Corrigé du devoir surveillé nº 8

Exercice 1. 1. Notons qu'il suffit de vérifier que les ensembles donnés sont (ou non) des sous-espaces vectoriels.

- a. (0,0,0) n'est pas un élément de E_1 , et donc E_1 n'est pas un espace vectoriel.
- b. $E_2 \subset \mathcal{C}^1([0,1])$, qui est un \mathbb{R} -espace vectoriel. De plus, la fonction constante égale à 0 appartient à E_2 . Il reste seulement à vérifier si E_2 est stable par combinaisons linéaires : soient $f, g \in E_2$, et soit $\lambda \in \mathbb{R}$. La fonction $\lambda f + g$ est toujours de classe \mathcal{C}^1 sur [0,1], et par ailleurs,

$$(\lambda f + g)(0) = \lambda f(0) + g(0) = 0 = (\lambda f + g)(1),$$

donc $\lambda f + g \in E_2$. On en conclut que E_2 est un espace vectoriel.

- c. Cette fois, la matrice nulle appartient bien à E_3 , mais au vu de sa définition, on peut se douter que cet espace n'est pas stable par combinaison linéaire, il s'agit donc de trouver un contre-exemple. Considérons donc $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. On vérifie facilement que $A^2 = B^2 = 0$, mais par contre $A + B)^2 = I_2 \neq 0$, ce qui montre bien que E_3 n'est pas un espace vectoriel.
- 2. Soient $P, Q \in \mathbb{R}[X]$, et soit $\lambda \in \mathbb{R}$.

$$\phi(\lambda P + Q) = X(\lambda P + Q)(X) + (\lambda P + Q)'(2X)$$

$$= X(\lambda P(X) + Q(X)) + \lambda P'(2X) + Q'(2X)$$

$$= \lambda(XP(X) + P'(2X)) + XQ(X) + Q'(2X)$$

$$= \lambda \phi(P) + \phi(Q),$$

et donc ϕ est linéaire.

3. Pour déterminer l'image de f, on peut résoudre le système linéaire f(x, y, z) = (a, b), d'inconnues x, y et z. On peut aussi remarquer que f(1, 0, 1) = (1, 0) et f(0, 0, -1) = (0, 1), et que donc la base canonique de \mathbb{R}^2 est contenue dans Im(f). Comme Im(f) est un sous-espace vectoriel de \mathbb{R}^2 , c'est donc nécessairement \mathbb{R}^2 tout entier.

On cherche maintenant le noyau de f. Soit $(x, y, z) \in \mathbb{R}^3$. Le vecteur (x, y, z) est dans le noyau de f si, et seulement si,

$$\begin{cases} x+y=0\\ x-y-z=0 \end{cases} \iff \begin{cases} y=-x\\ z=2x \end{cases}$$

Autrement dit, $(x, y, z) \in \text{Ker}(f) \iff (x, y, z) = (x, -x, 2x) = x(1, -1, 2)$, et donc Ker(f) = Vect((1, -1, 2)).

4. a. Soient $a, b, c \in \mathbb{R}$ tels que a(0,0,1) + b(0,1,1) + c(1,1,1) = (0,0,0). On a donc

$$\begin{cases} a = 0 \\ a + b = 0 \\ a + b + c = 0 \end{cases} \implies a = b = c = 0,$$

et donc la famille ((0,0,1),(0,1,1),(1,1,1)) est libre.

b. Soient a, b, c des réels tels que a(1, 2) + b(3, 4) + c(5, 6) = (0, 0). On est ramenés à considérer le système linéaire

$$\begin{cases} a+3b+5c=0\\ 2a+4b+6c=0 \end{cases} \iff \begin{cases} a+3b+5c=0\\ -2b-4c=0 \end{cases} \iff \begin{cases} a=c\\ b=-2c \end{cases}$$

En particulier, on en déduit que (1,2) - 2(3,4) + (5,6) = (0,0), et que la famille est liée.

c. Soient $a, b \in \mathbb{R}$ tels que a(1, i) + b(i, -1) = (0, 0). Alors, en particulier, a + ib = 0. Comme a et b sont réels, on en déduit que a = b = 0, par unicité des parties réelles et imaginaires. Finalement, la famille ((1, i), (i, -1)) est libre.

Remarque : si on considère \mathbb{C}^2 comme un \mathbb{C} -espace vectoriel, alors le résultat n'est plus le même : en effet, (1,i)+i(i,-1)=0, et la famille est liée.

