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Abstract
We investigate the maximum bottleneck matching problem in bipartite graphs. Given a bipartite
graph with nonnegative edge weights, the problem is to find a maximum cardinality matching in
which the minimum weight of an edge is the maximum. To the best of our knowledge, there are two
widely used solvers for this problem based on two different approaches. There exists a third known
approach in the literature, which seems inferior to those two which is presumably why there is no
implementation of it. We take this third approach, make theoretical observations to improve its
behavior, and implement the improved method. Experiments with the existing two solvers show
that their run time can be too high to be useful in many interesting cases. Furthermore, their
performance is not predictable, and slight perturbations of the input graph lead to considerable
changes in the run time. On the other hand, the proposed solver’s performance is much more stable;
it is almost always faster than or comparable to the two existing solvers, and its run time always
remains low.
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1 Introduction

A matching in a graph is a set of edges without any common vertices. A maximum cardinality
matching in a graph has the largest number of edges among all matchings. We investigate
algorithms for finding a maximum cardinality matching whose minimum edge weight is the
maximum on bipartite graphs with edge weights. This is called the bottleneck matching
problem or linear bottleneck assignment problem when all vertices can be matched [3,
Section 6.2]. Formally, the bottleneck matching problem is to find a maximum cardinality
matching M which maximizes

min
(ri,cj)∈M

wi,j .

This problem can be solved in polynomial time.
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87:2 Algorithms for Bottleneck Matching

The bottleneck matching problem arises in different contexts [3, Section 6.2.8]. We
are motivated by the Birkhoff–von Neumann (BvN) decomposition of doubly stochastic
matrices [2], which arises in practical applications [1, 4, 16, 21]. In this case, the bipartite
graphs associated with matrices have equal number of vertices on both sides and contain
perfect matchings. A known heuristic for the BvN decomposition [10] repeatedly calls a
bottleneck matching algorithm on the bipartite graph of a dynamically changing matrix.

Table 1 Run time, in seconds, of mc64j2 and mc64j3 on 12 problems. A is the original matrix,
AP is the same matrix with a random column permutation; S = DP (A)E, where P (A) is the 0-1
matrix with 1s at the nonzero positions of A; and D and E are positive diagonal matrices scaling
P (A) to be doubly stochastic.

A AP S
matrix j2 j3 j2 j3 j2 j3
atmosmodm 0.05 0.26 0.13 0.40 684.87 6487.07
CurlCurl_3 0.05 0.31 0.15 0.48 578.83 2958.07
ss 2.28 0.90 2317.46 1.73 810.10 16501.00
vas_stokes_2M 0.25 1.87 6310.44 727.57 1420.01 4571.14

The software MC64 [7, 8] is the state-of-the-art and implements two algorithms, denoted
mc64j2 and mc64j3, for the bottleneck matching problem. To the best of our knowledge
these are the only available codes that can handle bipartite graphs corresponding to large
sparse matrices. Their worst-case run time are O(n(m + n) log2 n) and O(nm log2 n), on
bipartite graphs with n vertices on each side and m edges [8]. MC64, especially the newer
mc64j2 [8], is well engineered. It works very well for graphs corresponding to matrices from
numerical applications. However, it does not have stable run time behavior in two senses.
First, when run on the same bipartite graph twice with different edge weights the difference
in run time can be in the order of hours. Second, on two equivalent problem instances, where
one is obtained from the other by just reordering the vertices, the run time can change
dramatically. We report the run time of MC64 on four matrices, from the SuiteSparse Matrix
Collection [5], in Table 1 to explain this – more experiments of similar nature are in Section 4.
Here, the set of rows and the set of columns of a matrix correspond to the two parts of the
bipartite graph with an edge between two vertices if the corresponding entry in the matrix
is nonzero, and the nonzero values are the edge weights. The table contains results for A,
for AP where P is a random permutation, and for the doubly stochastic matrix S which is
obtained by scaling the pattern of A with Sinkhorn-Knopp algorithm [20].

The bipartite graphs of A and AP are the same apart from renumbering of the vertices
in one part. While on A both mc64j2 and mc64j3 are fast, both methods suffer on AP; the
run time of mc64j2 is not acceptable for the last two instances, and that of mc64j3 is high
for the last one in Table 1. The bottleneck matching problems on A and AP are essentially
the same, as permuting the columns does not change the values, nor the bottleneck matching
and its value. The bipartite graph of S = DP (A)E is the same as that of A with different
edge weights, hence the problems are not equivalent. Now, the run time of both methods
is too much for all instances. The wildly varying run time of both MC64 routines on S in
comparison to those on A further highlight the instability in their performance.

Our aim in this paper is to develop an algorithm for the bottleneck matching problem
which is better than the state-of-the-art codes in MC64. For this purpose, we study an
overlooked alternative from the literature. We make observations that pave the way for an
efficient algorithm, implement and compare it against the codes from MC64. We conduct a
large set of experiments to show that our approach is usually much faster than MC64 and in
addition exhibits stable and robust performance.
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Section 2 gives a brief background and a summary of the known algorithms. Section 3
contains the proposed algorithm. Section 4 presents the experimental results, and Section 5
concludes the paper. Appendix of the related version, which is available at https://inria.
hal.science/hal-04146298, contains detailed description of the experiments and further
experiments.

