
Effective Parallelization of the Vehicle Routing Problem
Rajesh Pandian M

∗

Indian Institute of Technology Madras, India

mrprajesh@cse.iitm.ac.in

Somesh Singh

CNRS and LIP (UMR5668), France

somesh.singh@ens-lyon.fr

Rupesh Nasre
†

Indian Institute of Technology Madras, India

rupesh@cse.iitm.ac.in

N.S. Narayanaswamy

Indian Institute of Technology Madras, India

swamy@cse.iitm.ac.in

ABSTRACT
Capacitated Vehicle Routing Problem (CVRP) is an important combi-

natorial optimization problem, which is also NP-hard. A wide array

of heuristics have been proposed in the literature to obtain an ap-

proximate solution to CVRP. To improve the execution time, parallel

methods have been developed for acceleratingmetaheuristics-based

algorithms, genetic algorithms, and evolutionary algorithms for

CVRP. Despite these advances, our experiments with the state-of-

the-art parallel solutions indicate that their run times are too high

to be practically useful. The combinatorial explosion is so high that

the execution time is prohibitively large even onmid-sized CVRP in-

stances having a few hundred customers. In this work, we propose

a novel technique which combines local search and randomization
for solving CVRP faster with reasonable accuracy, even on large

problem instances. Our usage of randomization enables searching

a large space of candidate solutions. We experimentally compare

our proposed method with the state-of-the-art GPU implementa-

tions on diverse input instances and demonstrate the efficacy of our

approach. Our sequential and shared-memory parallel implementa-

tions are on an average 36-1189× faster than the state-of-the-art

GPU-parallel genetic algorithms while also achieving a superior

solution quality. Furthermore, our reported solutions are close to

the current best-known solutions from CVRPLIB.

CCS CONCEPTS
• Computing methodologies→ Massively parallel algorithms;
Shared memory algorithms; • Theory of computation→ Ap-

proximation algorithms analysis; • Applied computing→ Opera-
tions research.

KEYWORDS
capacitated vehicle routing problem, minimum spanning tree, trav-

elling salesman problem, operations research

∗
Corresponding author

†
Partially supported by the NSM grant CS19201123MEIT008606.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00

https://doi.org/10.1145/3583131.3590458

ACM Reference Format:
Rajesh Pandian M, Somesh Singh, Rupesh Nasre, and N.S. Narayanaswamy.

2023. Effective Parallelization of the Vehicle Routing Problem. In Genetic
and Evolutionary Computation Conference (GECCO ’23), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3583131.3590458

1 INTRODUCTION
The capacitated vehicle routing problem (CVRP) [12] is an impor-

tant and extensively studied combinatorial optimization problem.

Given a fleet of vehicles from a starting depot, CVRP determines

the least-cost round-trip delivery routes for the vehicles to a set

of geographically scattered customers while respecting the con-

straints on the maximum freight loadable on each vehicle (formal

definition in Section 2.1). It plays a pivotal role in logistics, delivery

management, and transportation [17, 22, 29].

CVRP is known to be strongly NP-hard [23], having the well-

known traveling salesman problem (TSP) [14] and the bin packing
problem [16] as special cases. Despite the rich literature on CVRP,

solving the problem for moderate or large instances (having hun-

dreds of customers) often encountered in practice [15, 33] with

the desired accuracy continues to take excessively long time. The

execution time of these approximate solutions can be improved

with parallelization. Recently, parallel genetic algorithms have been

developed on GPUs with this motivation. The state-of-the-art GPU

implementations are due to Yelmewad and Talawar [35], and Abde-

latti and Sodhi [1]. While quite effective on smaller instances, these

GPU implementations are time-consuming (taking several tens of

minutes) to produce a reasonable solution for large instances. Ta-

ble 1 shows their running times (in seconds) on three large input

instances from CVRPLIB [31].

Instance Number of Time (s)
customers [35] [1]

Flanders2 30,000 8,355 2,534

Flanders1 20,000 7,768 2,031

Brussels1 15,000 7,164 871

Table 1: State-of-the-art GPU methods are time-consuming.

Therefore, there is a need for faster techniques which are capa-

ble of obtaining a usable, nearly-optimal solution in a reasonable

time especially on large instances. Furthermore, a quickly com-

puted reasonable solution may serve as a good starting point for

metaheuristic-based methods, which aim for a near-optimal solu-

tion. With this motivation, we present our tool named ParMDS for

https://orcid.org/0000-0003-4702-4678
https://orcid.org/0000-0002-7648-9979
https://orcid.org/0000-0001-7490-625X
https://orcid.org/0000-0002-8771-3921
https://doi.org/10.1145/3583131.3590458
https://doi.org/10.1145/3583131.3590458
https://doi.org/10.1145/3583131.3590458


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Rajesh et al.

computing a good CVRP solution fast. It combines carefully crafted

heuristics and multi-core parallelization to achieve this goal.

ParMDS employs a minimum spanning tree (MST) and depth-

first traversal (DFS)-based lightweight technique. Theoretically, a

MST-based solution provides a 2-approximate solution to TSP [34].

In practice, however, we establish that it is able to obtain a much

better solution to CVRP. ParMDS uses a two-pronged approach: it

exploits local search and randomization to improve the solution

quality, and uses OpenMP parallelization to reduce execution time.

This paper makes the following contributions:

• We devise a MST and DFS-based combinatorial heuristic

combining iterative local search and randomization to com-

pute a good solution to CVRP. The randomization is over the

different traversal orders of a MST, each of which provides a

valid candidate solution.

• We present efficient shared-memory parallel and sequential

implementations of our proposed technique.

• ParMDS achieves significant speedup (between 36-1189×)
over the GPU baseline [1, 35] and better solution quality (ge-

omean deviation of 11.85%) against the current best-known

solutions listed in CVRPLIB.

2 BACKGROUND AND RELATEDWORK
We describe the problem formally and discuss related work.

2.1 Problem Description
Capacitated Vehicle Routing Problem (CVRP). We are given

a depot and (𝑛 − 1) customers with coordinates (𝑥𝑖 , 𝑦𝑖 ) for all
𝑖 = 0, . . . ,(𝑛 − 1). Note that the depot is at node 0. There is a

fleet of identical vehicles, each having an integral capacity 𝑄 > 0,

which are initially located at the depot. We assume the fleet to

comprise as many vehicles as required to serve the customers’

demands. A customer 𝑖 has demand 𝑑𝑖 such that 0 < 𝑑𝑖 ≤ 𝑄 ;

𝑖 = 1, . . . , (𝑛 − 1). The depot has zero demand. The travel cost

between any pair of customers, or between customers and the depot,

is taken as the Euclidean distance between them. The Euclidean

distance between any two points 𝑗 and 𝑘 in a 2-D plane is computed

as

√︃
(𝑥 𝑗 − 𝑥𝑘 )2 + (𝑦 𝑗 − 𝑦𝑘 )2, where the coordinates of points 𝑗 and

𝑘 are (𝑥 𝑗 , 𝑦 𝑗 ) and (𝑥𝑘 , 𝑦𝑘 ), respectively. The goal of CVRP is to find

a set of routes having the minimum total distance to serve all the

customers such that each route starts and ends at the depot, each

customer is served exactly once, and total customer demands on

any route does not exceed the vehicle capacity 𝑄 .

