

Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make your code easier to read.

Making a list

users = ['val', 'bob', 'mia', 'ron', 'ned']

You can add elements to the end of a list, or you can insert
them wherever you like in a list.

Adding an element to the end of the list

users.append('amy')

Starting with an empty list

users = []
users.append('val')

users.append('bob')

users.append('mia')

Inserting elements at a particular position

users.insert(0, 'joe')

users.insert(3, 'bea')

Covers Python 3 and Python 2

The sort() method changes the order of a list permanently.
The sorted() function returns a copy of the list, leaving the
original list unchanged. You can sort the items in a list in
alphabetical order, or reverse alphabetical order. You can
also reverse the original order of the list. Keep in mind that
lowercase and uppercase letters may affect the sort order.

Sorting a list permanently

users.sort()

Sorting a list permanently in reverse alphabetical
order

users.sort(reverse=True)

Sorting a list temporarily

print(sorted(users))

print(sorted(users, reverse=True))

Reversing the order of a list

users.reverse()

A list stores a series of items in a particular order.
Lists allow you to store sets of information in one
place, whether you have just a few items or millions
of items. Lists are one of Python's most powerful
features readily accessible to new programmers, and
they tie together many important concepts in
programming.

You can remove elements by their position in a list, or by
the value of the item. If you remove an item by its value,
Python removes only the first item that has that value.

Deleting an element by its position

del users[-1]

Removing an item by its value

users.remove('mia')

If you want to work with an element that you're removing
from the list, you can "pop" the element. If you think of the
list as a stack of items, pop() takes an item off the top of the
stack. By default pop() returns the last element in the list,
but you can also pop elements from any position in the list.

Pop the last item from a list

most_recent_user = users.pop()

print(most_recent_user)

Pop the first item in a list

first_user = users.pop(0)

print(first_user)

Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and stores it in a temporary variable, which you
provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list

for user in users:

 print(user)

Printing a message for each item, and a separate
message afterwards

for user in users:

 print("Welcome, " + user + "!")

print("Welcome, we're glad to see you all!")

The len() function returns the number of items in a list.

Find the length of a list

num_users = len(users)
print("We have " + str(num_users) + " users.")

Individual elements in a list are accessed according to their
position, called the index. The index of the first element is
0, the index of the second element is 1, and so forth.
Negative indices refer to items at the end of the list. To get
a particular element, write the name of the list and then the
index of the element in square brackets.

Getting the first element

first_user = users[0]

Getting the second element

second_user = users[1]

Getting the last element

newest_user = users[-1]

Once you've defined a list, you can change individual
elements in the list. You do this by referring to the index of
the item you want to modify.

Changing an element

users[0] = 'valerie'

users[-2] = 'ronald'

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000

for number in range(1001):

 print(number)

Printing the numbers 1 to 1000

for number in range(1, 1001):

 print(number)

Making a list of numbers from 1 to a million

numbers = list(range(1, 1000001))

To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list

finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

More cheat sheets available at

Readability counts

 Use four spaces per indentation level.

 Keep your lines to 79 characters or fewer.

 Use single blank lines to group parts of your
program visually.

There are a number of simple statistics you can run on a list
containing numerical data.

Finding the minimum value in a list

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]

youngest = min(ages)

Finding the maximum value

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]

oldest = max(ages)

Finding the sum of all values

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]

total_years = sum(ages)

You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation, so
Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use the
for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers

squares = []

for x in range(1, 11):

 square = x**2

 squares.append(square)

Using a comprehension to generate a list of square
numbers

squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case

names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []

for name in names:

 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case

names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

You can work with any set of elements from a list. A portion
of a list is called a slice. To slice a list start with the index of
the first item you want, then add a colon and the index after
the last item you want. Leave off the first index to start at
the beginning of the list, and leave off the last index to slice
through the end of the list.

Getting the first three items

finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']

first_three = finishers[:3]

Getting the middle three items

middle_three = finishers[1:4]

Getting the last three items

last_three = finishers[-3:]

A tuple is like a list, except you can't change the values in a
tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of
a program. Tuples are designated by parentheses instead
of square brackets. (You can overwrite an entire tuple, but
you can't change the individual elements in a tuple.)

