoint union
of two copies of N . We lift the closed 1-form β to V by pulling it back by the
canonical projection T 1pN ˆ S1q Ñ N . �

Lemma 35. Given a manifold N endowed with a closed 1-form β, there exists a
Lagrangian embedding of NˆS1 in a conformal exact symplectic manifold pM,η, ωq
such that the pull-back of η to N ˆ S1 is π˚β ´ dθ where π is the projection on the
first factor. This manifold M is closed if N is closed.

Proof. Let pV, αq be the contact manifold of Lemma 34, we assume N Ă V and
identify β with its pull-back to V . Then the β-twisted symplectization pM,η, ωq of
V endowed with its standard Lee form satisfies the statement. �

A.2. Weinstein neighborhood of isotropic submanifolds. We extend the
usual Weinstein neighborhood theorem [13, Lecture 5] to the conformal setting
following and adapting [4, Section 2.5.2]. The special case of Lagrangian submani-
folds was already treated by Chantraine-Murphy [2, Theorem 2.11].

Let us first describe the conformal structure of the local model of a neighborhood
of an isotropic manifold Qk Ă pM2n, η, ωq. Let us denote TQM the restriction of
the tangent bundle of M to Q and TQω Ă TQM the ω-orthogonal bundle of TQ.
Then the normal bundle π : νQÑ Q can be non-canonically decomposed as

(16) νQ “ TQM{TQ » TQω{TQ‘ TQM{TQ
ω.

In order to fix this decomposition, let us fix a complex structure J compatible with
ω, i.e. such that g :“ ωp¨, J ¨q defines a Riemannian metric. With respect to g,
νQ is canonically isomorphic to the orthogonal vector bundle TQK, TQω{TQ is
isomorphic to pTQ‘JpTQqqω and TQM{TQ

ω to JpTQq so that the decomposition
(16) takes the concrete form

TQK “ pTQ‘ JpTQqqω ‘ JpTQq.

We will work through this identification. Fibers of TQω{TQ are symplectic vector
spaces of dimension 2pn ´ kq for the structure induced by ω. Let β be the pull-
back of the Lee form to Q. The fiber bundle TQM{TQ

ω is diffeomorphic to T˚βQ

under pq, rvsq ÞÑ ωqpv, ¨q. One can check in local coordinates that the direct sum
of the fibered symplectic form and the conformal symplectic form of T˚βQ defines

a π˚β-conformal symplectic form ωνQ such that pνQ, ηνQ “ π˚β, ωνQq is a well-
defined conformal symplectic manifold. Moreover, for all q P Q, pωνQqpq,0q “ ωq
by definition: both structures agree along Q (seeing νQ as TQK, we recall that
Tpq,0qpTQ

Kq is naturally identified with TqQ). The structure of νQ depends on the
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isotropic embedding Q Ă M , when Q is Lagrangian νQ » T˚βQ only depends on

η|Q.

Theorem 36 (Weinstein neighborhood). Let Q Ă pM,η, ωq be an isotropic sub-
manifold, there exist a neighborhood U1 Ă M of Q, a neighborhood U2 Ă νQ of
the 0-section and a conformal symplectomorphism ϕ : pU1, η, ωq Ñ pU2, ηνQ, ωνQq
sending Q to the 0-section canonically.

The proof is an adaptation of the symplectic case. We will use the following
stability theorem proven by Chantraine-Murphy.

Theorem 37 ([2, Theorem 2.10]). Let pM,ηq be a closed manifold endowed with a
closed 1-form and let pωtqtPr0,1s be a path of η-conformal symplectic forms such that
ωt “ ω0 ` dηλt. There exists an isotopy ϕt : M Ñ M and functions ft : M Ñ R,
t P r0, 1s, such that ϕ˚t η “ η ` dft and ϕ˚t ωt “ eftω0.

Let us first prove the following conformal extension of [9, Lemma 3.14].

Lemma 38. Let pM,ηq be a manifold endowed with a closed 1-form and Q ĂM be
a compact submanifold. Let us assume that there exist two η-conformal symplectic
forms ω0 and ω1 agreeing on TqM for all q P Q. There exist two neighborhoods U0

and U1 of Q, a diffeomorphism ψ : U0 Ñ U1 and a map f : U0 Ñ R vanishing on
Q such that ψ|Q “ id, ψ˚ω1 “ efω0 and ψ˚η “ η ` df .

Proof of Lemma 38. Let us endow M with a Riemannian metric and let us define
a tubular neighborhood U of Q as the image under the diffeomorphism pq, vq ÞÑ
expqpvq of a neighborhood of the 0-section of the normal bundle of Q. Let π :
U Ñ Q be the orthogonal projection. Since π is a retraction by deformation, η|U is
cohomologous to π˚β where β is the pull-back of η to Q. One can assume η “ π˚β:
indeed, η “ π˚β ` dg with g : U Ñ R vanishing on Q so one can do a gauge
transformation.

The remainder of the proof closely follows the non-conformal one [9, Lemma 3.14].
We set τ :“ ω1´ω0 in order to show that τ “ dησ for some σ and apply Theorem 37
with λt “ tσ. In order to prove that, we consider the map φt : expqpvq ÞÑ expqptvq
defined on U for t P r0, 1s so that φ0 “ π, φ1 “ id and τ “ φ˚1 τ´φ

˚
0ω (π˚ω0 “ π˚ω1

by assumption). Let us set Xt “ Btφt ˝ φ
´1
t , well-defined for t P p0, 1s. Then

d

dt
pφ˚t τq “ φ˚t pdηpιXtτq ` π

˚βpXtqτq “ φ˚t pdηpιXtτqq,

since dπ ¨Xt “ 0. We remark that σt :“ φ˚t pιXtτq is smoothly defined for t P r0, 1s

(X0 is not well-defined but X0 ˝ φ0 is). We conclude by setting σ “
ş1

0
σtdt. �

Proof of Theorem 36. Let us restrict ourselves to a tubular neighborhood V » νQ
of Q Ă M . Under the gauge change η “ π˚β for the structure pη, ωq|V , we are
under the assumptions of Lemma 38 with pV, π˚βq, pη, ωq|V , and pηνQ, ωνQq. �
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[6] Michael-R. Herman, Inégalités “a priori” pour des tores lagrangiens invariants par des
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