Feuille d'exercices nº 5

Ensembles et applications

Exercice 1. Soit I un intervalle de \mathbb{R} , et $f:I\to\mathbb{R}$ une application définie sur I et à valeurs réelles. Exprimer à l'aide de quantificateurs :

a) la fonction f s'annule;

- b) la fonction f est toujours nulle;
- c) f n'est pas une fonction constante;
- d) f est croissante;

e) f est décroissante;

f) f présente un minimum;

g) f présente un maximum.

Exercice 2. Donner la négation des assertions de l'exercice précédent.

Exercice 3. Soit E un ensemble et $(A, B, C) \in \mathcal{P}(E)^3$.

- 1. Montrer $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$ et $(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A)$.
- 2. Montrer l'équivalence des propositions :
 - a) $A \subset B$
- b) $A \cap B = A$
- c) $A \cup B = B$ d) $A \setminus B = \emptyset$
- 3. Montrer l'équivalence des propositions :

a)
$$A \cup B = A \cap C$$

b)
$$B \subset A \subset C$$

4. Montrer les implications

$$(A \cap B = A \cap C \text{ et } B \setminus A = C \setminus A) \implies B = C.$$

$$(A \cup B \subset A \cup C \text{ et } A \cap B \subset A \cap C) \implies B \subset C$$
.

Exercice 4. Les applications suivantes sont-elles injectives, surjectives, bijectives?

a)
$$f: \begin{array}{l} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{array}$$

b)
$$g: \begin{array}{cc} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \end{array}$$

c)
$$h: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (2x-y, 4x-2y)$

d)
$$k: \begin{array}{c} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{x+1}{1} \end{array}$$

Exercice 5. Soient:

$$\begin{array}{ccc} f & : & \mathbb{N} \to \mathbb{N} \\ & n \mapsto 2n \end{array}$$

$$g : \mathbb{N} \to \mathbb{N}$$
$$n \mapsto E\left(\frac{n}{2}\right)$$

où E(x) désigne la partie entière de x.

Les fonctions f et g sont-elles injectives, surjectives? Comparer $f \circ g$ et $g \circ f$.

Exercice 6. Soit f l'application de l'ensemble $\{1, 2, 3, 4\}$ dans lui-même définie par f(1) = 4, f(2) = 1, f(3) = 2, f(4) = 2. Déterminer $f^{-1}(A)$ lorsque $A = \{2\}$, $A = \{1, 2\}$, $A = \{3\}$.

Exercice 7. Soit f une application de E vers F avec Card(E) = Card(F) = n. Montrer que les trois propriétés suivantes sont équivalentes :

- a) f est injective;
- b) f est surjective;
- c) f est bijective.

Exercice 8. Pour un entier $n \in \mathbb{N}^*$ on désigne par I_n l'ensemble $\{1, 2, \dots, n\}$.

- 1. On suppose $n \geq 2$. Combien y a-t-il d'applications injectives $f: I_2 \to I_n$?
- 2. Soit $p \in \mathbb{N}^*$. Combien y a-t-il d'applications strictement croissantes de I_p dans I_n ?
- 3. A quelle condition portant sur les entiers m et n peut-on définir une application $f: I_m \to I_n$ qui soit injective, surjective, bijective?

Exercice 9. Soit E un ensemble de cardinal $n \in \mathbb{N}^*$. Montrer qu'il y a n! bijections de E vers E.

Exercice 10.

Soit E un ensemble, avec Card(E) = n. Démontrer que $Card(\mathcal{P}(E)) = 2^n$,

- en utilisant les coefficients $\binom{n}{k}$;
- en raisonnant par récurrence sur n

Exercice 11. Montrer que \mathbb{Z} est dénombrable à l'aide de l'application $\varphi: \mathbb{Z} \to \mathbb{N}$ définie par :

$$\varphi(n) = 2n - 1$$
 si $n > 0$ et $\varphi(n) = -2n$ si $n \le 0$.

Exercice 12. Soient E,F deux ensembles non vides. Soient A une partie de E, B une partie de F et f une application de E dans F. Déterminer si les assertions suivantes sont vraies ou fausses :

- 1. Si A est une partie finie de E, alors f(A) est une partie finie de F.
- 2. Si f(A) est une partie finie de F, alors A est une partie finie de E.
- 3. Si B est une partie finie de F, alors $f^{-1}(B)$ est une partie finie de E.
- 4. Si $f^{-1}(B)$ est une partie finie de E, alors B est une partie finie de F.