CVRP instance as a graph. A CVRP instance can be modelled as

a graph [21]. Let, in an input instance, there be a depot and (𝑛 − 1)
customers denoted by nodes having ids {0, · · · , (𝑛 − 1)}. The depot
is represented by a node with id 0, whose demand equals 0. We

define a complete graph 𝐺 = (𝑉 , 𝐸) such that 𝑉 = {0, . . . , (𝑛 − 1)}
is the vertex set. 𝑉 represents the depot and the customers. The

edge-weight associated with an edge (𝑖, 𝑗) ∈ 𝐸 is the Euclidean

distance between vertices 𝑖 and 𝑗 ; the edge-weight is symmetric.

Measure of solution quality. Since CVRP is NP-hard, we often

need to settle for an approximate solution. For several problem

instances in the dataset available on CVRPLIB the optimal solution

is known, while for few, it is not yet known. Hence, we need to

work with the best-known-solution (BKS) for an instance. As a

convention, the quality of a solution is measured as:

Gap =
𝑍𝑆 − 𝑍BKS

𝑍BKS
× 100 ,

where 𝑍𝑆 is the cost of the solution reported by a solver 𝑆 and 𝑍𝐵𝐾𝑆
is the BKS. Note that Gap is expressed as a percentage. The smaller

the Gap, the better is the solution. We use Gap in the quantitative

evaluation of our method (Section 4).

2.2 Related Work
Since the introduction of the truck dispatching problem [12], several

variants to this problem have been studied in literature under the

name of Vehicle Routing Problem (VRP) — CVRP, CVRP with time

windows, VRP with split deliveries, mixed fleet VRP, vehicle routing

with pickups and deliveries, and many more.

The approaches for solving CVRP can be broadly categorized

into exact and approximate. Exact methods find the optimal solu-

tion to CVRP. These include methods such as branch and bound

strategies, and formulating CVRP as a Linear Programming prob-

lem. On the other hand, approximate methods find a sub-optimal

solution to CVRP. These include set partitioning heuristics, cluster-

first and route-second heuristics, genetic algorithms, evolutionary

algorithms, learning-based heuristics, local-search and population-

search heuristics. The last three fall in the realm of meta-heuristics.

A classical heuristic for CVRP is the savings algorithm due

to Clarke-Wright [9]. It starts with as many routes as there are

customers with each route containing exactly one customer. The

scheme progressively merges the routes that result in the maximum

savings (in terms of cost) while respecting the capacity constraints.

The algorithm stops when no more merging of routes is possible.

Fast iterative localized optimization [2] is a local-search based it-

erative improvement algorithm which uses simulated annealing.

It employs a caching strategy to work on the solution area that

recently produced a better solution and has a generic way of iden-

tifying promising neighboring solutions. Slack induction by string

removals (SISR) [6] uses string removal subroutines, followed by

greedy node insertion and finally fleet minimization. Knowledge-

guided local search (KGLS) [4] uses data-mining to separate the

good solutions from the others. It identifies different characteristics

or metrics of the solution to make this distinction, e.g., the width

and the span in radians of routes, the number of intersecting edges

and the distances of connecting edges to the depot. Armed with

these metrics KGLS develops a heuristic which guides the local-

search process. LKH-3 [20] is an open-source implementation of

Lin-Kernighan-Helsgaun [19]. LKH3 converts the CVRP problem

into a symmetric TSP and handles the constraints, especially ve-

hicle capacity, with a penalty function. The hybrid iterated local

search [28] combines iterative local search heuristic and set parti-

tioning formulation. It interleaves a metaheuristic approach with

mixed integer programming to be able to solve multiple variants of

VRP. HGS-CVRP [33] is a hybrid genetic search algorithm, and the

current state-of-the-art sequential method, for solving VRP prob-

lems. It carefully applies a combination of well-known local search

heuristics, and also proposes an efficient inter-route refinement

heuristic called SWAP
∗
to achieve better solution quality than all

the alternatives. HGS-CVRP is not multi-threaded.



Effective Parallelization of the Vehicle Routing Problem GECCO ’23, July 15–19, 2023, Lisbon, Portugal

More recently, parallelization of CVRP on GPU has been ex-

plored [1, 25, 35]. Abdelatti and Sodhi [1] propose a hybrid al-

gorithm combining the genetic algorithm and 2-Opt local search

which runs entirely on GPU. Yelmewad and Talawar [35] propose a

GPU-parallel metaheuristic algorithm which relies on local search

heuristics. It employs two parallelization strategies—customer-level

parallelization and route-level parallelization. It can handle large

problem instances having upto several thousand customers. We

use the foregoing two GPU-parallel state-of-the-art methods as

baseline in the empirical evaluation of ParMDS. All the prior tech-
niques take excessively long to arrive at a satisfactory solution to

CVRP especially for large input instances. On the contrary, our

ParMDS technique is designed to solve CVRP at scale – it can handle

large input instances efficiently, computing a good solution in a

practically reasonable time.

3 OUR METHOD
We propose a novel method, ParMDS, for computing an approximate

yet reasonable solution to CVRP quickly, using parallelization. We

also present an optimized sequential version of ParMDS, which we

call SeqMDS. We begin with an overview of our proposal followed

by a detailed discussion of our technique.