Defining a tuple

dimensions = (800, 600)

Looping through a tuple

for dimension in dimensions:

 print(dimension)

Overwriting a tuple

dimensions = (800, 600)

print(dimensions)

dimensions = (1200, 900)

When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. pythontutor.com is a great tool
for seeing how Python keeps track of the information in a
list. Try running the following code on pythontutor.com, and
then run your own code.

Build a list and print the items in the list

dogs = []

dogs.append('willie')

dogs.append('hootz')

dogs.append('peso')

dogs.append('goblin')

for dog in dogs:

 print("Hello " + dog + "!")

print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]

for old_dog in old_dogs:

 print(old_dog)

del dogs[0]
dogs.remove('peso')

print(dogs)

http://ehmatthes.github.io/pcc/cheatsheets/README.html
http://github.com/ehmatthes/pcc/cheatsheets

A conditional test is an expression that can be evaluated as
True or False. Python uses the values True and False to
decide whether the code in an if statement should be
executed.

Checking for equality
A single equal sign assigns a value to a variable. A double equal
sign (==) checks whether two values are equal.

>>> car = 'bmw'

>>> car == 'bmw'

True

>>> car = 'audi'
>>> car == 'bmw'

False

Ignoring case when making a comparison

>>> car = 'Audi'
>>> car.lower() == 'audi'

True

Checking for inequality

>>> topping = 'mushrooms'

>>> topping != 'anchovies'
True

Testing numerical values is similar to testing string values.

Testing equality and inequality

>>> age = 18

>>> age == 18
True

>>> age != 18

False

Comparison operators

>>> age = 19
>>> age < 21

True

>>> age <= 21

True

>>> age > 21
False

>>> age >= 21

False

Covers Python 3 and Python 2

Several kinds of if statements exist. Your choice of which to
use depends on the number of conditions you need to test.
You can have as many elif blocks as you need, and the
else block is always optional.

Simple if statement

age = 19

if age >= 18:

 print("You're old enough to vote!")

If-else statements

age = 17

if age >= 18:

 print("You're old enough to vote!")

else:

 print("You can't vote yet.")

The if-elif-else chain

age = 12

if age < 4:
 price = 0

elif age < 18:

 price = 5

else:

 price = 10

print("Your cost is $" + str(price) + ".")

If statements allow you to examine the current state
of a program and respond appropriately to that state.
You can write a simple if statement that checks one
condition, or you can create a complex series of if
statements that idenitfy the exact conditions you're
looking for.

While loops run as long as certain conditions remain
true. You can use while loops to let your programs
run as long as your users want them to.

You can check multiple conditions at the same time. The
and operator returns True if all the conditions listed are
True. The or operator returns True if any condition is True.

Using and to check multiple conditions

>>> age_0 = 22

>>> age_1 = 18

>>> age_0 >= 21 and age_1 >= 21

False

>>> age_1 = 23
>>> age_0 >= 21 and age_1 >= 21

True

Using or to check multiple conditions

>>> age_0 = 22

>>> age_1 = 18
>>> age_0 >= 21 or age_1 >= 21

True

>>> age_0 = 18

>>> age_0 >= 21 or age_1 >= 21

False

A boolean value is either True or False. Variables with
boolean values are often used to keep track of certain
conditions within a program.

Simple boolean values

game_active = True

can_edit = False

You can easily test whether a certain value is in a list. You
can also test whether a list is empty before trying to loop
through the list.

Testing if a value is in a list

>>> players = ['al', 'bea', 'cyn', 'dale']

>>> 'al' in players

True

>>> 'eric' in players
False

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

Testing if a value is not in a list

banned_users = ['ann', 'chad', 'dee']
user = 'erin'

if user not in banned_users:

 print("You can play!")

Checking if a list is empty

players = []

if players:

 for player in players:

 print("Player: " + player.title())
else:

 print("We have no players yet!")

Letting the user choose when to quit

prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."

prompt += "\nEnter 'quit' to end the program. "

message = ""

while message != 'quit':
 message = input(prompt)

 if message != 'quit':

 print(message)

Using a flag

prompt = "\nTell me something, and I'll "

prompt += "repeat it back to you."

prompt += "\nEnter 'quit' to end the program. "

active = True
while active:

 message = input(prompt)

 if message == 'quit':

 active = False

 else:
 print(message)

Using break to exit a loop

prompt = "\nWhat cities have you visited?"

prompt += "\nEnter 'quit' when you're done. "

while True:

 city = input(prompt)

 if city == 'quit':

 break
 else:

 print("I've been to " + city + "!")