Exercice 2. 1. Le nombre de tirages simultanés possible est $\binom{15}{3} = \frac{13 \times 14 \times 15}{3!} = 13 \times 7 \times 5 = 455$. Le nombre de tirages tricolores possibles est $1 \times 5 \times 9 = 45$, et donc la probabilité de l'évènement A est

$$\mathbb{P}(A) = \frac{45}{455} = \frac{9}{91}.$$

Pour déterminer la probabilité de l'évènement B, on peut remarquer que B est l'union des évènements incompatibles « NBR » et « NRR », où les lettres N,B et R désignent respectivement une boule noire, une boule blanche et une boule rouge. Ainsi,

$$\mathbb{P}(B) = \mathbb{P}(\text{ NBR } \text{ }) + \mathbb{P}(\text{ NRR } \text{ })$$

$$= \mathbb{P}(A) + \frac{\binom{9}{2}}{455}$$

$$= \frac{9}{91} + \frac{36}{455} = \frac{81}{455}.$$

Finalement, la seule manière d'obtenir trois boules de la même couleur est de tirer soit trois boules rouges, soit trois boules blanches. Alors

$$\mathbb{P}(C) = \frac{\binom{5}{3}}{455} + \frac{\binom{9}{3}}{455}$$
$$= \frac{10}{455} + \frac{84}{455} = \frac{94}{455}.$$

2. On procède maintenant à un tirage successif avec remise. Il existe alors 6 tirages tricolores : NBR, NRB, BRN, BNR, RBN et RNB, tous de probabilités égales. Alors

$$\mathbb{P}(A) = 6 \times \mathbb{P}(\text{« NBR »}) = 6 \times \frac{1}{15} \times \frac{5}{15} \times \frac{9}{15} = \frac{270}{3375} = \frac{2}{25}$$

L'évènement B est toujours l'union des évènements incompatibles A et « on a tiré une boule noire et deux boules rouges, » il suffit donc de calculer la probabilité de ce dernier. Il y a 3 tels tirages de probabilités égales : NRR, RNR, et RRN. Ainsi,

$$\begin{split} \mathbb{P}(B) &= \mathbb{P}(A) + 3 \times \mathbb{P}(\text{« NRR »}) \\ &= \frac{2}{25} + 3 \times \frac{1}{15} \times \frac{9}{15} \times \frac{9}{15} \\ &= \frac{2}{25} + \frac{9}{125} = \frac{19}{125}. \end{split}$$

Pour l'évènement C, puisqu'on tire avec remise, il existe cette fois un nouveau tirage possible : « NNN ». On en déduit que

$$\begin{split} \mathbb{P}(C) &= \mathbb{P}(\text{« NNN »}) + \mathbb{P}(\text{« BBB »}) + \mathbb{P}(\text{« RRR »}) \\ &= \frac{1}{15^3} + \frac{5^3}{15^3} + \frac{9^3}{15^3} \\ &= \frac{1 + 125 + 729}{3375} = \frac{855}{3375} = \frac{19}{75} \end{split}$$

Exercice 3. 1. La linéarité de g se vérifie simplement : soient $(x_1, y_1), (x_2, y_2)$ des vecteurs de \mathbb{R}^2 , et $\lambda \in \mathbb{R}$. Alors

$$g(\lambda(x_1, y_1) + (x_2, y_2) = (\lambda x_1 + x_2, \lambda y_1 + y_2 + \alpha(\lambda x_1 + x_2))$$

= $\lambda(x_1, y_1 + \alpha x_1) + (x_2, y_2 + \alpha x_2)$
= $\lambda g(x_1, y_1) + g(x_2, y_2),$

donc g est bien linéaire.

2. $(x,y) \in \text{Ker}(g)$ si, et seulement si, x=0 et $y+\alpha x=0$, c'est-à-dire que x=y=0. On en déduit que $\text{Ker}(g)=\{0\}$. Pour déterminer l'image, on remarque que $g(1,-\alpha)=(1,0)$, et que g(0,1)=(0,1), donc $\text{Im}(g)=\mathbb{R}^2$. Par suite, g est injective et surjective, c'est donc un automorphisme.

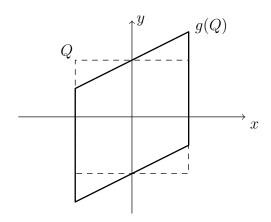
3. On peut répondre à cette question en regardant, par exemple, l'image pour $x \in [-1,1]$ du segment $s_x = \{(x,y), |y| \le 1\}$. On a

$$g(s_x) = \{(x, y + \alpha x), y \in [-1, 1]\} = \{(x, z), z \in [-1 + \alpha x, 1 + \alpha x]\},\$$

c'est-à-dire que l'image du segment s_x est aussi un segment parallèle à l'axe des ordonnées, ce qui permet de dire que

$$g(Q) = \{(x, y), |x| \le 1, -1 + \alpha x \le y \le 1 + \alpha x\}.$$

4.



