Corrigé du devoir en temps libre 11

- Exercice 1. 1. L'univers de l'expérience aléatoire est l'ensemble des n-uplets de {pile, face}. Autrement dit, l'univers est $\Omega = \{\text{pile, face}\}^n$. Comme la pièce est équilibrée, et les lancers sont indépendants, la probabilité de chaque évènement élémentaire est égale à $(1/2)^n$, et on munit donc l'univers Ω de la probabilité uniforme \mathbb{P} . L'espace probabilisé est $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$.
 - 2. Pour $i \in [1, n]$, on note F_i l'évènement : « le i^e lancer donne "face" ». L'évènement B : « "face" n'est jamais suivi de "pile" » est donc la réunion des évènements

$$A_0 = F_1 \cap F_2 \cap F_3 \cap \dots F_n$$

$$A_1 = \overline{F_1} \cap F_2 \cap F_3 \cap \dots F_n$$

$$A_2 = \overline{F_1} \cap \overline{F_2} \cap F_3 \cap \dots F_n$$

$$\vdots$$

$$A_n = \overline{F_1} \cap \overline{F_2} \cap \overline{F_3} \cap \dots \overline{F_n}$$

Les évènements A_i pour $i \in [0, n]$ sont deux à deux incompatibles, donc la probabilité de B est égale à la somme des probabilités des A_i . Ainsi, come les A_i sont des évènements élémentaires,

$$\mathbb{P}(B) = \sum_{i=0}^{n} A_i = \frac{n+1}{\operatorname{Card}(\Omega)} = \frac{n+1}{2^n}$$

- 3. Par croissances comparées, on a : $\lim_{n\to+\infty} \frac{n+1}{2^n} = 0$: l'évènement B devient moins probable plus le nombre de lancers augmente, ce qui semble naturel.
- **Exercice 2.** 1. a. Si $v = ae_1 + be_2 + ce_3$, alors

$$f(v) = af(e_1) + bf(e_2) + cf(e_3)$$

= $b(e_2 + e_3) + c(e_1) = ce_1 + be_2 + be_3$,

donc dans la base \mathcal{B} , les coordonnées de f(v) sont (c, b, b).

- b. On raisonne dans la base \mathcal{B} : d'après la question précédente, $v=(a,b,c)\in \mathrm{Ker}(f)\iff b=c=0$, donc $\mathrm{Ker}(f)=\{(a,0,0),a\in\mathbb{R}\}=\mathrm{Vect}(e_1)$. De plus, $\mathrm{Im}(f)=\mathrm{Vect}(f(e_1),f(e_2),f(e_3))=\mathrm{Vect}(e_1,e_2+e_3)$, et la famille (e_1,e_2+e_3) est clairement libre, c'est donc une base de $\mathrm{Im}(f)$.
- c. On calcule l'image par f^2 des vecteurs de la base \mathcal{B} :

$$f^{2}(e_{1}) = 0$$
, $f^{2}(e_{2}) = f(e_{2} + e_{3}) = e_{1} + e_{2} + e_{3}$, $f^{2}(e_{3}) = f(e_{1}) = 0$.

Ainsi, dans la base \mathcal{B} , $f^2(a,b,c)=(b,b,b)$. On en déduit que

$$Ker(f^2) = Vect(e_1, e_3), \quad Im(f^2) = Vect(e_1 + e_2 + e_3).$$

d. On recommence avec f^3 :

$$f^{3}(e_{1}) = 0$$
, $f^{3}(e_{2}) = f(e_{1} + e_{2} + e_{3}) = e_{1} + e_{2} + e_{3}$, $f^{3}(e_{3}) = 0$,

et on s'aperçoit que f^3 et f^2 coïncident sur la base \mathcal{B} . Cela implique que $f^3(v) = f^2(v)$ pour tout $v \in \mathbb{R}^3$. On montre alors par une récurrence que pour tout $k \ge 2$, $f^k = f^2$: c'est vrai pour k = 2 et pour k = 3. Supposons que $f^k = f^2$ pour un certain $k \ge 3$. Alors

$$f^{k+1} = f \circ f^k = f \circ f^2 = f^3 = f^2$$

Cela implique en particulier que pour tout $k \ge 2$, $N_k = \text{Ker}(f^k) = \text{Ker}(f^2) = N_2$.