Exercice 13. Soit $n \in \mathbb{N}^*$. Dénombrer les couples d'entiers $(n_1, n_2) \in \mathbb{N} \times \mathbb{N}$ tels que

a)
$$n_1 + n_2 \le n$$
, b) $n_1 + n_2 = n$.

Mêmes questions pour les triplets $(n_1, n_2, n_3) \in \mathbb{N}^3$. Pouvez-vous généraliser aux cas des m-uplets? Indication: il est utile et instructif de représenter les couples (n_1, n_2) dans le plan \mathbb{R}^2 et, pour la deuxième partie, les triplets (n_1, n_2, n_3) dans l'espace \mathbb{R}^3 . **Exercice 14.** Soient E un ensemble fini non vide, F un ensemble quelconque, et f une application de E dans F.

- 1. Montrer que f est injective si et seulement si Card(f(E)) = Card(E).
- 2. Montrer que f est surjective si et seulement si Card(f(E)) = Card(F).

Exercice 15. Soient $n \in \mathbb{N}$, $n \ge 2$ et E un ensemble à n éléments. Soit $f: E \to \mathcal{P}(E)$ une application. On suppose que pour tout $x \in E$, on a $x \in f(x)$ et que pour tous $x, y \in E$, on a l'implication $x \in f(y) \Rightarrow y \in f(x)$.

- 1. Montrer que pour tout $x \in E$, on a Card $f(x) \ge 1$.
- 2. On suppose qu'il existe $a \in E$ tel que Card f(a) = n. Montrer que pour tout $x \in E$, on a Card $f(x) \ge 2$.
- 3. Montrer qu'il existe des éléments $x, y \in E$ différents tels que les ensembles f(x) et f(y) aient le même nombre d'éléments.

Exercice 16. Soit E un ensemble avec Card(E) = n.

- 1. Calculer le cardinal de l'ensemble $\{(A,B) \in \mathcal{P}(E)^2/A \subset B\}$. Indication : pour chaque $B \subset E$, compter les parties $A \subset B$.
- 2. Montrer que pour tout $(A, B) \in \mathcal{P}(E)^2$, $A \subset B$ équivaut à $A^c \cup B = E$.
- 3. En déduire le cardinal de l'ensemble $\{(A, B) \in \mathcal{P}(E)^2 / A \cup B = E\}$.

Exercice 17. Décider si les paires de fonctions qui suivent sont égales :

- 1. $f: \mathbb{R} \to \mathbb{R}, x \mapsto (x^2 + 2x + 1)(x 1)$ et $g: \mathbb{R} \to \mathbb{R}, x \mapsto (x + 1)(x^2 1)$;
- 2. $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x) \text{ et } g: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x);$
- 3. $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)$ et $g: \mathbb{R} \to [-1, 1], x \mapsto \sin(x)$;
- 4. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x + 1 \text{ et } g: \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x^2 1}{x 1};$
- 5. $f: \{x \in \mathbb{R} \mid |x-2| < \frac{1}{2}|x+3|\} \to \mathbb{R}, x \mapsto 0 \text{ et } g:]\frac{1}{3}, 7[\to \mathbb{R}, x \mapsto 0;$
- 6. $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto (\sqrt{x})^2 \text{ et } g: \mathbb{R} \to \mathbb{R}, x \mapsto x.$

Exercice 18. Décrire les ensembles qui suivent.

- a) $tan({0})$
- c) $\cos^{-1}([0,1])$
- e) $(\cos|_{[0,\pi]})^{-1}([0,1])$
- g) $f^{-1}([0,1])$ pour $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$
- i) $f^{-1}([0,1])$ pour $f: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto x^2$
- k) $|\cdot|([-2,-1]\cup[2,4])$
- $|m| \cdot |^{-1}(\{1\})$
- o) $\exp^{-1}([-1, e])$
- q) $\ln^{-1}([3, +\infty[)$

- b) $\sin^{-1}(\{2\})$
- d) $\left(\cos|_{[3,7]}\right)^{-1}([0,1])$
- f) $\sqrt{\cdot} ([0,1])$
- h) $f^{-1}([0,1])$ pour $f: \left[-\frac{1}{2}, \frac{4}{3}\right] \to \mathbb{R}, x \mapsto x^2$
- j) $f^{-1}([-1,1[\cup\{2\}) \text{ et } f([0,1]^3) \text{ pour } f: \mathbb{R}^3 \to \mathbb{R}, (x,y,z) \mapsto y$
- l) $(|\cdot||_{[-8,7]})^{-1}([2,3])$
- $n) \, \exp(]-\infty,2])$
- $p) \, \ln(\mathbb{R}_{-})$

Exercice 19. Soit E et F deux ensembles non vides et $f: E \to F$.