More cheat sheets available at

Using continue in a loop

banned_users = ['eve', 'fred', 'gary', 'helen']

prompt = "\nAdd a player to your team."

prompt += "\nEnter 'quit' when you're done. "

players = []

while True:
 player = input(prompt)

 if player == 'quit':

 break

 elif player in banned_users:

 print(player + " is banned!")
 continue

 else:

 players.append(player)

print("\nYour team:")

for player in players:
 print(player)

You can allow your users to enter input using the input()
statement. In Python 3, all input is stored as a string.

Simple input

name = input("What's your name? ")
print("Hello, " + name + ".")

Accepting numerical input

age = input("How old are you? ")

age = int(age)

if age >= 18:

 print("\nYou can vote!")

else:

 print("\nYou can't vote yet.")

Accepting input in Python 2.7
Use raw_input() in Python 2.7. This function interprets all input as a
string, just as input() does in Python 3.

name = raw_input("What's your name? ")
print("Hello, " + name + ".")

A while loop repeats a block of code as long as a condition
is True.

Counting to 5

current_number = 1

while current_number <= 5:

 print(current_number)

 current_number += 1

Sublime Text doesn't run programs that prompt the user for
input. You can use Sublime Text to write programs that
prompt for input, but you'll need to run these programs from
a terminal.

Every while loop needs a way to stop running so it won't
continue to run forever. If there's no way for the condition to
become False, the loop will never stop running.

An infinite loop

while True:

 name = input("\nWho are you? ")

 print("Nice to meet you, " + name + "!")

The remove() method removes a specific value from a list,
but it only removes the first instance of the value you
provide. You can use a while loop to remove all instances
of a particular value.

Removing all cats from a list of pets

pets = ['dog', 'cat', 'dog', 'fish', 'cat',

 'rabbit', 'cat']

print(pets)

while 'cat' in pets:

 pets.remove('cat')

print(pets)

You can use the break statement and the continue
statement with any of Python's loops. For example you can
use break to quit a for loop that's working through a list or a
dictionary. You can use continue to skip over certain items
when looping through a list or dictionary as well.

http://ehmatthes.github.io/pcc/cheatsheets/README.html
http://github.com/ehmatthes/pcc/cheatsheets

The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.
 To call a function, give the name of the function followed
by a set of parentheses.

Making a function

def greet_user():
 """Display a simple greeting."""

 print("Hello!")

greet_user()

The two main kinds of arguments are positional and
keyword arguments. When you use positional arguments
Python matches the first argument in the function call with
the first parameter in the function definition, and so forth.
 With keyword arguments, you specify which parameter
each argument should be assigned to in the function call.
When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments

def describe_pet(animal, name):

 """Display information about a pet."""

 print("\nI have a " + animal + ".")

 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments

def describe_pet(animal, name):

 """Display information about a pet."""
 print("\nI have a " + animal + ".")

 print("Its name is " + name + ".")

describe_pet(animal='hamster', name='harry')

describe_pet(name='willie', animal='dog')

Covers Python 3 and Python 2

A function can return a value or a set of values. When a
function returns a value, the calling line must provide a
variable in which to store the return value. A function stops
running when it reaches a return statement.

Returning a single value

def get_full_name(first, last):
 """Return a neatly formatted full name."""

 full_name = first + ' ' + last

 return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)

Returning a dictionary

def build_person(first, last):

 """Return a dictionary of information

 about a person.
 """

 person = {'first': first, 'last': last}

 return person

musician = build_person('jimi', 'hendrix')
print(musician)

Returning a dictionary with optional values

def build_person(first, last, age=None):

 """Return a dictionary of information

 about a person.
 """

 person = {'first': first, 'last': last}

 if age:

 person['age'] = age

 return person

musician = build_person('jimi', 'hendrix', 27)

print(musician)

musician = build_person('janis', 'joplin')

print(musician)

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task. Functions can take in the
information they need, and return the information they
generate. Using functions effectively makes your
programs easier to write, read, test, and fix.