Algorithm 1: ParMDS: The proposed method

Input: 𝐺 = (𝑉 , 𝐸), Demands 𝐷 B
⋃𝑛
𝑖=1 𝑑𝑖 , Capacity 𝑄

Output: 𝑅, a collection of routes as a valid CVRP solution

𝐶𝑅 , the cost of 𝑅

1 𝑇 ← Prims_MST (𝐺) /* Step 1 */

2 𝐶𝑅 ←∞
3 for 𝑖 ← 1 to 𝜌 do /* Superloop */ /* Parallel */
4 𝑇𝑖 ← Randomize (𝑇 ) /* Shuffle Adjacency List */

5 𝜋𝑖 ← DFS_Visit (𝑇𝑖 , Depot) /* Step 2 */

6 𝑅𝑖 ← Convert_To_Routes (𝜋𝑖 , Q, D) /* Step 3 */

7 𝐶𝑅𝑖 ← Calculate_Cost (𝑅𝑖 ) /* Parallel */

8 if 𝐶𝑅𝑖 < 𝐶𝑅 then
9 𝐶𝑅 ← 𝐶𝑅𝑖 /* Current Min Cost */

10 𝑅′ ← 𝑅𝑖 /* Current Min Cost Route */

11 end
12 end
13 𝑅 ← Refine_Routes (𝑅′) /* Step 4 */

14 return 𝑅,𝐶𝑅

3.1 ParMDS Overview
Algorithm 1 presents the ParMDS algorithm. It takes as input the

graph representation,𝐺 , of a CVRP instance (see Section 2.1), the

customer demands, 𝐷 , and the vehicle capacity, 𝑄 , and outputs a

valid CVRP solution. ParMDS proceeds in four super-steps. First,

it constructs a minimum spanning tree (MST), 𝑇 , of this edge-

weighted complete graph (Line 1); this is also the first step in the

well-known 2-approximation algorithm for TSP [34, pp. 45-46]. In

the second super-step, ParMDS performs depth-first traversal on the

MST, starting from the depot, to define an ordering on the nodes

(Line 5). Importantly, this step is preceded by a random shuffle of

the adjacency lists of the MST (Line 4) which enables generating a

distinct DFS visit order of the MST vertices in each iteration of the

superloop (Line 3). The third super-step partitions the ordered list

of nodes (𝜋𝑖 ) into separate routes to comply with the capacity, 𝑄

(Line 6). Steps two and three are repeated a fixed number, 𝜌 , of times

to explore the space of different DFS traversals in order to search

for better routes. 𝜌 is a tunable parameter and can be set to suit the

desired accuracy and performance. Finally, the fourth super-step

refines the ordering of the nodes within each route of the solution

using the well-known 2-Opt [11, 14] and the nearest-neighbor [27]
heuristics for TSP (Line 13). At the end, we obtain a collection of

routes which is a valid CVRP solution, along with its cost.

3.2 An Illustrative Example
We demonstrate our method through an illustrative example. Con-

sider a CVRP instance containing six customers and a depot, shown

in Figure 1(a). Let the vehicle capacity be 5. The depot is represented

as 0 . The demand at the depot is zero. Figure 1b shows the com-

plete graph for the input instance, having seven nodes, along with

the demand at each of the nodes mentioned beside the respective

node. The edges of the MST obtained after Step 1 of Algorithm 1

are shown with thick edges. Figure 1c shows the CVRP solution

produced by ParMDS, after the completion of Algorithm 1. Note that

the solution contains two routes, shown using orange solid-lines

and blue dashed-lines. Each of the two routes starts from and ends

at the depot. The cost of ParMDS’s solution is 66.13; it is the total

distance to be travelled in both the routes. The optimal solution for

this example contains two routes with a total cost of 63.76.

We next focus on Step 2 of Algorithm 1. This step, in conjunction

with random shuffle of the nodes’ neighbors, enables ParMDS to

generate several candidate solutions, which is critical to exploring

the large solution space of CVRP. Figure 2 shows four candidate

solutions generated by ParMDS, along with their respective costs.

Figure 2(a) shows the MST from Figure 1b, rooted at the depot; it is

redrawn for clarity. Note that in each of the Figures 2(a)–2(d), the

MST is the same, with the neighbors ordered differently because of

the random shuffle of the adjacency lists of the nodes.

To understand this better, consider Figures 2(a) and 2(b). The

only difference in them is at node 1 . For node 1 , the neighbor

order in Figure 2(a) is <3, 4>, whereas that in Figure 2(b) is <4,

3>. As DFS traversal is sensitive to the neighbor order, we get a

different permutation 𝜋 , and therefore a different route and cost

(as shown in the figure below the trees). The difference between

Figures 2(b) and 2(c) is at node 0 (<1, 2> versus <2, 1>). Similarly,

Figures 2(c) and 2(d) only differ in node 1 ’s neighbor order.

A distinct permutation 𝜋 is produced for each of the isomorphic

MSTs shown in Figure 2(a)–2(d), with each having a different cost.

Let the 𝑖𝑡ℎ route be represented as 𝑟𝑖 . Convert_To_Routes (Step 3)

takes the permutation 𝜋 as input and outputs a set of routes. Each

permutation produces up to 3 routes, which are marked at the

boundary (routes at the bottom). Each of the routes 𝑟𝑖 produced

is prefixed and suffixed with the depot. However, for brevity, we

show only the boundary of each of the routes.

The permutation and the set of routes in Figure 2(c) are visualized

in Figure 3(a). Figure 3(a) shows the two routes <2, 5, 1, 3> and

<4, 6> using orange solid-lines and blue dashed-lines respectively.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Rajesh et al.

𝑥

𝑦

0

(0,0)

1

(8,0)

2

(2,6)

3

(12,0)

4

(10,4)

5

(2,10)

6

(12,8)

(a) Input instance 𝐼

0

0

2

1

3

1

5

1

6

2

1

2

4

3

(b) Graph for 𝐼 , along with node-demands

Cost: 66.13

OPT: 63.76

0

0

1

2

2

1

3

1

4

3

5

1

6

2

10
.7
7

4
.4
7

1
4
.4
2

6.32

4.00
1
4
.1
4

48

(c) Final routes generated by ParMDS

Figure 1: ParMDS in action on an example input instance with 𝑛 = 7 and 𝑄 = 5.

  

0

1 2

3 4 5

6

0 1 3 4 6 2 5

0

2 1

131

2

0

2 1

5 3 4

6

0 2 5 1 3 4 6

0

1 2

311

2

0

1 2

4 3 5

6

0 1 4 6 3 2 5

0

2 1

113

2

0

2 1

5 4 3

6

0 2 5 1 4 6 3

0

1 2

131

2

(a) (b) (c) (d)

r1 r2 r3 r1 r2 r3    r1 r2 r1  r2 r3

83.6567.6578.1974.19

π

Cost:

Figure 2: Candidate CVRP solutions for the example input instance, 𝐼 , from Figure 1.

The original route cost is 67.65 computed using Calculate_Cost.

Notice in Figure 3(a) the intersecting edges in the first route 𝑟1:

node 5 → node 1 and node 3 → node 0 . The modified route-

set after the removal of intersection is {<2, 5, 3, 1>, <4, 6>}. The

intersection in 𝑟1 is removed using the 2-Opt_Heuristic as shown

in Figure 3(b), improving the cost from 67.65 to 66.13 (which is only

3.72% away from the optimal cost of 63.76 for this example).