- 2. a. $N_0 = \text{Ker}(id_E) = \{0_E\}.$
 - b. Soit $k \in \mathbb{N}$, et soit $x \in N_k$. Par définition, $f^k(x) = 0$, et donc $f^{k+1}(x) = f(f^k(x)) = 0$, donc $x \in N_{k+1}$. On a donc montré que $N_k \subset N_{k+1}$.

- c. On suppose que $N_p = N_{p+1}$. Soit $x \in N_{p+2}$. Alors, par définition, $0 = f^{p+2}(x) = f^{p+1}(f(x))$, et donc $f(x) \in N_{p+1}$. Or, $N_p = N_{p+1}$, donc $f(x) \in N_p$, et donc $f^p(f(x)) = f^{p+1}(x) = 0$. On a ainsi montré que si $N_{p+2} \subset N_{p+1}$. Mais d'après la question b., la suite (N_k) est croissante : en particulier, $N_{p+1} \subset N_{p+2}$, d'où l'égalité entre N_{p+1} et N_{p+2} .
- d. Le résultat se démontre maintenant par récurrence : on a démontré dans la question précédente que si $N_p = N_{p+1}$, alors $N_{p+1} = N_{p+2}$. Cette propriété se propage donc à tous les entiers plus grands que p, c'est-à-dire que pour tout $k \ge p$, $N_{k+1} = N_k$, donc $N_k = N_p$.
- 3. a. Puisque E est de dimension finie, les N_k sont eux aussi de dimension finie. Comme de plus, pour tout $k \in \mathbb{N}$, on a $N_k \subset N_{k+1}$, on en déduit que $\dim(N_k) \leq \dim(N_{k+1})$, et que donc $n_k \leq n_{k+1}$. La suite $(n_k)_{k \in \mathbb{N}}$ est croissante.
 - b. La suite (n_k) est une suite croissante d'entiers, et elle est majorée par n, la dimension de E. Elle ne peut pas être strictement croissante : il existe donc forcément $k \in \mathbb{N}$ tel que $n_k = n_{k+1}$. On note p le plus petit tel entier k, c'est-à-dire que c'est l'unique entier qui vérifie

$$\begin{cases} k$$

Si k < p, alors $n_k \neq n_{k+1}$ implique que $N_k \neq N_{k+1}$. En outre, on a $N_p \subset N_{p+1}$, et dim $(N_p) = \dim(N_{p+1})$, et donc $N_p = N_{p+1}$. D'après la question 2.d, on en déduit que pour tout $k \geq p$, $N_k = N_p$. En résummé, l'entier p vérifie :

$$\begin{cases} k$$

- c. On a montré que (n_k) est une suite strictement croissante pour $k \in [0, p]$. Comme $n_0 \ge 0$, et comme pour tout $k \in [0, p-1]$, $n_{k+1} \ge n_k$, on peut montrer que $n_k \ge k$ pour tout $k \in [0, p]$. En particulier, $n_p \ge p$. Or, on sait aussi que la suite (n_k) est majorée par n, et donc $p \le n_p \le n$, donc $p \le n$.
- 4. Soit $f \in \mathcal{L}(E)$ une application nilpotente, et soit p sont indice de nilpotence. En reprenant les notations des questions précédentes, on a $N_p = E$, et $N_{p-1} \neq E$. Cela implique notamment que pour tout $k \geq p$, $N_k = N_p$, donc l'entier p est le même que celui défini dans la question 3.b, et en particulier, $p \leq n$.
- 5. Soit $k \in \mathbb{N}$. l'application g^k est donnée par

$$g^k((u_0, u_1, u_2, \dots)) = (u_k, u_{k+1}, u_{k+2}, \dots),$$

donc son noyau est

$$N_k = \{(u_n)_{n \in \mathbb{N}} \mid n \geqslant k \implies u_n = 0\},\$$

c'est l'espace des polynômes de degré inférieur ou égal à k-1, $\mathbb{R}_{k-1}[X]$. En particulier, on a toujours que $N_k \subset N_{k+1}$, mais pour tout $k \in \mathbb{N}$, cette inclusion est stricte : $N_k \neq N_{k+1}$.