You can provide a default value for a parameter. When
function calls omit this argument the default value will be
used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value

def describe_pet(name, animal='dog'):

 """Display information about a pet."""

 print("\nI have a " + animal + ".")

 print("Its name is " + name + ".")

describe_pet('harry', 'hamster')

describe_pet('willie')

Using None to make an argument optional

def describe_pet(animal, name=None):

 """Display information about a pet."""
 print("\nI have a " + animal + ".")

 if name:

 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('snake')

Information that's passed to a function is called an
argument; information that's received by a function is called
a parameter. Arguments are included in parentheses after
the function's name, and parameters are listed in
parentheses in the function's definition.

Passing a single argument

def greet_user(username):

 """Display a simple greeting."""

 print("Hello, " + username + "!")

greet_user('jesse')

greet_user('diana')

greet_user('brandon')

Try running some of these examples on pythontutor.com.

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

You can pass a list as an argument to a function, and the
function can work with the values in the list. Any changes
the function makes to the list will affect the original list. You
can prevent a function from modifying a list by passing a
copy of the list as an argument.

Passing a list as an argument

def greet_users(names):

 """Print a simple greeting to everyone."""
 for name in names:

 msg = "Hello, " + name + "!"

 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The original list is emptied, and the second list is filled.

def print_models(unprinted, printed):

 """3d print a set of models."""

 while unprinted:

 current_model = unprinted.pop()

 print("Printing " + current_model)
 printed.append(current_model)

Store some unprinted designs,

and print each of them.

unprinted = ['phone case', 'pendant', 'ring']
printed = []

print_models(unprinted, printed)

print("\nUnprinted:", unprinted)

print("Printed:", printed)

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
 """3d print a set of models."""

 while unprinted:

 current_model = unprinted.pop()

 print("Printing " + current_model)

 printed.append(current_model)

Store some unprinted designs,

and print each of them.

original = ['phone case', 'pendant', 'ring']

printed = []

print_models(original[:], printed)

print("\nOriginal:", original)

print("Printed:", printed)

Sometimes you won't know how many arguments a
function will need to accept. Python allows you to collect an
arbitrary number of arguments into one parameter using the
* operator. A parameter that accepts an arbitrary number of
arguments must come last in the function definition.
 The ** operator allows a parameter to collect an arbitrary
number of keyword arguments.

Collecting an arbitrary number of arguments

def make_pizza(size, *toppings):

 """Make a pizza."""

 print("\nMaking a " + size + " pizza.")

 print("Toppings:")

 for topping in toppings:
 print("- " + topping)

Make three pizzas with different toppings.

make_pizza('small', 'pepperoni')

make_pizza('large', 'bacon bits', 'pineapple')
make_pizza('medium', 'mushrooms', 'peppers',

 'onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments

def build_profile(first, last, **user_info):

 """Build a user's profile dictionary."""
 # Build a dict with the required keys.

 profile = {'first': first, 'last': last}

 # Add any other keys and values.

 for key, value in user_info.items():
 profile[key] = value

 return profile

Create two users with different kinds

of information.
user_0 = build_profile('albert', 'einstein',

 location='princeton')

user_1 = build_profile('marie', 'curie',

 location='paris', field='chemistry')

print(user_0)

print(user_1)

More cheat sheets available at

You can store your functions in a separate file called a
module, and then import the functions you need into the file
containing your main program. This allows for cleaner
program files. (Make sure your module is stored in the
same directory as your main program.)

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):

 """Make a pizza."""

 print("\nMaking a " + size + " pizza.")

 print("Toppings:")

 for topping in toppings:

 print("- " + topping)

Importing an entire module
File: making_pizzas.py
Every function in the module is available in the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')

pizza.make_pizza('small', 'bacon', 'pineapple')

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Giving a module an alias

import pizza as p

p.make_pizza('medium', 'pepperoni')

p.make_pizza('small', 'bacon', 'pineapple')

Giving a function an alias

from pizza import make_pizza as mp

mp('medium', 'pepperoni')

mp('small', 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It
can result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

As you can see there are many ways to write and call a
function. When you're starting out, aim for something that
simply works. As you gain experience you'll develop an
understanding of the more subtle advantages of different
structures such as positional and keyword arguments, and
the various approaches to importing functions. For now if
your functions do what you need them to, you're doing well.

http://ehmatthes.github.io/pcc/cheatsheets/README.html
http://github.com/ehmatthes/pcc/cheatsheets