1. Soient $A, B \subset E$. Montrer que

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

- 2. Pour l'inclusion de la question précédente, donner un contre-exemple à l'inclusion réciproque.
- 3. Soient maintenant $A, B \subset F$. Montrer que

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
 et $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Exercice 20. Étudier l'injectivité et la surjectivité des applications qui suivent. Lorsqu'elles sont bijectives, donner leur inverse.

a)
$$\mathbb{R} \to \mathbb{R}$$
, $x \mapsto \cos(x)$;

b)
$$[\pi, 2\pi] \to [-1, 1], x \mapsto \sin(x)$$
;

c)
$$\mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (x + y, x - y)$;

d)
$$\mathbb{N} \to \mathbb{R}$$
, $x \mapsto x$;

e)
$$\mathbb{R} \to \mathbb{R}$$
, $x \mapsto \begin{cases} -\ln x & \text{si } x > 0 \\ x^2 & \text{sinon} \end{cases}$;

f)
$$\mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} \frac{1}{x} & \text{si } x < 0 \\ x^2 & \text{sinon} \end{cases}$$
;

g)
$$\{0,1,2\} \rightarrow \{-1,0,1\}, x \mapsto -(x-1);$$

h)
$$\mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(0);$$

i)
$$\{0,1,2,3\} \to \{1,7,9,11\}, x \mapsto \begin{cases} 1 & \text{si } x = 0\\ 11 & \text{si } x = 1\\ 7 & \text{si } x = 2\\ 9 & \text{si } x = 3 \end{cases}$$

Exercice 21. On considère l'application $f:I\to J, x\mapsto x^2$, où I et J sont deux intervalles de $\mathbb R$. Trouver I et J tels que :

- 1. f est injective mais pas surjective;
- 2. f est surjective mais pas injective;
- 3. f est bijective.

Exercice 22. Soit E un ensemble non vide. Soient f, g et h des fonctions de E dans E. On suppose $h \circ g \circ f$ et $g \circ f \circ h$ injectives et $f \circ h \circ g$ surjective. Montrer que f, g et h sont bijectives.

Exercice 23. Soit E un ensemble non vide et $f: E \to \mathcal{P}(E)$.

Étudier la surjectivité de f en considérant $A = \{x \in E \mid x \notin f(x)\}.$

Exercice 24. Soient E et F deux ensembles non vides et $f: E \to F$.

- 1. Montrer que, pour tout $B \subset F$, $f(f^{-1}(B)) = B \cap f(E)$.
- 2. En déduire que si f est surjective alors, pour tout $B \in \mathcal{P}(F)$, $f(f^{-1}(B)) = B$.
- 3. Montrer que, pour tout $A \subset E$, $A \subset f^{-1}(f(A))$.
- 4. Montrer que si f est injective alors, pour tout $A \in \mathcal{P}(E)$, $f^{-1}(f(A)) = A$.

Exercice 25. Pour chacune des relations définies ci dessous, determiner si ce sont des relations d'ordre ou d'équivalence :

- a) Pour m et n deux entiers relatifs, $n \equiv m$ si et seulement si 4 divise m n.
- b) Pour f et g deux fonctions réelles, $f\mathcal{R}g$ si et seulement si il existe $x \in \mathbb{R}$ tel que f(x) = g(x).
- c) Pour f et g deux fonctions réelles, $f \sim g$ si et seulement si il existe $h : \mathbb{R} \to \mathbb{R}$ tel que $f = h \cdot g$ et que h ait limite 1 en $+\infty$.
- d) Soit E un ensemble. On définit, pour A et B deux parties de E, $A \prec B$ si et seulement si il existe une fonction injective de A dans B.
- e) Soit E un ensemble. On définit, pour A et B deux parties de E, $A \bowtie B$ si et seulement $A \cap B = \emptyset$.
- f) Soient E et F deux ensembles et $f: E \to F$. On définit, pour x et y dans $E, x \smile y$ si et seulement si f(x) = f(y).
- g) (*) Soient E un ensemble et \ll une relation réflexive et transitive sur ces éléments. Soit $X = \{\{y \in E, x \ll y \text{ et } y \ll x\}, x \in E\}$. On définit pour A et B deux éléments de X, $A \ll B$ si et seulement il existe a dans A et b dans B tels que $a \ll b$.