3.3 Algorithmic Details
We describe the four steps of our Algorithm 1 in detail now.

1) Constructing MST of 𝐺 : On an undirected graph 𝐺 , which is

an edge-weighted complete graph on 𝑛 nodes, we run Prim’s MST

algorithm [24]. Prim’s algorithm starts from a vertex of the graph

and iteratively grows the tree by selecting the least-weight edge

between the vertices of the tree and a non-selected vertex of the

graph. On 𝐺 , Prim’s algorithm (Algorithm 1, Line 1) begins from

the depot, and the MST, 𝑇 , contains all the nodes (since the graph

is connected). In the illustrative example, Figure 1b shows the MST

with thick edges. It is important to note that we compute the MST

only once.

  
   r1 r2

0

2 1

5 3 4

6

0 2 5 1 3 4 6

0

1 2

311

2

(a)

   r1 r2    r1 r2

(b)

0 2 5 1 3 4 6

0

2 1

5 3 4

6

0

1 2

31
1

2

0 2 5 3 1 4 667.65 66.13

67.65

Cost:

Figure 3: Intra-route optimization for Figure 2(c)

2) Depth-first traversal on theMST:On the MST𝑇 obtained from

Step 1, we perform a depth-first traversal starting from the depot



Effective Parallelization of the Vehicle Routing Problem GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Algorithm 2: Convert_To_Routes (𝜋 , Q, D)

Input: A permutation 𝜋 , Capacity 𝑄 , Demands 𝐷

Output: Routes, a set of routes
1 OneRoute← 𝜙 ; Routes← 𝜙 /* Initialize to empty */

2 ResidueCap← 𝑄 /* Residual capacity */

3 for v ∈ 𝜋 do
4 if v = Depot then continue /* Skip Depot */

5 if ResidueCap - 𝐷[v] ≥ 0 then /* Same Route */
6 OneRoute.add(v)

7 ResidueCap← ResidueCap - 𝐷[v]

8 else /* New Route */
/* Add previous route to Routes set */

9 Routes← Routes ∪ OneRoute

10 OneRoute← 𝜙

11 OneRoute.add(v)

12 ResidueCap← 𝑄 - 𝐷[v]

13 end
14 end

/* Add the last route to Routes set */

15 Routes = Routes ∪ OneRoute

16 return Routes

(Algorithm 1, Line 5). This DFS traversal leads to a permutation of

the 𝑛 nodes (similar to the one in the double-tour TSP processing).

Figure 2(a) shows the permutation 𝜋 obtained after this step, below

the tree.

Random Shuffle of Adjacency Lists. The node visit-order in

a DFS traversal is contingent on the order of nodes stored in the

adjacency lists (of the MST 𝑇 ). ParMDS takes advantage of this

property to generate several candidate solutions for CVRP by shuf-

fling the adjacency lists of the MST (Algorithm 1, Line 4) before

performing the depth first traversal in every superloop iteration.

The random shuffle of adjacency lists is performed using C++’s
std::algorithm/shuffle() method.

3) Partitioning the nodes into routes: The permutation of all the

nodes (or customers) is represented as 𝜋 . Algorithm 2 effectively

slices the permutation 𝜋 and makes each piece a route respecting

the vehicle’s capacity constraint. OneRoute is used to store nodes of
a single route, and Routes stores the set of routes. Both are initially

empty. Convert_To_Routes picks a node starting from the first

node of the permutation (Line 3) and keeps adding to a route until

no more nodes can be added (Line 6). If adding a node violates the

capacity constraint, that is, the sum of all the nodes’ demands in

the route exceeds the capacity, it creates a new route starting at

that vertex (Line 11). It repeats the steps for all the remaining nodes

in the permutation. Figures 2(a)–2(d) show the conversion of each

permutation, 𝜋 , into routes. The routes are numbered 𝑟𝑖 , and the

costs of the routes are mentioned at the bottom.

We repeat steps 2 and 3 (Algorithm 1 Lines 5 and 6) a fixed num-

ber 𝜌 of times such that the random adjacency lists capture several

of the possible orderings. We calculate the cost of the routes (Line 7)

Algorithm 3: Refine_Routes (Routes)

Input: Routes
Output:ModifiedRoutes, set of routes after refinement

/* Intra-route improvement techniques */

1 RoutesOne← Nearest_Neighbour_Heuristic (Routes)

2 RoutesTwo← 2-Opt_Heuristic(RoutesOne)

3 RoutesThree← 2-Opt_Heuristic(Routes)

4 ModifiedRoutes← 𝜙

5 for 𝑖 ← 1 to Routes.size() do // 𝑖𝑡ℎ route /* Parallel */
/* Choose the minimum cost route */

6 Min-ith-Route←MIN{RoutesTwo[i], RoutesThree[i]}

7 ModifiedRoutes←ModifiedRoutes ∪Min-ith-Route

8 end
9 return ModifiedRoutes

at the end of step 3 and update the min-cost and min-routes (Lines 8-

10) accordingly. At the end of each iteration, the cost 𝐶𝑅𝑖 is com-

puted using Calculate_Cost (Algorithm 4) and the current mini-

mum cost𝐶𝑅 and corresponding routes 𝑅′ are updated accordingly.
After a fixed number of iterations, the current best solution 𝑅′ is
fed to the refinement stage (Algorithm 3) for final processing.

4) Refining the ordering within routes: There are multiple

ways to refine routes, but they can be categorized into two: i)

intra-route improvement: updating node order within a route, and

ii) inter-route improvement: improving the solution by moving

nodes across different routes. A crucial advantage of intra-route

improvement is that multiple intra-techniques can be composed

(that is, run one after another) and adding new intra-route tech-

niques in future is easy. The Refine_Routes step (Algorithm 3)

of ParMDS uses two intra-routes improvement techniques, namely

Nearest_Neighbour_Heuristic (Line 1) and 2-Opt_Heuristic

(Lines 2-3). Both these heuristics are very well studied in the context

of TSP. 2-Opt_Heuristic removes intersections within a route, by

considering the nodes in a route to form a TSP problem instance, as

shown in Figures 3(a) and 3(b). Nearest_Neighbour_Heuristic

works in a different way. Initially, all the nodes in a route are unvis-

ited. After visiting the first node in a route, we subsequently pick

the next nearest node out of the remaining unvisited nodes of the

route. This potentially produces a different node ordering within

a route but it may also create an intersection of the edges of the

route. So, we run 2-Opt_Heuristic twice (Lines 2-3) as the last

step to remove the intersections, if any.

After running both (in different combinations), we go over all the

routes (Line 5) and pick the lower cost alternative for every route.

The result of the Refine_Routes step is ParMDS’s final solution.

Reducing the Search Space. In CVRP, the solution space is expo-

nential in the size of the input. Thus, to solve a problem satisfac-

torily in a reasonable time, it is imperative to prune the solution

search space effectively and quickly — avoiding unfruitful searches

to the extent possible. ParMDS accomplishes search space reduction

by performing a DFS traversal of the MST. This simple technique

helps in avoiding unfruitful permutation of nodes, thus substan-

tially reducing the search space to explore. Furthermore, generating



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Rajesh et al.