Covers Python 3 and Python 2

Emphasizing points
You can plot as much data as you want on one plot. Here we re-
plot the first and last points larger to emphasize them.

import matplotlib.pyplot as plt

x_values = list(range(1000))

squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, c=squares,

 cmap=plt.cm.Blues, edgecolor='none',

 s=10)

plt.scatter(x_values[0], squares[0], c='green',

 edgecolor='none', s=100)

plt.scatter(x_values[-1], squares[-1], c='red',

 edgecolor='none', s=100)

plt.title("Square Numbers", fontsize=24)

--snip--

Removing axes
You can customize or remove axes entirely. Here’s how to access
each axis, and hide it.

plt.axes().get_xaxis().set_visible(False)

plt.axes().get_yaxis().set_visible(False)

Setting a custom figure size
You can make your plot as big or small as you want. Before
plotting your data, add the following code. The dpi argument is
optional; if you don’t know your system’s resolution you can omit
the argument and adjust the figsize argument accordingly.

plt.figure(dpi=128, figsize=(10, 6))

Saving a plot
The matplotlib viewer has an interactive save button, but you can
also save your visualizations programmatically. To do so, replace
plt.show() with plt.savefig(). The bbox_inches='tight'
argument trims extra whitespace from the plot.

plt.savefig('squares.png', bbox_inches='tight')

Data visualization involves exploring data through
visual representations. The matplotlib package helps
you make visually appealing representations of the
data you’re working with. matplotlib is extremely
flexible; these examples will help you get started with
a few simple visualizations.

matplotlib runs on all systems, but setup is slightly different
depending on your OS. If the minimal instructions here
don’t work for you, see the more detailed instructions at
http://ehmatthes.github.io/pcc/. You should also consider
installing the Anaconda distrubution of Python from
https://continuum.io/downloads/, which includes matplotlib.

matplotlib on Linux

$ sudo apt-get install python3-matplotlib

matplotlib on OS X
Start a terminal session and enter import matplotlib to see if
it’s already installed on your system. If not, try this command:

$ pip install --user matplotlib

matplotlib on Windows
You first need to install Visual Studio, which you can do from
https://dev.windows.com/. The Community edition is free. Then go
to https://pypi.python.org/pypi/matplotlib/ or
http://www.lfd.uic.edu/~gohlke/pythonlibs/#matplotlib and download
an appropriate installer file.

Making a scatter plot
The scatter() function takes a list of x values and a list of y values,
and a variety of optional arguments. The s=10 argument controls
the size of each point.

import matplotlib.pyplot as plt

x_values = list(range(1000))

squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, s=10)

plt.show()

Making a line graph

import matplotlib.pyplot as plt

x_values = [0, 1, 2, 3, 4, 5]

squares = [0, 1, 4, 9, 16, 25]
plt.plot(x_values, squares)

plt.show()

Plots can be customized in a wide variety of ways. Just
about any element of a plot can be customized.

Adding titles and labels, and scaling axes

import matplotlib.pyplot as plt

x_values = list(range(1000))

squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, s=10)

plt.title("Square Numbers", fontsize=24)

plt.xlabel("Value", fontsize=18)

plt.ylabel("Square of Value", fontsize=18)

plt.tick_params(axis='both', which='major',

 labelsize=14)
plt.axis([0, 1100, 0, 1100000])

plt.show()

Using a colormap
A colormap varies the point colors from one shade to another,
based on a certain value for each point. The value used to
determine the color of each point is passed to the c argument, and
the cmap argument specifies which colormap to use.
 The edgecolor='none' argument removes the black outline
from each point.

plt.scatter(x_values, squares, c=squares,

 cmap=plt.cm.Blues, edgecolor='none',

 s=10)

The matplotlib gallery and documentation are at
http://matplotlib.org/. Be sure to visit the examples, gallery,
and pyplot links.

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse
http://ehmatthes.github.io/pcc/
https://continuum.io/downloads/
https://dev.windows.com/
https://pypi.python.org/pypi/matplotlib/
http://www.lfd.uic.edu/~gohlke/pythonlibs/#matplotlib
http://matplotlib.org/
http://matplotlib.org/examples/
http://matplotlib.org/gallery.html
http://matplotlib.org/api/pyplot_summary.html

You can make as many plots as you want on one figure.
When you make multiple plots, you can emphasize
relationships in the data. For example you can fill the space
between two sets of data.

