Simon Allais

English version
Version française

Recherche

Prépublication

  • On the Hofer-Zehnder conjecture on $\mathbb{C}\text{P}^d$ via generating functions (with an appendix by Egor Shelukhin).
    • prépublication
    • lien arXiv
    • RésuméAu moyen de techniques utilisant les fonctions génératrices développées par Givental, Théret et nous-même, nous donnons une preuve sur $\mathbb{C}\text{P}^d$ de la généralisation homologique de Shelukhin du théorème de Franks. Ce résultat démontre, en particulier, la conjecture de Hofer-Zehnder dans le cas non-dégénéré : tout difféomorphisme hamiltonien de $\mathbb{C}\text{P}^d$ ayant au moins $d+2$ points périodiques non-dégénérés possède une infinité de points périodiques. Notre preuve ne fait pas appel à l'homologie de Floer ou à la théorie des courbes $J$-holomorphes. Un appendice écrit par Shelukhin propose une nouvelle preuve de l'inégalité de type Smith pour les codes-barres de difféomorphismes hamiltoniens issus de la théorie de Floer se prêtant à l'adaptation au cadre des fonctions génératrices.

Articles

  • (avec Tobias Soethe) Homologically visible closed geodesics on complete surfaces.
    À paraître dans Journal of Topology and Analysis.
    • prépublication
    • lien arXiv
    • RésuméNous énonçons des conditions sous lesquelles la présence d'une ou deux géodésiques fermées géométriquement distinctes sur un plan, un cylindre ou un ruban de Möbius riemannien complet impose la présence d'une infinité de géodésiques fermées géométriquement distinctes. En particulier, nous montrons qu'un cylindre riemannien complet admet zéro, une ou une infinité de géodésiques fermées homologiquement distinctes ; cela répond à une question d'Alberto Abbondandolo.
  • On the minimal number of translated points in contact lens spaces.
    À paraître dans Proceedings of the American Mathematical Society.
    • prépublication
    • lien arXiv
    • RésuméDans cet article, nous montrons que tout contactomorphisme d'un espace lenticulaire standard de dimension $2n-1$ contact-isotope à l'identité possède au moins $2n$ points translatés. Cette minoration optimale raffine un résultat de Granja-Karshon-Pabiniak-Sandon et répond positivement à une conjecture de Sandon.
  • On periodic points of Hamiltonian diffeomorphisms of $\mathbb{C}\text{P}^d$ via generating functions.
    À paraître dans the Journal of Symplectic Geometry.
    • prépublication
    • lien arXiv
    • RésuméInspirés des techniques de Givental et Théret, nous donnons une preuve de récents résultats de Ginzburg-Gürel concernant les points périodiques de difféomorphismes hamiltoniens de $\mathbb{C}\text{P}^d$ utilisant les fonctions génératrices. Nous sommes par exemple en mesure de redémontrer que les points fixes des pseudo-rotations sont isolés comme ensemble invariant ou encore qu'un difféomorphisme hamiltonien ayant un point fixe hyperbolique a une infinité de points périodiques.
  • A contact camel theorem.
    International Mathematics Research Notices, Volume 2021, Issue 17, September 2021, Pages 13153–13181.
    • version publiée
    • prépublication
    • lien arXiv
    • RésuméNous prouvons une généralisation du théorème du chameau symplectique valable dans la variété de contact $\mathbb{R}^{2n}\times S^1$. Notre preuve utilise les fonctions génératrices, en se basant sur les techniques introduites par Viterbo et étendu au cas contact par Bhupal et Sandon et en reprenant la preuve de Viterbo du cas symplectique.
  • On the growth rate of geodesic chords.
    Differential Geometry and its Applications, Volume 73, December 2020, 101668.
    • version publiée
    • prépublication
    • lien arXiv
    • RésuméOn prouve que toute variété de Finsler, complète vers l'avant, de groupe fondamental infini et non homotopiquement équivalente à $S^1$ possède une infinité de géodésiques géométriquement distinctes joignant n'importe quelle paire de points $p$ et $q$. Dans le cas particulier où $\beta_1 (M;\mathbb{Z})\geq 1$ et $M$ est close, le nombre de géodésiques géométriquement distinctes joignant deux points augmente au moins logarithmiquement avec la longueur.
  • Improvement and generalisation of Papasoglu's lemma.
    The Graduate Journal of Mathematics, Volume 3, Issue 1 (2018), 31-36.
    • version publiée
    • prépublication
    • lien arXiv
    • RésuméNous améliorons une inégalité isopérimétrique due à Papasoglu. Nous généralisons aussi cette inégalité au cas Finsler en prouvant une version optimale du lemme de Besicovitch dans le cas Finsler valable pour n'importe quelle notion de volume Finsler.

Manuscript de thèse

Lien

Participation à des séminaires

Passées