Algorithm 4: Calculate_Cost (Routes)

Input: Routes, a collection of valid CVRP routes

Output: Cost, the cost of Routes
1 Cost← 0

2 for Route ∈ Routes do /* Parallel */
/* Route is a sequence of one or more nodes */

/* Distance(i,j): 2D Euclidean distance

between nodes i and j */

3 Cost← Cost + Distance(depot, first node in Route)

4 for adjacent nodes (p, q) ∈ Route do /* Parallel */
5 Cost← Cost + Distance(𝑝,𝑞)
6 end
7 Cost← Cost + Distance(depot, last node in Route)

8 end
9 return Cost

a random permutation of the adjacency lists followed by a DFS tra-

versal, for a fixed number 𝜌 of iterations of the superloop enables

ParMDS to explore the reduced, yet massive solution space faster.

Thus, ParMDS arrives at a good solution to CVRP in a reduced time.

We quantitatively discuss the effect of 𝜌 on the performance and

solution quality of ParMDS in Section 4.2.

Time complexity. The running time of SeqMDS is the sum of the

time taken by the MST computation and time spent on Random-

ize, DFS_Visit and Convert_To_Routes for the fixed number of

iterations and, finally, the Refine_Routes step. As we use the adja-

cency list representation, the time complexity of MST is𝑂 (𝑚 log𝑛)
where 𝑛 and 𝑚 represent the numbers of nodes and edges in 𝐺 ,

respectively. As the initial graph is complete,𝑚 = 𝑂 (𝑛2). So, the
MST computation takes 𝑂 (𝑛2 log𝑛) time. The MST contains only

𝑛 nodes and 𝑛 − 1 edges. DFS is linear in the size of the input:

𝑂 (𝑛 + 𝑛 − 1) = 𝑂 (𝑛). Convert_To_Routes is again linear time as

it runs over all the nodes in a permutation once. Similarly, random-

ization runs linearly on the number of edges of MST. Randomize,

DFS_Visit and Convert_To_Routes run a fixed number of times

𝜌 ; to be exact, 𝜌×𝑂 (3𝑛) = 𝜌×𝑂 (𝑛). Refinement step includesNear-

est_Neighbour_Heuristic and 2-Opt_Heuristic, each of which

takes quadratic time: 𝑂 (3𝑛2) to be precise (Algorithm 3 Lines 1-3).

At the end of refinement, the processing iterates through all the

routes to pick the minimum valued 𝑖𝑡ℎ route, which is𝑂 (𝑛). So, the
refinement step is 𝑂 (𝑛2 + 𝑛). Putting everything together, we get a

total running time 𝑂 (𝑛2 log𝑛 + 3𝑛2 + (𝜌 × 3𝑛) + 𝑛). Omitting the

constants finally results in 𝑂 (𝑛2 log𝑛 + 𝑛2 + 𝑛).

3.4 ParMDS: Parallel and Random
Of the total time taken by SeqMDS Figure 4 describes the percentage
of time spent at each step of our method. As we observe from Fig-

ure 4, over 99% of the time is spent in the superloop (Algorithm 1,

Line 3) in general (except Belgium-type which consumes 80-98%);

the other two steps 1 and 4 take very little time. Each iteration of

the superloop takes a copy of the original adjacency list informa-

tion, performs Steps 2 and 3, and updates 𝐶𝑅 and 𝑅′. There is no
dependency across iterations, which makes the loop embarrassingly

parallel. Further, we also parallelize Calculate_Cost (Algorithm 4)

Figure 4: SeqMDS — time spent at each step

Algorithm 5: ParMDS: Finer details of Algorithm 1

/* Standard: stride = 1; */

/* Strided : stride = #CPU cores */

/* Parallel for loop: Standard/Strided */

1 for 𝑖 ← 1; 𝑖 ≤ 𝜌 ; 𝑖 = 𝑖 + stride do
2 for 𝑣 ∈ 𝑉 do

/* seed ← constant or i or rand() */

3 Shuffle-neighbors(AdjList(v), seed);

4 end
5 · · ·
6 end
7 · · ·

and Refine_Routes (Algorithm 3). Importantly, randomization re-

moves any bias due to pre-exisiting node order in the adjacency

lists and aids in local search. Algorithm 1 highlights the functions

with parallel tasks. The parallel tasks are marked with Parallel.

Standard vs. Strided Parallelization. Algorithm 5 zooms in on

the parallel superloop in Algorithm 1 (Line 3). The loop can have a

stride of 1 (which we call Standard) or more than 1 (which we call

Strided). We use the Strided approach — setting the stride to the

number of CPU cores; stride-many iterations are run in parallel.

We observe the Strided approach to have better performance (due

to reduced false sharing in the shared 𝐶𝑅 and 𝑅′).

Seed Variation. The seed for random shuffle of adjacency lists

can be set in different ways: 1) Constant, 2) Variable, or 3) Random.

The random shuffle of the adjacency list is effected using a for-loop

which runs over all vertices. For each iteration of the superloop,

the shuffle is invoked |V| times. With Constant, the same seed value

is used throughout. With Variable, the iteration number is set as

the seed, whereas in Random, the seed is also generated at random.

So, each invocation of Shuffle-neighbors gets a different seed.

Using different seeds helps generate different node orders within

the adjacency lists, thus diversifying the solution.

All the above three types can be combined with the Standard

and the Strided parallelization approaches. We quantitatively com-

pare the three methods in Section 4 and use the best-performing

combination in ParMDS.



Effective Parallelization of the Vehicle Routing Problem GECCO ’23, July 15–19, 2023, Lisbon, Portugal

4 EXPERIMENTS
We quantitatively evaluate the performance and solution quality of

our proposed method and compare it with the state-of-the-art.

4.1 Setup
All the experiments are carried out on a machine having Intel Xeon

CPU E5-2640 v4 with 40 cores, clock-speed of 2.4 GHz, 25 MB L3-

cache, and 64 GB memory. It runs CentOS Linux 7 (64-bit). GPU

implementations are run on NVIDIA’s Tesla P100 GPU having 12GB

global memory. P100 has 3584 cores, each with a clock-speed of 1.33

GHz, spread across 54 streaming multiprocessors. We use CUDA

11.5 to compile and execute the methods on the GPU. SeqMDS is

compiled with gcc 9.3.1 with flag -std=c++14. ParMDS is complied

using nvc++ compiler from NVIDIA’s HPC SDK 22.11 with flag

-acc=multicore; it uses OpenMP for parallelization. All codes are

available at https://github.com/mrprajesh/parMDS.