Plotting two sets of data
Here we use plt.scatter() twice to plot square numbers and
cubes on the same figure.

import matplotlib.pyplot as plt

x_values = list(range(11))

squares = [x**2 for x in x_values]

cubes = [x**3 for x in x_values]

plt.scatter(x_values, squares, c='blue',

 edgecolor='none', s=20)

plt.scatter(x_values, cubes, c='red',

 edgecolor='none', s=20)

plt.axis([0, 11, 0, 1100])

plt.show()

Filling the space between data sets
The fill_between() method fills the space between two data
sets. It takes a series of x-values and two series of y-values. It also
takes a facecolor to use for the fill, and an optional alpha
argument that controls the color’s transparency.

plt.fill_between(x_values, cubes, squares,
 facecolor='blue', alpha=0.25)

Datetime formatting arguments
The strftime() function generates a formatted string from a
datetime object, and the strptime() function genereates a
datetime object from a string. The following codes let you work with
dates exactly as you need to.

%A Weekday name, such as Monday

%B Month name, such as January

%m Month, as a number (01 to 12)

%d Day of the month, as a number (01 to 31)

%Y Four-digit year, such as 2016
%y Two-digit year, such as 16

%H Hour, in 24-hour format (00 to 23)

%I Hour, in 12-hour format (01 to 12)

%p AM or PM

%M Minutes (00 to 59)

%S Seconds (00 to 61)

Converting a string to a datetime object

new_years = dt.strptime('1/1/2017', '%m/%d/%Y')

Converting a datetime object to a string

ny_string = dt.strftime(new_years, '%B %d, %Y')
print(ny_string)

Plotting high temperatures
The following code creates a list of dates and a corresponding list
of high temperatures. It then plots the high temperatures, with the
date labels displayed in a specific format.

from datetime import datetime as dt

import matplotlib.pyplot as plt

from matplotlib import dates as mdates

dates = [

 dt(2016, 6, 21), dt(2016, 6, 22),

 dt(2016, 6, 23), dt(2016, 6, 24),
]

highs = [57, 68, 64, 59]

fig = plt.figure(dpi=128, figsize=(10,6))
plt.plot(dates, highs, c='red')

plt.title("Daily High Temps", fontsize=24)

plt.ylabel("Temp (F)", fontsize=16)

x_axis = plt.axes().get_xaxis()

x_axis.set_major_formatter(
 mdates.DateFormatter('%B %d %Y')

)

fig.autofmt_xdate()

plt.show()

More cheat sheets available at

You can include as many individual graphs in one figure as
you want. This is useful, for example, when comparing
related datasets.

Sharing an x-axis
The following code plots a set of squares and a set of cubes on
two separate graphs that share a common x-axis.
 The plt.subplots() function returns a figure object and a tuple
of axes. Each set of axes corresponds to a separate plot in the
figure. The first two arguments control the number of rows and
columns generated in the figure.

import matplotlib.pyplot as plt

x_vals = list(range(11))

squares = [x**2 for x in x_vals]

cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(2, 1, sharex=True)

axarr[0].scatter(x_vals, squares)

axarr[0].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red')

axarr[1].set_title('Cubes')

plt.show()

Sharing a y-axis
To share a y-axis, we use the sharey=True argument.

import matplotlib.pyplot as plt

x_vals = list(range(11))
squares = [x**2 for x in x_vals]

cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(1, 2, sharey=True)

axarr[0].scatter(x_vals, squares)
axarr[0].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red')

axarr[1].set_title('Cubes')

plt.show()

Many interesting data sets have a date or time as the x-
value. Python’s datetime module helps you work with this
kind of data.

Generating the current date
The datetime.now() function returns a datetime object
representing the current date and time.

from datetime import datetime as dt

today = dt.now()

date_string = dt.strftime(today, '%m/%d/%Y')
print(date_string)

Generating a specific date
You can also generate a datetime object for any date and time you
want. The positional order of arguments is year, month, and day.
The hour, minute, second, and microsecond arguments are
optional.

from datetime import datetime as dt

new_years = dt(2017, 1, 1)

fall_equinox = dt(year=2016, month=9, day=22)

http://ehmatthes.github.io/pcc/cheatsheets/README.html