2 Background and related work

A matrix A with nnz(A) nonzero entries can be represented with a bipartite graph G =
(R ∪ C, E) where each row of A corresponds to a unique vertex in R, each column of A
corresponds to a unique vertex in C, and there is an edge (ri, cj) whenever aij ̸= 0. The
number m of edges in G is thus equivalent to nnz(A). When the edges are weighted, the
weight of the edge (ri, cj) is |aij |, that is the magnitude of the nonzeros of A. For a vertex v,
we use adj(v) to denote the set of its neighbors.

A matching is a set of edges with no common vertices. A matching is of maximum
cardinality if it has the largest number of edges. Given a matching M, a vertex is matched if
an edge from M is incident on it and free otherwise. A matching is perfect if it matches all
vertices. The deficiency of a matching M is the difference between the maximum cardinality
of a matching and |M|. Given a matching M in the graph G, a path in G is M-alternating
if its edges are alternately in M. An M-alternating path P is M-augmenting if the start
and end vertices of P are both free. A vertex cover is a set of vertices that includes at least
one vertex from each edge. In a bipartite graph the maximum cardinality of a matching is
equal to the minimum cardinality of a vertex cover [3, Th. 2.7].

Given a bipartite graph, any of its maximum cardinality matchings can be used to obtain
a canonical decomposition called Dulmage-Mendelsohn (DM) decomposition [11]. Based on
the DM decomposition, Pothen and Fan [18] describe algorithms to permute sparse matrices
in a block upper triangular form (BTF):

A =


HC SC VC

HR AH ∗ ∗
SR O AS ∗
VR O O AV

 . (1)

In a BTF, the submatrix AH has more columns than rows, and all rows in HR are matched
to a column in HC in any maximum cardinality matching; the submatrix AS is square
with at least one perfect matching; the submatrix AV has more rows than columns, and all
columns in VC are matched to a row in VR. The rows/columns in each block are defined as
follows

HR = {row vertices reachable from free column vertices via alternating paths},

HC = {free column vertices or column vertices reachable from free column vertices via
alternating paths},

VR = {free row vertices or row vertices reachable from free row vertices via
alternating paths},

VC = {column vertices reachable from free row vertices via alternating paths},

SR = R \ (HR ∪ VR), and
SC = C \ (HC ∪ VC).

A standard BFS/DFS-based graph traversal algorithm will find these sets in linear time.
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We make some observation on the BTF form of a matrix. First, the DM decomposition
reveals a minimum cover [3, Alg. 3.1]. As all nonzeros in the BTF (1) are confined in the
rows HR ∪ SR and the columns in VC , the vertex set C = HR ∪ SR ∪ VC is a cover. Since
the cardinality of C is equal to the maximum cardinality of a matching, it is a minimum
cover. Second, if one adds new nonzeros to the diagonal blocks, upper diagonal blocks, or to
the blocks (SR, HC) and (VR, SC), the maximum cardinality of a matching does not change.
This is so, as the new nonzeros cannot create augmenting paths.

Hall’s theorem [13] states that for a bipartite graph G to have a column-perfect matching,
the relation |S| ≤ |

⋃
c∈S adj(c)| must hold for any subset S of columns. If a similar relation

holds for all subsets of rows, then G will have perfect matchings.
An n × n matrix A ̸= 0 is called doubly stochastic if every entry is nonnegative and the

sum of entries in each row and each column is equal to 1. Any nonnegative square matrix,
whose bipartite graph has perfect matchings, can be scaled with two diagonal matrices to be
doubly stochastic [20]. A permutation matrix is a square matrix where each row/column
contains exactly one nonzero value equal to 1. A perfect matching in the bipartite graph
representation of A corresponds to a permutation matrix. The bipartite graphs of doubly
stochastic matrices have perfect matchings.

Henceforth, we assume that the given bipartite graph contains perfect matchings. We
comment on rectangular matrices and matrices without perfect matchings in Section 3.3.

2.1 Related work
We review three algorithms from the literature [3, 7, 8]. The first two are implemented in
MC64, and to the best of our knowledge are currently the best practical algorithms. Burkard
et al. [3, Section 6.2.4] describe two other algorithms [12, 19], which are more theoretical.

2.1.1 Shortest-augmenting path based algorithms
Algorithms based on shortest augmenting paths start with a matching which has the maximum
bottleneck value for the currently matched vertices C ′ in one part, say C. In order to augment
the matching, a shortest augmenting path from a free vertex c of C is found with a variant
of Dijkstra’s shortest path algorithm. Augmenting along the shortest paths maintains the
invariant that the current matching has the maximum bottleneck value for any matching that
matches the vertices C ′ ∪ {c}. The process continues until a perfect matching is obtained.

The state-of-the-art implementation in MC64 [8], mc64j2, starts by computing an upper
bound ω on the bottleneck value, which is the minimum of maximum in each column and
row. It then computes a maximal matching on the graph containing only edge weights no
smaller than ω, which is then improved by length-three augmenting paths in a preprocess
step. Then, a shortest-augmenting path is sought from each free column vertex to solve the
problem. mc64j2 implements an efficient adaptation of Dijkstra’s algorithm to find these
paths. Depending on the edge weights, the structure of the bipartite graph, or the visit
order many edges and vertices may be visited while finding an augmenting path. As seen in
Table 1, this can accumulate and result in very long run time.