Input Instances. We use 130 diverse CVRP instances from CVR-

PLIB [31]. These instances are due to several contributors [3, 5, 7, 8,

13, 18, 26, 32] and are also part of the 12
𝑡ℎ

DIMACS Programming

Challenge on the vehicle routing problem [30]. We categorize the

130 instances into four types namely: X, Golden, Belgium (which

comprises Antwerp*, Brussels*, Flanders*, Ghent*, Leuven*), and

Others (which comprises CMT5, E-n*, F-n135-k7, P-n101-k4, tai385).

X, Golden, Belgium and Others contain 100, 12, 10, and 8 instances

respectively. The size𝑛 of inputs ranges from 76 to 30,001 nodes, and

the vehicle capacity 𝑄 is in the range of 3–2210. CVRPLIB main-

tains the best-known solution (BKS) for all the CVRP instances

(http://vrp.galgos.inf.puc-rio.br/ index.php accessed on July 19, 2022)

which we utilize to compute the Gap.

Comparisons. We compare our tools, ParMDS and SeqMDS, against
two recent state-of-the-art GPU-parallel implementations of genetic

algorithms for CVRP: Base1 which implements a metaheuristic

algorithm for VRP on GPU in CUDA [35] and Base2 which imple-

ments a genetic algorithm for VRP on GPU using Numba, CuPy and

NumPy [1]. Four significant metrics for measuring the efficacy of

a VRP heuristic are speed, accuracy, simplicity and flexibility [10].

The focus of ParMDS is on speed, simplicity and accuracy (or the

solution quality). The accuracy is measured using Gap (Section 2.1).

To increase statistical significance, we report the execution time and

the Gap of ParMDS averaged over 5 independent runs. We present

results for ParMDS with 40 threads.

4.2 Determining the Superloop Iteration Bound
As discussed in Section 3.3, the performance and the solution quality

of ParMDS depend on the number of iterations, 𝜌 , of the superloop

(Line 3, Algorithm 1). We study the impact of increasing 𝜌 on the

solution quality (measured using Gap) and the execution time of

ParMDS. Figure 5 shows the effect of increasing 𝜌 on four represen-

tative input instances from our test-suite; these include the largest

input of each instance-type. As we observe from Figure 5, Gap de-
creasesmonotonically with increase in 𝜌 , for all four input instances.

We further observe that the execution time increases superlinearly

and monotonically with increase in 𝜌 , for all four input instances. In

order to manage this trade-off between performance and solution

quality well, based on the empirical evidence presented in Figure 5,

we identify 𝜌 = 10
5
as a sweet-spot for ParMDS.

Execution Time (s)
Instance BKS 𝑄 𝑛 Base1 Base2 SeqMDS ParMDS

X-n1001-k43 72,355 131 1,001 0.98 4,741.34 7.43 0.20

X-n979-k58 118,976 998 979 2.34 4,881.31 7.47 0.22

Golden12 1,101 1,000 484 0.38 1,513.46 3.21 0.09

Golden16 1,611 1,000 481 0.27 1,280.89 3.51 0.08

Brussels2 345,481 150 16,001 326.53 7,033.72 173.42 20.42

Flanders2 4,373,320 200 30,001 2,534.29 8,354.91 373.58 79.37

P-n101-k4 681 400 101 - 286.68 0.68 0.03

CMT5 1,291 200 200 - 214.80 1.44 0.04

Table 2: Execution time of the baselines, SeqMDS and ParMDS

Method Gap Execution Time (s)
using RandomConstant Variable Random

SeqMDS 22.15 21.72 17.56 1,722.44

ParMDS-Standard 14.14 13.49 10.96 1,522.26

ParMDS-Strided 14.14 13.48 11.85 186.50

Table 3: Gap for Standard vs. Strided, and execution time

4.3 Comparison of Execution Time
We evaluate our method and the baselines on the 130 input in-

stances. Compared to Base1 and Base2, ParMDS runs faster; Base2
takes substantially longer time than ours. ParMDS takes 187 sec-

onds and SeqMDS takes 28 minutes (Table 3) to complete on all the

instances, whereas Base1 takes 107 minutes and Base2 2.5 days.

Base2 performs poorly, especially on large instances.

Tables 2 and 4 show the absolute run times and costs for the

baselines and our tool on two largest instances per type. Base1 did

not run on Others-type instances (denoted by ‘-’ in Tables 2 and 4).

Over all 130 instances, the average speedup of ParMDS is 9×, 36×,
1189× over SeqMDS, Base1 and Base2 respectively. Figure 6 shows

the average speedup of ParMDS over the two baselines. We observe

a similar trend for all instance-types (see Figure 6).

Effect of Randomization. Table 3 shows the benefits of the

Strided approach over the Standard-parallelization approach (dis-

cussed in Section 3.4). For each type of seeding (Constant, Variable

and Random), we list the average Gap corresponding to it and the

overall time for all 130 instances. Parallelization helps reduce the

Gap over sequential execution. Although there is a slight increase

in Gap when using a random seed, the execution time rules in our

favour. We use Strided with Random seed in all our experiments

for ParMDS.

4.4 Comparison of Solution Quality
We now evaluate the quality of the solution produced by our pro-

posed method. The smaller the Gap, the better is the solution quality.
We use Gap as defined in Section 2.1. Table 4 tabulates the absolute

cost of baselines and ParMDS along with the BKS. We present the

absolute numbers for the two largest input instances per type. We

observe that ParMDS’s solution indeed has a smaller cost compared

to the baselines.

Figure 7(a) shows the average Gap across all 130 instances and
per type. The Gap is plotted along the y-axis. Each bar in a set

represents the Gap of the baselines and our tool. Base1 has a smaller

Gap compared to Base2. The Gap of Base1 and SeqMDS has only a

marginal difference. ParMDS’s Gap is smaller than both the baselines.

The average Gap of Base1, Base2, SeqMDS and ParMDS are 17.56%,
175.82%, 17.88% and 11.85% respectively. Our tool consistently has

https://github.com/mrprajesh/parMDS
http://vrp.galgos.inf.puc-rio.br/index.php


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Rajesh et al.