Exercice 4. 1. Les fonctions h_1, \ldots, h_n forment une famille libre si elles vérifient la propriété suivante :

$$\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}, (\lambda_1 f_1 + \dots + \lambda_n f_n = 0 \implies \lambda_1 = \dots = \lambda_n = 0).$$

Autrement dit, par définition de l'égalité de fonctions, la famille est libre si

$$\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}, (\forall x \in [0, 1], \ \lambda_1 f_1(x) + \dots + \lambda_n f_n(x) = 0 \implies \lambda_1 = \dots = \lambda_n = 0).$$

2. Soient λ_1, λ_2 des réels tels que $\lambda_1 h_1 + \lambda_2 h_2 = 0$. Comme les fonctions h_1 et h_2 sont dérivables sur [0,1], cette relation reste vraie après dérivation : $\lambda_1 h'_1 + \lambda_2 h'_2 = 0$. En particulier, en x = 0, on obtient les deux équations

$$\begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 + 2\lambda_2 = 0 \end{cases} \implies \lambda_1 = \lambda_2 = 0,$$

et donc (h_1, h_2) est libre.

Exercice 5. 1. On suppose que \mathcal{F} n'engendre pas E. Il existe donc $u_{n+1} \in E \setminus \text{Vect}(u_1, \dots, u_n)$. Mais alors la famille $(u_1, \dots, u_n, u_{n+1})$ est libre : en effet, si $\lambda_1, \dots, \lambda_{n+1}$ sont des réels qui vérifient

$$\lambda_1 u_1 + \dots + \lambda_n u_n + \lambda_{n+1} u_{n+1} = 0,$$

- alors nécessairement $\lambda_{n+1} = 0$ puisque u_{n+1} n'est pas une combinaison linéaires des vecteurs de \mathcal{F} . Mais alors $\lambda_1 u_1 + \cdots + \lambda_n u_n = 0$, et donc comme \mathcal{F} est libre, on en déduit que tous les λ_i sont nuls. On a donc montré que (u_1, \ldots, u_{n+1}) est libre.
- 2. Soient \mathcal{F}_1 et \mathcal{F}_2 deux bases de E. En particulier, \mathcal{F}_1 est libre, et \mathcal{F}_2 est génératrice, et donc $\operatorname{Card}(\mathcal{F}_1) \leq \operatorname{Card}(\mathcal{F}_2)$. Or, l'argument est vrai aussi en inversant le rôle de \mathcal{F}_1 et \mathcal{F}_2 , et on en déduit que \mathcal{F}_1 et \mathcal{F}_2 ont même cardinal.
- 3. Soient $\lambda_0, \ldots, \lambda_n \in \mathbb{K}$ tels que $\sum_{k=0}^n \lambda_k P_k = 0$. Comme on travaille avec des polynômes, cette équation implique que chaque monôme est nul. En particulier, le coefficient devant le terme de degré $\deg(P_n)$ est nul. Comme les polynômes sont à degrés échelonnés, ce coefficient est exactement le produit du coefficient dominant de P_n avec λ_n : on peut donc en déduire que $\lambda_n = 0$. En continuant le raisonnement ainsi pour tous les entiers entre 0 et n-1, on en conclut que tous les λ_k sont nuls, et que donc la famille (P_0, \ldots, P_n) est libre.

4. Un calcul immédiat donne : $P_1 = X$. Montrons par récurrence que P_n est de degré n. La propriété est vraie pour n = 0 et n = 1. Supposons que $\deg(P_n) = n$ pour un certain $n \ge 1$. Alors, si on note a_n le coefficient dominant de P_n , P_{n+1} s'écrit

$$P_{n+1} = X(a_n X^n + \dots) + (X-1)^2 (na_n X^{n-1} + \dots) = a_n (1+n) X^{n+1} + \dots,$$

- où les points de suspension représentent des termes de degré strictement plus petits que celui du monôme dominant. Alors $\deg(P_{n+1})=n+1$, et le principe de récurrence permet d'affirmer que pour tout $n\in\mathbb{N}$, $\deg(P_n)=n$.
- 5. Soit $n \in \mathbb{N}$. D'après les deux questions précédentes, on sait que (P_0, \ldots, P_n) est une famille libre d'éléments de $K_n[X]$. Supposons qu'elle n'engendre pas $\mathbb{K}_n[X]$ tout entier. Alors, d'après la première question, il existe un polynôme $Q \in \mathbb{K}_n[X]$ tel que la famille (P_0, \ldots, P_n, Q) soit libre dans $K_n[X]$. Mais alors on a construit une famille libre de cardinal n+2, et on sait que $(1, X, \ldots, X^n)$ engendre $\mathbb{K}_n[X]$. Cela implique que $n+2 \le n+1$, ce qui est exclu. On en conclut que (P_0, \ldots, P_n) engendre $\mathbb{K}_n[X]$, c'en est donc une base.