2.1.2 Threshold-based algorithms
Let G be a weighted bipartite graph. For a value ω, let G[ω] contain only the edges of G

with weight at least ω. Threshold-based algorithms find the largest ω for which G[ω] has a
perfect matching. They do so by considering different values for ω, testing whether G[ω]
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has a perfect matching or not and tuning the next ω to a higher or lower value accordingly.
MC64’s implementation, mc64j3, discusses initialization and algorithmic choices to reduce
the number of tests [7]. However, MC64 uses a depth-first-search algorithm to find the
augmenting paths for each test which can slow it down, as seen in Table 1.

2.1.3 An algorithm based on duality
This algorithm is also threshold-based and uses the duality of matchings and coverings to find
the next threshold. We explain this algorithm in more detail as ours improves upon it. Let ω

be a value where G[ω] does not contain a perfect matching. Let M be a maximum cardinality
matching in G[ω]. From M one can define a minimum vertex cover C = HR ∪ SR ∪ VC of
G[ω] with vertex sets I = HR ∪ SR and J = VC [3, Section 6.2.3]. Since M is not perfect,
there must be an edge in G from a vertex in Ī = R \ I to another vertex in J̄ = C \ J . The
value maxi∈Ī,j∈J̄ aij thus cannot be smaller than the bottleneck matching value of G and
can be used as the next threshold. This approach is shown in Algorithm 1 [3, Section 6.2.3].

Algorithm 1 Duality-based algorithm.
Input : G, an edge weighted bipartite graph having perfect matchings
Output :M, a bottleneck perfect matching
Let ω be an upper bound on the bottleneck matching value
M← ∅
while |M| < n do
M← a maximum cardinality matching in G[ω]
if |M| < n then

1 Let I ⊆ R and J ⊆ C be the vertex sets of the associated cover of G[ω]
2 ω ← maxi∈R\I,j∈C\J wi,j /* in G, not G[ω] */

The maximum cardinality matching in G[ω] can be found in O(
√

n nnz(A[ω])) time in
the worst case [14]. Once such a matching is found, the associated minimum cover and the
maximum uncovered value at Line 2 can be obtained in linear time. Therefore, the worst
case time complexity of Algorithm 1 is O(

√
n nnz(A)) times the number of iterations. The

worst case run time for Algorithm 1 can hence be too high. This is so as a new edge, due
to the reduced ω, does not mean one more edge in the maximum matching, and hence the
while loop can even run for more than n iterations.

3 The proposed algorithm

Our algorithm is based on Algorithm 1 and integrates threshold techniques. Let G = (R∪C, E)
be an edge weighted bipartite graph, with wi,j being the weight of the edge (ri, cj). Let ω be
a nonnegative value, G[ω] be as before, and the bottleneck matching value b⋆ be the largest
ω for which G[ω] has a perfect matching. We call a value ω safe, when ω ≥ b⋆. Algorithm 1
produces decreasing safe values that converge to b⋆. We make a series of observations to find
b⋆ faster. The first observation is that there are several minimum vertex covers associated
with a given maximum cardinality matching. Using the BTF (1), let C′ = HR ∪ SC ∪ VC . As
all nonzeros are covered by C′ and |C′| = |HR ∪ SR ∪ VC |, C′ is also a minimum cover. If we
choose this cover, the sets I and J at Line 1 of Algorithm 1 become HR and SC ∪ VC , in
which case, the maximum value can be different. This leads to the following proposition.

▶ Proposition 1. Let C1 = HR ∪ SR ∪ VC and C2 = HR ∪ SC ∪ VC be two minimum covers
of G[ω] revealed by the BTF (1). Let ω1 and ω2 be the maximum values defined in Line 2 of
Algorithm 1 for C1 and C2, respectively. Then, min(ω1, ω2) is safe.

ESA 2023
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Proof. Let ω be the current value, and ω1 < ω2 without loss of generality. This means that ω2
is in A(VR, SC) and all entries in A(VR, HC) are smaller than ω2. The maximum cardinality
of a matching in G[ω2] cannot be larger than that in G[ω], as the set C1 = HR ∪ SR ∪ VC

still covers all edges of G[ω2], including those that arise in A(SR, HC). Hence the cover C1
can be used to get the next ω in Line 2, which concludes the proof. ◀

Based on Proposition 1, one can use the smaller of the largest uncovered element in
(SR ∪ VR, HC) and that in (VR, HC ∪ SC). We propose to exploit the two identified covers as
much as possible for a faster convergence of ω to b⋆. As we reason in Lemma 2 below, one
can find a tighter bound on b⋆, depending on the deficiency of the current matching as well
as the (original) adjacencies of the vertices in the identified covers.