 0

 10

 20

 30

 40

 50

 60

 70

102 103 104 105 106

G
a
p

ρ (log)

X-n1001-k43
Golden12

Flanders2
CMT5

10-3

10-2

10-1

100

101

102

103

102 103 104 105 106

Ti
m

e
 [

s]
 (

lo
g

)

ρ (log)

X-n1001-k43
Golden12

Flanders2
CMT5

Figure 5: Effect of increasing 𝜌 on (a) Gap and (b) run time of ParMDS Figure 6: Speedup of ParMDS vs. baselines

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40

S
p

e
e
d

u
p

# threads (log)

X-n1001-k43
Golden12

Flanders2
CMT5

Figure 7: (a) Gap comparison [lower is better] (b) Gap at the end of: 1st iteration, Superloop and Refine step (c) ParMDS Scalability

Instance BKS Base1 Base2 ParMDS
X-n1001-k43 72,355 91,042 415,387 80,217

X-n979-k58 118,976 137,072 455,823 126,529

Golden12 1,100.67 1,504 4,296 1,461.14

Golden16 1,611.28 2,128 6,069 2,098.10

Brussels2 345,481 457,430 9,406,251 394,292

Flanders2 4,373,320 6,164,809 202,483,288 4,882,650

P-n101-k4 681 - 3,864 755

CMT5 1,291.29 - 1,793 1,486.16

Table 4: Absolute cost of baselines and ParMDS

a smaller Gap than Base2 on all the input instances, and a smaller

Gap than Base1 on most of the instances (102 out of 122). The

improvement in the Gap of ParMDS over SeqMDS is due to the effect
of randomization and parallelization (in Section 3.4).

To quantify the gap per step, in Figure 7(b) we plot the Gap at

the end of: the 1st iteration of the superloop, all the iterations of the

superloop, and the Refine_Routes step.We observe that overall the

local-search iteration and Refine_Routes steps help improve the

solution quality. Note that maximum Gap of any instance for ParMDS
is 81% in the worst case, while it is much higher for the baselines.

ParMDS’s solution is well within the 2-approximate solution.

4.5 Scalability Study of ParMDS
We plot Figure 7(c) to study the scalability of ParMDS. We vary the

thread size {2,4,8,16,24,32,40} in the Strided and Random configura-

tion to record the speedup of ParMDS over single-threaded ParMDS
on the largest instance of each instance-type. We observe that

for X-n1001-k43, Golden12 and CMT5 the speedup grows steadily.

However, for Flanders2 of Belgium-type, we only observe mar-

ginal speedup; the speedup tends to flatten after 8 threads. This

is because the solution space for Flanders2 is much larger com-

pared to other instances. This is due to the customers being densely

packed (the number of customers per unit area is high) and the

high capacity-to-customer demand ratio.

5 CONCLUSION
We proposed an efficient shared-memory parallel method, called

ParMDS, for obtaining a satisfactory approximate solution to the

capacitated vehicle routing problem faster. ParMDS employs a novel

MST- and DFS-based method in conjunction with randomization

which enables it to explore a large space of candidate solutions

quickly, even for large input instances. We compared ParMDS with

the state-of-the-art methods using GPU-parallel genetic algorithms.

Experiments on diverse input instances from CVRPLIB showed that

ParMDS is on average 36-1189× faster than the baselines and also

achieves a superior solution quality over the baselines; average Gap
of ParMDS is 11.85% compared to the best-known solution.

We have three directions for future work. We plan to develop a

GPU-parallel version of the proposed method to further enhance

performance. On the algorithmic front, we plan to build direction-
awareness into the current scheme, and add inter-route refinement

strategies to better the solution quality of ParMDS. Furthermore, we

observed empirically that in ParMDS randomization is instrumental

in improving the solution quality. It would be interesting to study

the effect of randomization on the solution quality theoretically.

ACKNOWLEDGMENTS
We thank Eduardo Uchoa and Eduardo Queiroga for the discussions

and their insightful inputs which improved our understanding of

the current CVRP landscape. We are grateful to Pramod Yelmewad

and Marwan Abdelatti for their help in running their code.



Effective Parallelization of the Vehicle Routing Problem GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Marwan F. Abdelatti and Manbir Singh Sodhi. 2020. An improved GPU-

accelerated heuristic technique applied to the capacitated vehicle routing prob-

lem. In GECCO ’20: Genetic and Evolutionary Computation Conference, Cancún
Mexico, July 8-12, 2020, Carlos Artemio Coello Coello (Ed.). ACM, 663–671.

https://doi.org/10.1145/3377930.3390159

[2] Luca Accorsi and Daniele Vigo. 2021. A Fast and Scalable Heuristic for the

Solution of Large-Scale Capacitated Vehicle Routing Problems. Transportation
Science 55, 4 (2021), 832–856. https://doi.org/10.1287/trsc.2021.1059

[3] Florian Arnold, Michel Gendreau, and Kenneth Sörensen. 2019. Efficiently solving

very large-scale routing problems. Computers and Operations Research 107 (2019),

32–42. https://doi.org/10.1016/j.cor.2019.03.006

[4] Florian Arnold and Kenneth Sörensen. 2019. What makes a VRP solution good?

The generation of problem-specific knowledge for heuristics. Computers &
Operations Research 106 (2019), 280–288. https://doi.org/10.1016/j.cor.2018.02.007

[5] Philippe Augerat, José Manuel Belenguer, Enrique Benavent, Angel Corberán, D.

Naddef, and Giovanni Rinaldi. 1995. Computational results with a branch and

cut code for the capacitated vehicle routing problem. Technical Report 949-M (01

1995).

[6] Jan Christiaens and Greet Vanden Berghe. 2020. Slack Induction by String

Removals for Vehicle Routing Problems. Transportation Science 54, 2 (2020),

417–433. https://doi.org/10.1287/trsc.2019.0914

[7] Nicos Christofides and Sam Eilon. 1969. An Algorithm for the Vehicle-dispatching

Problem. Journal of the Operational Research Society 20, 3 (1969), 309–318. https:

//doi.org/10.1057/jors.1969.75

[8] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. 1979. The vehicle routing

problem. Combinatorial Optimization 1 (1979), 315–338.

[9] G. Clarke and J. W. Wright. 1964. Scheduling of Vehicles from a Central Depot

to a Number of Delivery Points. Operations Research 12, 4 (1964), 568–581.

http://www.jstor.org/stable/167703

[10] Jean-François Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, and

Frédéric Semet. 2002. A guide to vehicle routing heuristics. J. Oper. Res. Soc. 53,
5 (2002), 512–522. https://doi.org/10.1057/palgrave.jors.2601319

[11] Georges A Croes. 1958. A method for solving traveling-salesman problems.

Operations research 6, 6 (1958), 791–812.

[12] G. B. Dantzig and J. H. Ramser. 1959. The Truck Dispatching Problem. Manage-
ment Science 6(1) (1959), 80–91. https://doi.org/10.1287/mnsc.6.1.80

[13] Marshall L. Fisher. 1994. Optimal Solution of Vehicle Routing Problems Using

Minimum K-Trees. Operations Research 42, 4 (1994), 626–642. https://doi.org/10.

1287/opre.42.4.626

[14] Merrill M. Flood. 1956. The Traveling-Salesman Problem. Operations Research 4,

1 (1956), 61–75. http://www.jstor.org/stable/167517

[15] MIT Center for Transportation Logistics. 2021. Amazon Last Mile Routing Re-

search Challenge. https://routingchallenge.mit.edu/about-the-challenge/. [On-

line; accessed 01-Feb-2023].