Exercice 26. Indicatrice d'une partie d'un ensemble

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble de parties de E. Soit A une partie de E: $A \in \mathcal{P}(E)$. On note $\overline{A} = E \setminus A$, le complémentaire de A dans E.

Pour tout $A \subset E$ on définie une fonction *indicatrice de* A sur E à valeurs dans $\{0,1\}$, notée $\mathbf{1}_A$, définie pour $\forall x \in E$ par :

$$\mathbf{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \in \overline{A}. \end{cases}$$

- 1. On considère deux exemples :
 - (a) Soient $E = \{a, b, c, d\}$, $A = \{a, b, c\} \subset E$ et $B = \{c, d\} \subset E$. Expliciter les fonctions $\mathbf{1}_E$, $\mathbf{1}_{\emptyset}$, $\mathbf{1}_A$, $\mathbf{1}_{\overline{A}}$, $\mathbf{1}_B$ ainsi que $\mathbf{1}_{A \cap B}$ et $\mathbf{1}_{A \cup B}$.
 - (b) Soient A une partie de \mathbb{R} et $\mathbf{1}_A : \mathbb{R} \to \{0; 1\}$ sa fonction indicatrice sur \mathbb{R} . Décrire les ensembles $\mathbf{1}_A(A), \ \mathbf{1}_A(\overline{A}), \ \mathbf{1}_A(\mathbb{R}), \ \mathbf{1}_A^{-1}(\{1\}), \ \mathbf{1}_A^{-1}(\{0\}), \ \mathbf{1}_A^{-1}(\{0; 1\}).$
- 2. Soient E un ensemble et $A, B \in \mathcal{P}(E)$. Démontrer les propriétés de la fonction indicatrice :
 - (a) Montrer que $(\mathbf{1}_A)^2 = \mathbf{1}_A$.
 - (b) Inclusion : $A \subset B \Leftrightarrow \mathbf{1}_A \leq \mathbf{1}_B$. (Cela veut dire que pour $\forall x \in E$, on a $\mathbf{1}_A(x) \leq \mathbf{1}_B(x)$.) Égalité : $A = B \Leftrightarrow \mathbf{1}_A = \mathbf{1}_B$.
 - (c) Opérations ensemblistes :

$$\mathbf{1}_{\overline{A}} = 1 - \mathbf{1}_A; \quad \mathbf{1}_{A \cap B} = \min\{\mathbf{1}_A, \mathbf{1}_B\} = \mathbf{1}_A \cdot \mathbf{1}_B; \quad \mathbf{1}_{A \cup B} = \max\{\mathbf{1}_A, \mathbf{1}_B\} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot \mathbf{1}_B.$$

- (d) Lien avec le cardinal : si E est de cardinal fini, $|A| = \sum_{x \in E} \mathbf{1}_A(x)$.
- 3. Formule du crible. Soient E un ensemble et $A, B, C \in \mathcal{P}(E)$. Montrer que

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$

4. Soit E un ensemble fini de cardinalité n. Notons \mathcal{F} l'ensemble des applications de E dans $\{0,1\}$.

- (a) Quel est le cardinal de \mathcal{F} ?
- (b) Soit

$$\phi: \mathcal{P}(E) \to \mathcal{F}: A \mapsto \mathbf{1}_A$$

une application qui à chaque partie A de E associe sa fonction indicatrice. Montrer que ϕ est une application injective. En déduire que ϕ est bijective.

- (c) En déduire que $\mathcal{P}(E)$ est fini et calculer son cardinal.
- 5. Soit E un ensemble fini de cardinalité n. Calculer $\sum_{A,B\subset E}|A\cap B|,\;\sum_{A,B\subset E}|A\cup B|.$