▶ Lemma 2. Let M be a maximum cardinality matching in G[ω] with a deficiency of k in
G; A[ω] and A be, respectively, the matrices associated with G[ω] and G; C = HR ∪ SC ∪ VC

be a minimum vertex cover of G[ω] associated with M when A[ω] is permuted in a BTF (1);
Let ωr

k be the kth largest element in
⋃

i∈SR∪VR
max{wi,j : j ∈ HC}, and ωc

k the kth largest
element in

⋃
j∈HC

max{wi,j : i ∈ SR ∪ VR}. Then, ωk = min(ωr
k, ωc

k) is safe.

Proof. Consider first the set HC of columns, and note that |HC | − |HR| = k as all other
columns are matched. By Hall’s theorem, |HC | ≤ |

⋃
c∈HC

adj(c)| must hold in A as there is
a perfect matching. Among all rows in

⋃
c∈HC

adj(c), we have |HR| in the set HR. Therefore
there must be at least k other nonzero rows in A(SR ∪ VR, HC). The element ωr

k from⋃
i∈SR∪VR

max{wi,j : j ∈ HC} is safe as any value greater than that will cover less than
k rows and Hall’s conditions cannot be satisfied. A similar argument applies to ωc

k by
considering the set SR ∪ VR of rows. In A[ω] we have adj(SR ∪ VR) = SC ∪ VC , and
|SR ∪ VR| − |SC ∪ VC | = k. The element ωc

k must be safe since we need at least k nonzero
columns in A(SR ∪VR, HC). The value ωk is thus safe as the minimum of two safe values. ◀

One can identify several minimum covers, collect the kth largest uncovered element with
respect to each, and use the minimum of the collected elements as the next ω. As finding
these minimum covers can be expensive, we propose using the two which are readily revealed
by the BTF. That is, we use ω = min(ω1, ω2) where

ωr
1, ωc

1 = k-th largest row and column maximum entries in A(SR ∪ VR, HC) ,

ω1 = min(ωr
1, ωc

1) , (2)
ωr

2, ωc
2 = k-th largest row and column maximum entries in A(VR, HC ∪ SC) ,

ω2 = min(ωr
2, ωc

2) . (3)

This corresponds to applying Hall’s theorem to the sets HC and HC ∪ SC of columns and to
the sets VR and SR ∪ VR of rows.

3.1 Putting it all together
The proposed algorithm bottled is shown in Algorithm 2. The input is a sparse matrix
represented in the compressed storage by columns (CSC) format. bottled creates a
compressed storage by rows (CSR) representation of the input matrix. It then sorts the
nonzeros in each row and each column in non-increasing order of their values. Then
the threshold ω is initialized as the minimum of the 2n nonzero values consisting of the
maximum in each row and maximum in each column. The algorithm then updates the
threshold ω in a while-loop as in Algorithm 1. In the while-loop there are three subroutines:
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MaximumCardinalityMatching, SAP, and DM-dec. These subroutines correspond to a
maximum cardinality matching algorithm, a shortest augmenting path-based method to
match a column, and an algorithm obtaining the row and column blocks of the BTF (1).

Algorithm 2 bottled: The proposed bottleneck matching algorithm.
Input : A, stored by columns
Output :M, a bottleneck perfect matching
Create a CSR representation of A
Sort the nonzeros in each row and in each column in non-increasing order of values

1 ω ← min of the maximum in each row, maximum in each column
G[ω]← (R ∪ C, ∅) and M← ∅
while |M| < n do

2 for each i, release new aij ≥ ω and for each j release new aij ≥ ω into G[ω]
if |M| = n− 1 then
M← SAP(G,M, c) with the last free vertex c

else
3 M′ ← MaximumCardinalityMatching(G[ω],M)

if |M′| = n then M←M′; break
if |M′| = |M| then

4 select a vertex c

M← SAP(G,M′, c)
else
M←M′

⟨HR, SR, VR, HC , SC , VC⟩ ← DM-dec(G[ω],M)
5 ω ← min(ω1, ω2) with ω1 as in (2) and ω2 as in (3)

Algorithm 2 stores the edges of G[ω] over the storage of A in the CSC and CSR formats,
without explicitly building adjacency lists. The start address of each row and column are the
same as those of A. For each row/column of G[ω], we keep an end-pointer which points to
the smallest nonzero of A in that row/column that is no smaller than ω. These end-pointers
are initialized before the while-loop in O(n) time, and incremented at Line 2 at each iteration
of the while-loop. Therefore the total run time cost of building G[ω]s is O(nnz(A)).

In Algorithm 2, SAP(G, M, c) refers to the algorithm summarized in Section 2.1.1. As
stated before, SAP needs the current matching to have the bottleneck value among all
matchings covering the same set of column vertices. The approach outlined in Algorithm 1
produces such matchings, that is why, at any point, one can resort to SAP. We invoke SAP in
two cases: (i) when the deficiency is one; (ii) when an update of ω did not yield an increase
in the cardinality of the current matching. The first case is straightforward. For the second
case, we apply a simple heuristic to help the algorithm converge faster. As any free column
vertex can be the start of an augmenting path, we choose c ∈ C whose largest edge weight
not included in the current G[ω] is minimum. Matching c will lead to a reduced ω, and
the reduction will hopefully be large with this choice of c (some empirical results are in the
appendix of the related version). The most common algorithms for the maximum cardinality
matching problem take an initial matching as input and augment it. This is very suitable at
Line 3 of Algorithm 2, as we have a maximum cardinality matching on a graph, we add new
edges, and then ask for a maximum cardinality matching in the new graph. We have used
the code-base of MatchMaker [6, 15] to implement this step in the implicit representation of
G[ω].