[16] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[17] Bruce L Golden, Subramanian Raghavan, Edward A Wasil, et al. 2008. The vehicle
routing problem: latest advances and new challenges. Vol. 43. Springer.

[18] Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. 1998. The

Impact of Metaheuristics on Solving the Vehicle Routing Problem: Algorithms,

Problem Sets, and Computational Results. Fleet Management and Logistics (1998),
33–56. https://doi.org/10.1007/978-1-4615-5755-5_2

[19] Keld Helsgaun. 2000. An effective implementation of the Lin-Kernighan traveling

salesman heuristic. Eur. J. Oper. Res. 126, 1 (2000), 106–130. https://doi.org/10.

1016/S0377-2217(99)00284-2

[20] Keld Helsgaun. 2017. An extension of the Lin-Kernighan-Helsgaun TSP solver for

constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde
University (2017), 24–50. http://akira.ruc.dk/~keld/research/LKH-3/LKH-3_

REPORT.pdf

[21] Gilbert Laporte. 1992. The vehicle routing problem: An overview of exact and

approximate algorithms. European Journal of Operational Research 59, 3 (1992),

345–358. https://doi.org/10.1016/0377-2217(92)90192-C

[22] Gilbert Laporte. 2009. Fifty Years of Vehicle Routing. Transportation Science 43, 4
(2009), 408–416. https://doi.org/10.1287/trsc.1090.0301

[23] AdamN. Letchford and Juan José Salazar González. 2019. The Capacitated Vehicle

Routing Problem: Stronger bounds in pseudo-polynomial time. European Journal
of Operational Research 272, 1 (2019), 24–31. https://doi.org/10.1016/j.ejor.2018.

06.002

[24] R. C. Prim. 1957. Shortest connection networks and some generalizations. The Bell
System Technical Journal 36, 6 (1957), 1389–1401. https://doi.org/10.1002/j.1538-

7305.1957.tb01515.x

[25] Antón Rey, Manuel Prieto, José Ignacio Gómez, Christian Tenllado, and José Igna-

cio Hidalgo. 2018. A CPU-GPU Parallel Ant Colony Optimization Solver for the

Vehicle Routing Problem. In Applications of Evolutionary Computation - 21st Inter-
national Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018, Proceedings
(Lecture Notes in Computer Science, Vol. 10784), Kevin Sim and Paul Kaufmann

(Eds.). Springer, 653–667. https://doi.org/10.1007/978-3-319-77538-8_44

[26] Yves Rochat and Éric D. Taillard. 1995. Probabilistic diversification and inten-

sification in local search for vehicle routing. Journal of Heuristics 1, 1 (1995),

147–167. https://doi.org/10.1007/BF02430370

[27] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis. 1977. An

Analysis of Several Heuristics for the Traveling Salesman Problem. SIAM J.
Comput. 6 (1977), 563–581.

[28] Anand Subramanian, Eduardo Uchoa, and Luiz Satoru Ochi. 2013. A hybrid

algorithm for a class of vehicle routing problems. Computers & Operations
Research 40, 10 (2013), 2519–2531. https://doi.org/10.1016/j.cor.2013.01.013

[29] Paolo Toth and Daniele Vigo. 2014. Vehicle routing: problems, methods, and
applications. SIAM.

[30] Eduardo Uchoa. 2022. 12th Implementation Challenge: Track - Capacitated

Vehicle Routing Problem. http://dimacs.rutgers.edu/programs/challenge/vrp/

cvrp/. [Online; accessed 21-Jul-2022].

[31] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, Anand

Subramanian, and Ivan Lima. 2014. CVRPLIB: Capacitated Vehicle Routing Prob-

lem Library. http://vrp.galgos.inf.puc-rio.br/index.php/en/. [Online; accessed

19-Jul-2022].

[32] Eduardo Uchoa, Diego Pecin, Artur Alves Pessoa, Marcus Poggi, Thibaut Vidal,

and Anand Subramanian. 2017. New benchmark instances for the Capacitated

Vehicle Routing Problem. European Journal of Operational Research 257, 3 (2017),

845–858. https://doi.org/10.1016/j.ejor.2016.08.012

[33] Thibaut Vidal. 2022. Hybrid genetic search for the CVRP: Open-source implemen-

tation and SWAP* neighborhood. Computers & Operations Research 140 (2022),

105643. https://doi.org/10.1016/j.cor.2021.105643

[34] David P. Williamson and David B. Shmoys. 2011. The Design of Approxima-
tion Algorithms. Cambridge University Press. http://www.cambridge.org/de/

knowledge/isbn/item5759340/?site_locale=de_DE

[35] Pramod Yelmewad and Basavaraj Talawar. 2021. Parallel Version of Local Search

Heuristic Algorithm to Solve Capacitated Vehicle Routing Problem. Clust. Comput.
24, 4 (2021), 3671–3692. https://doi.org/10.1007/s10586-021-03354-9

https://doi.org/10.1145/3377930.3390159
https://doi.org/10.1287/trsc.2021.1059
https://doi.org/10.1016/j.cor.2019.03.006
https://doi.org/10.1016/j.cor.2018.02.007
https://doi.org/10.1287/trsc.2019.0914
https://doi.org/10.1057/jors.1969.75
https://doi.org/10.1057/jors.1969.75
http://www.jstor.org/stable/167703
https://doi.org/10.1057/palgrave.jors.2601319
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/opre.42.4.626
https://doi.org/10.1287/opre.42.4.626
http://www.jstor.org/stable/167517
https://routingchallenge.mit.edu/about-the-challenge/
https://doi.org/10.1007/978-1-4615-5755-5_2
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1016/S0377-2217(99)00284-2
http://akira.ruc.dk/~keld/research/LKH-3/LKH-3_REPORT.pdf
http://akira.ruc.dk/~keld/research/LKH-3/LKH-3_REPORT.pdf
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1287/trsc.1090.0301
https://doi.org/10.1016/j.ejor.2018.06.002
https://doi.org/10.1016/j.ejor.2018.06.002
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1007/978-3-319-77538-8_44
https://doi.org/10.1007/BF02430370
https://doi.org/10.1016/j.cor.2013.01.013
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/ 
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/ 
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1016/j.cor.2021.105643
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.1007/s10586-021-03354-9

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Problem Description
	2.2 Related Work

	3 Our Method
	3.1 ParMDS Overview
	3.2 An Illustrative Example
	3.3 Algorithmic Details
	3.4 ParMDS: Parallel and Random

	4 Experiments
	4.1 Setup
	4.2 Determining the Superloop Iteration Bound
	4.3 Comparison of Execution Time
	4.4 Comparison of Solution Quality
	4.5 Scalability Study of ParMDS

	5 Conclusion
	Acknowledgments
	References