At Line 5 of Algorithm 2, we use a binary heap with a limit k on its size. For ωr
1, the

nonzeros of each row in SR ∪VR with value smaller than ω are visited, and the largest element
is used as a key in the heap. When the heap is full, keys are added only if they are larger
than the current minimum, which is then removed. The minimum of the heap is returned as

ESA 2023
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ωr
1. Other quantities of (2) and (3) are computed similarly. All nonzeros of A − A[ω] in the

rows SR ∪ VR and columns HC can be visited and the heap operations can be performed
in O(nnz(A(SR ∪ VR, HC)) + (|HC | + |SR ∪ VR|) log k) time. A similar analysis holds for
A(SR ∪ VR, HC). The run time of one iteration of the while loop is thus dominated by that
of the maximum cardinality matching algorithm. We do not have an estimate on the number
of iterations of the while-loop; in the empirical results in Section 4.3 the number is less than
what a binary search approach would yield.

3.2 In the context of a BvN decomposition method

The Birkhoff–von Neumann (BvN) theorem [2] states that a doubly stochastic matrix A can
be written as A =

∑ℓ
i=1 αiPi where each Pi is a permutation matrix, and αis are positive

coefficients summing up to one. Such a decomposition is not unique, and the problem of
finding a decomposition with the smallest ℓ value is NP-Complete [10].

One heuristic [10] for obtaining a BvN decomposition of a double stochastic matrix
A works as follows. It finds the value b of a bottleneck matching whose pattern is the
permutation matrix P, replaces A with A− bP, and continues until a zero matrix is obtained.
A property of this heuristic is that the successive bottleneck values are in a non-increasing
order [9]. Our bottleneck matching algorithm is very fitting in this case. One can create the
CSR representation and sort each row and column once. Then, executing the while loop of
Algorithm 2 will obtain a bottleneck matching for the current matrix. Once b and P are
obtained, replacing A with A − bP can be done by subtracting b from each matched entry
and updating that entry’s position in the sorted list of both rows and columns in overall
O(n + nnz(A)) time. While doing so, one can update the end-pointers used for G[ω], and
avoid the preprocessing in Algorithm 2 at subsequent invocations.

3.3 Rectangular matrices or matrices without perfect matchings

The case in which there are perfect matchings in the given bipartite graph is common in
applications where the bipartite graphs correspond to sparse matrices. This is especially so
in the BvN decomposition, which was our motivation. Nonetheless MC64’s j2 and j3 work
for cases in which one part of the bipartite graph has more vertices than the other, where the
smaller side can be perfectly matched. This corresponds to nR × n matrices for nR > n that
have column-perfect matchings. Our algorithm can handle this case either by initializing ω

at Line 1 using only the column values, or by using those and only the nth maximum of the
set of nR maximum entries, one from in each row.

Consider now the most general case corresponding to nR × n matrices, with nR ≥ n and
without column perfect matchings. In this case, mc64j2 returns a maximum cardinality
matching, without necessarily finding the correct bottleneck value. That is so because not all
vertices from which the shortest-augmenting paths are sought can be matched in a bottleneck
maximum cardinality matching. We do not know of a suitable fix for this. mc64j3 and its
equivalent thresh on the other hand work correctly. The presented algorithm bottled
needs four minor modifications to handle this general case: (i) the maximum size of a
matching n′ should be computed at the beginning; (ii) the initialization should use the choose
the smallest of the n′th maximum of n maximum entries, one from each column, and the
n′th maximum of the nR maximum entries, one from each row; (iii) at Line 5, the deficiency
is k = n′ − |M|; and (iv) the shortest-augmenting path method should not be used.
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4 Experiments

We observed in a preliminary set of experiments that mc64j2 is generally faster than
mc64j3; the geometric mean of the ratios of the run time of the latter to that of the
former was 4.6. As already highlighted in Table 1, the run time of mc64j3 can be too
large to experiment (this happens more frequently than with mc64j2). That is why we
have implemented a threshold-based approach, referred here as thresh, using the same
code base of bottled, and use it in our experiments instead of mc64j3. thresh uses the
initialization procedure common to mc64j3 and bottled to find a large initial matching
and an upper bound ω on the bottleneck value. If this matching is not maximum, then
the edge weights are sorted to find the bottleneck value by a binary search between the
smallest edge weight and the initial value ω. The binary search uses only the available edge
weights and each time half of the edges are discarded. Our codes, written in C, are available
at https://gitlab.inria.fr/bora-ucar/bottled; the codes used in the experiments are
elsewhere [17].

The next subsection describes the data set, and Section 4.2 conducts a performance
analysis of bottled. Section 4.3 compares bottled with mc64j2 and thresh. Last,
some experiments using bottled within a BvN decomposition heuristic are discussed in
Section 4.4. Appendix of the related version contains detailed information about experiments.

4.1 Data set and measurements
We have experimented with all square matrices with perfect matchings, at least 100,000 rows,
less than 250,000,000 nonzeros, and with no explicit zeros from SuiteSparse [5]. There were
113 such matrices at the time of experimentation. From each matrix, we created six types of
problem instances, which are denoted as A, DAE, DP (A)E, AP, DAPE, and DP (A)PE.
The A-type instance corresponds to the bipartite graph of the original matrix with the
magnitudes of the entries as edge weights. The DAE-type and DP (A)E-type instances
correspond, respectively, to the scaled version of the matrices and their patterns with 20
iterations of the Sinkhorn–Knopp [20] algorithm, and the other three types of instances are
obtained from the first three by random column permutations. We discarded the instances
A and AP for 0-1 matrices; for the same set of matrices DAE-type and DP (A)E-type
instances are identical, and hence we kept only one of them. We discarded the instances in
which the initialization algorithm found the bottleneck value, in which case all three methods
are equivalent. We report the experiments with 14 A-type, 18 DAE-type, 58 DP (A)E-type
instances, and the same number of instances with column permutations. For each instance,
each algorithm is run five times and the geometric mean of the run time is reported as that
algorithm’s performance on that instance; when column permutations are applied, these
correspond to five different permutations. When comparing two algorithms’ run time, we do
not include cases where both algorithms run in less than one second (as both are very small
and the difference between the algorithms is insignificant). Appendix of the related version
contains all the results.

We carry out the experiments on a machine having Intel(R) Xeon(R) CPU E7-8890 v4 with
a clock-speed of 2.20 GHz, and 1.5TB memory. The machine runs Debian GNU/Linux 11
(64 bit). All the codes are compiled with GCC version 10.2.1, with option -O3. We ran
MatchMaker [6, 15] to verify that there were perfect matchings. We used MatchMaker with
options “no cheap matching”, “Push-Relabel + fairness” as the core algorithm. For the sake
of completeness, we report that the maximum run time of MatchMaker for any matrix was
2.65 seconds for vas_stokes_4M and 28.19 for the column permuted version of the same
matrix.
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4.2 Performance analysis of BOTTLED

We first analyze the percentage of the total run time of bottled spent in the preprocessing
step – creating the CSR representation or sorting the entries. Table 2 summarizes the results
for six different problem instances, where bottled took more than one second for A-, DAE-
and/or DP (A)E-type instances. This table presents the geometric mean of the percentage
of the time spent creating the CSR representation and sorting (with respect to the total time
of bottled). The row “tTime” contains the geometric mean of the run time of bottled
on the instances A, DAE and DP (A)E in seconds, and for the instances AP, DAPE
and DP (A)PE it contains the geometric mean of the ratio of the run time of bottled on
the permuted instances to the original ones. For example, the run time under the column
DP (A)PE is obtained by taking the geometric mean of ratio of the run time of bottled
on the 33 DP (A)PE instances to that on the 33 DP (A)E instances.

As we can see from Table 2, the average run time of bottled on any of the six problem
instance types is below 10 seconds. A first observation is that for all instances, the two
preprocessing steps account for a non-negligible part of the total run time. At two extremes,
they take 7% and 37% of the total time in DP (A)E and DAPE instances, respectively. We
further observe that the absolute run time of CSR and sorting increases for the permuted
instances. The percentage of the total time spent in CSR also increases for the permuted
instances while that of sorting either increases or remains the same. If the CSR representation
is available, its creation can be skipped and one can reduce the run time considerably. As
discussed in Section 3.2, for the targeted BvN application bottled can skip not only the
CSR creation, but also the sorting phase across different runs of the algorithm.

Table 2 Percentage of the total time spent in
creating a CSR matrix and sorting the nonzeros in
bottled; “tTime”: the geometric mean of the run
time of bottled on the instances A, DAE and
DP (A)E in seconds, and the ratios of the others to
their counterparts.

A AP DAE DAPE DP (A)E DP (A)PE
CSR 5% 13% 7% 25% 4% 17%
sort 5% 5% 10% 12% 3% 3%
tTime 6.54(s) 1.28 3.43(s) 1.02 3.40(s) 1.28

Table 3 Breakdown of the total time
(tTime) of bottled in seconds.

matrix instance-type tTime CSR sort

vas_stokes_4M

A 14.81 6.70 3.17
AP 32.36 20.13 5.51

DAE 23.44 6.93 3.66
DAPE 52.99 19.93 5.57

vas_stokes_2M DP (A)E 11.67 2.96 2.01
DP (A)PE 19.30 8.81 2.57

Another observation from Table 2 is that the run time of bottled consistently increases
for the permuted instances. To put this into perspective, we present the run time of bottled
on a few instances in Table 3. We see that the increase in run time for the permuted matrices
can be attributed, in part, to the creation of the CSR. For example, for vas_stokes_4M,
excluding CSR and sort times from the total time yields 4.94 and 6.72 seconds for the
while loop for A- and AP-type respectively. A similar calculation for the pairs DP (A)E
and DP (A)PE for vas_stokes_2M shows that the while loop takes 6.7 and 7.92 seconds,
respectively. In the instance pairs DAE and DAPE for vas_stokes_4M, the increase in the
CSR time is still a contributing factor. From these two tables, we conclude that bottled’s
preprocessing takes up a significant portion of the total run time.

We have also investigated the number of iterations of the while-loop of bottled in
different types of instances to see how stable and robust it is with respect to random column
permutations. The number of iterations of the while loop were almost always the same for
all 90 instances; in a few cases there was a difference of one in the number of iterations. The
small changes in the number of iterations confirm the robustness of bottled.



I. Panagiotas, G. Pichon, S. Singh, and B. Uçar 87:11

Table 4 The geometric mean and the maximum of the run time of the three methods on six
different instance types.

A AP DAE DAPE DP (A)E DP (A)PE
geomean mc64j2 0.49 6.23 0.16 0.74 12.47 20.16

thresh 2.58 3.80 1.09 1.54 2.24 3.16
bottled 1.23 2.38 0.44 0.81 1.23 2.07

maximum mc64j2 123.04 18054.00 31.42 9139.63 1419.99 6813.20
thresh 43.55 64.90 59.42 91.74 63.51 77.57
bottled 14.52 31.81 23.22 51.55 58.64 76.20

4.3 Comparison of different algorithms
We compared bottled against mc64j2 and thresh. We first provide a broad overview of the
comparisons in Table 4, which lists the geometric mean of the run time of the three methods
as well as their maximum run time in different problem instance types (all instances). As
can be seen, bottled exhibits the best performance overall, despite being slightly slower on
average for A-, DAE-, DAPE- instance types than mc64j2– the margin is not large enough
for mc64j2 to make up for the performance loss on the other instance types. Furthermore,
bottled’s maximum run time is consistently smaller than those of both mc64j2 and thresh.
In contrast, the maximum run time of mc64j2 is prohibitive in all but the A and DAE-type
instances. While thresh avoids the prohibitive run time of its equivalent mc64j3 (see
Table 1) by using a better cardinality matching algorithm [15], its maximum run time is still
noticeably larger than that of bottled in all but two cases.

We now look more into the performance of bottled versus that of mc64j2. Figure 1a
shows the natural logarithm (in the y-axis) of the ratio of the run time of mc64j2 to that of
bottled for the instances on which either method has a run time greater than 1 second. Here,
mc64j2 is faster than bottled on 22 instances, and bottled is faster on the remaining 117
instances. In all 139 instances, the geometric mean of the ratio of the run time of mc64j2 to
that of bottled is 8.5, confirming that bottled is faster than mc64j2 in average.
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(a) The natural logarithm of the ratio of the run
time of mc64j2 to that of bottled in the y-axis
in sorted order on 139 problem instances in the
x-axis.
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(b) The run time behavior of mc64j2 on four
DP (A)E-type instances measured at 20 uniform
steps (x-axis), normalized to the total time (y-axis).

Figure 1 Performance comparison between mc64j2 and bottled, and investigation on mc64j2.

In order to put these numbers into a perspective with the run time, we present Table 5.
Table 5 lists six matrices in which the ratio of the run time of mc64j2 to that of bottled
was the smallest for certain instance types with or without permutation. It next lists six
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Table 5 The run time of mc64j2 and bottled on selected instances, where their ratios were the
lowest or the highest in different problem instance types or the permuted versions.

matrix type mc64j2 bottled type mc64j2 bottled
c-73b A 0.09 13.55 AP 0.10 9.42
c-73 A 0.19 14.52 AP 0.34 14.68
dielFilterV3real A 0.33 11.72 AP 0.81 21.48
boyd2 DP (A)E 0.03 3.31 DP (A)PE 0.07 1.84
boyd2 DAE 0.03 2.43 DAPE 0.10 1.50
dielFilterV3clx A 0.12 3.97 AP 0.49 7.19
atmosmodd DP (A)E 555.76 7.01 DP (A)PE 1757.81 12.11
vas_stokes_1M DP (A)E 452.36 4.20 DP (A)PE 2427.71 7.42
vas_stokes_2M DP (A)E 1419.99 11.93 DP (A)PE 6813.20 18.37
ss DP (A)E 824.91 4.66 DP (A)PE 2621.10 10.79
CurlCurl_3 DP (A)E 610.16 1.54 DP (A)PE 211.56 3.80
atmosmodj DP (A)E 565.60 7.27 DP (A)PE 1683.32 11.97
vas_stokes_4M DAE 0.83 23.22 DAPE 9139.63 51.55
ss A 2.25 2.65 AP 2532.09 8.65
vas_stokes_4M A 0.53 14.23 AP 18054.00 31.81

matrices with different instance types in which the ratio of the run time of mc64j2 to
that of bottled was the largest for the original matrices and three for the permuted ones
(three others were already in the list). Here we see that mc64j2 can have equivalently good
performance on both the A- and AP-type instances (see the first block in Table 5). Still,
there were some AP instances where mc64j2 ran prohibitively long (see the last two rows
with ss and vas_stokes_4M). mc64j2 also struggled on several DP (A)E and DP (A)PE
instances as seen in the second block. The prohibitively high run time of mc64j2 highlight
the issue in the approaches based on the shortest augmenting paths: one may visit many
edges and vertices to find augmenting paths at different stages during the execution. As
such a behavior is also seen for DFS-based-cardinality matching algorithms [6], it cannot be
attributed on the particular implementation of the shortest path algorithm in mc64j2.

Figure 1b shows the run time behavior of mc64j2 on the four DP (A)E-type instances of
Table 1. The total number of augmentations is divided by 20 to obtain a step size, the run
time is measured after each step and normalized by the total time. As this figure shows, in
some instances the augmentations took about the same time all throughout, whereas in others
later augmentations took more time. As the greedy matching approach of mc64j2 does not
always find a maximum matching, it can needlessly result in many additional augmentations.
Those augmentations may lead to large run time, not solely because of their number. For
example, in the DP (A)E-type instance of CurlCurl_3, a square matrix with n = 1219574
rows and nnz = 13544618 nonzeros, there are 20040 augmentations with a total run time of
about 600 seconds, even though the maximum cardinality matching on G[ω0] has a deficiency
of one. Obviously, detecting this would lead to much better run time. On the other hand,
for the DP (A)E-type instance of rajat31, a square martrix with n = 4690002 rows and
nnz = 20316253 nonzeros, mc64j2 needs 1562500 augmentations (its greedy approach finds
a maximum cardinality matching initially), and the whole run time is 48.39 seconds. As
rajat31 is much bigger than CurlCurl_3 and needs more augmentations, its shorter run time
attests that the process of augmenting one-by-one can take large time due to instance specific
properties. It hence cannot constitute a reliable method for the bottleneck matching problem
in general. In passing we note that mc64j2 is well-engineered and is faster than using our
own SAP implementation for the augmentations.

We compare now bottled and thresh. In total, bottled beat thresh in 165 instances
out of 180. The largest differences (in seconds) in favor of thresh were in the A- and
AP-type instances of c-73b and c-73. thresh obtained a run time of 2.88 and 3.48 seconds
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Table 6 Run time, in seconds, of bottled and the BvN decomposition heuristic, along with the
number of permutation matrices in the decomposition.

bottled longest run time of BvN
matrix instance initialization bottled in an iteration num.perm time

atmosmodm DAE 0.22 58.73 46 452.14
DP (A)E 0.21 14.43 50 200.80

CurlCurl_3 DAE 0.35 17.30 50 183.43
DP (A)E 0.34 4.33 50 68.45

ss DAE 1.15 13.37 50 228.92
DP (A)E 1.46 39.77 50 186.31

vas_stokes_2M DAE 5.04 4.74 50 78.32
DP (A)E 5.10 4.87 50 74.36

on c-73b, and 6.35 and 5.11 seconds on c-73. On these instances bottled was relatively
close to thresh (see Table 5) – the largest difference is 10.67 seconds on the A-type instance
of c-73b. Since both methods utilize the same core matching algorithm, the superiority of
bottled over thresh should come from doing fewer iterations. Figure 2a supports this
reasoning by plotting the difference between the number of iterations of thresh and that of
bottled in nondecreasing order. As seen in this figure, thresh’s number of iterations is
always larger than bottled’s; the theoretical observations of Section 3 translate to practical
gains. We compute the ratio of the run time of thresh to that of bottled for the instances
on which either thresh or bottled has a run time greater than 1 second (123 instances),
and present the natural logarithm of this ratio in the y-axis in Figure 2b. As seen in this
figure, bottled fares better than thresh in the majority of cases.
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(a) The number of iterations of thresh minus
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(b) The natural logarithm of the ratio of the run
time of thresh to that of bottled in the y-axis
in sorted order on 123 instances in the x-axis.

Figure 2 Performance comparison between thresh and bottled.

4.4 Inside a BvN decomposition method
Table 6 presents the run time of the BvN decomposition method on the DAE- and DP (A)E-
type instances of four matrices (obtained with 2500 scaling iterations). We run the BvN
decomposition method until 50 permutation matrices or a coefficient of 0.92 are obtained.
As each permutation matrix is obtained by a call to bottled, we show their number in the
column “num.perm”. Further, the table also presents the time for the initial preprocessing of
bottled, and the maximum time taken in a call to bottled subsequently for obtaining a
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permutation matrix. We observe that the maximum run time of bottled, in an iteration,
multiplied by the number of calls is at least 2.92 (for DAE of ss) and up to 10.67 (for DP (A)E
of ss) times the total BvN time. This suggests that the run time of the subsequent bottleneck
matching calls reduces appreciably, and bottled works well inside the decomposition method
by avoiding the preprocessing.

5 Conclusion

We have investigated the problem of finding a maximum bottleneck matching in bipartite
graphs. Existing implementations for the problem suffer from unpredictable run time that
can get prohibitively large, i.e., requiring thousands or even tens of thousands of seconds to
complete. We have proposed a new algorithm called bottled that converts an inefficient,
duality-based approach into an efficient one through theoretical findings. Experimental results
show that bottled is almost always faster than the state-of-the-art methods. Furthermore,
its run time is reliable and always remains within reasonable time limits. We have also
explored its use inside a heuristic for the Birkhoff–von Neumann decomposition of doubly
stochastic matrices and experimentally established the suitability of the proposed algorithm
for this purpose.

Currently the proposed approach resorts to an augmenting-path-based method in few
corner cases and only when there are perfect matchings. We plan to explore the possibility
to use them more effectively, along with potential data reduction rules.
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