Algorithms and Data Structures for Hyperedge Queries

JULES BERTRAND, ENS de Lyon, France

FANNY DUFOSS E, Inria Grenoble, Rhone Alpes, France

SOMESH SINGH, Inria Lyon and LIP (UMR5668 Université de Lyon-ENS de Lyon-UCBL-CNRS-Inria),
France

BORA UCAR, CNRS and LIP (UMR5668 Université de Lyon-ENS de Lyon-UCBL-CNRS-Inria), France

We consider the problem of querying the existence of hyperedges in hypergraphs. More formally, given a
hypergraph, we need to answer queries of the form: “Does the following set of vertices form a hyperedge in
the given hypergraph?” Our aim is to set up data structures based on hashing to answer these queries as fast
as possible. We propose an adaptation of a well-known perfect hashing approach for the problem at hand. We
analyze the space and runtime complexity of the proposed approach and experimentally compare it with the
state-of-the-art hashing-based solutions. Experiments demonstrate the efficiency of the proposed approach
with respect to the state-of-the-art.

CCS Concepts: « Theory of computation — Sorting and searching;
Additional Key Words and Phrases: Hashing, perfect hashing, hypergraphs

ACM Reference format:

Jules Bertrand, Fanny Dufossé, Somesh Singh, and Bora Ucar. 2022. Algorithms and Data Structures for Hy-
peredge Queries. ACM J. Exp. Algor. 27, 1, Article 1.13 (December 2022), 23 pages.
https://doi.org/10.1145/3568421

1 INTRODUCTION

Let H = (V, E) be a hypergraph, where V is the set of vertices, and E is the set of hyperedges. Our
aim is to answer queries of the form: “Is h C V a member of E?” We are interested in data structures
and algorithms enabling constant time response per query in the worst-case with small memory
requirements and construction/preprocessing time. We focus on d-uniform, d-partite hypergraphs,
where the vertex set is a union of d disjoint parts V = J%! V!, and each hyperedge has exactly
one vertex from each part V.

We are motivated by a tensor decomposition method proposed by Kolda and Hong [15]. This is a
stochastic, iterative method targeting efficient decomposition of both dense and sparse tensors, or
multidimensional arrays. Our focus is on the sparse case. For this case, Kolda and Hong propose a

Authors’ addresses: J. Bertrand, ENS de Lyon, 46 allée d’Italie, Lyon, France, F-69364; email: jules.bertrand@ens-lyon.fr;
F. Dufossé, Inria Grenoble, Rhéne Alpes, 655 Avenue de I'Europe, 38330, Montbonnot-Saint-Martin, France; email:
fanny.dufosse@inria.fr; S. Singh, Inria Lyon and LIP (UMR5668 Université de Lyon-ENS de Lyon-UCBL-CNRS-Inria), 46
allée d’Italie, Lyon, France, F-69364; email: somesh.singh@ens-lyon.fr; B. Ucar, CNRS and LIP (UMR5668 Université de
Lyon-ENS de Lyon-UCBL-CNRS-Inria), 46 allée d’Italie, Lyon, France, F-69364; email: bora.ucar@ens-lyon.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-6654/2022/12-ART1.13 $15.00

https://doi.org/10.1145/3568421

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://orcid.org/0000-0002-0943-9314
https://orcid.org/0000-0002-2260-2200
https://orcid.org/0000-0002-7648-9979
https://orcid.org/0000-0002-4960-3545
https://doi.org/10.1145/3568421
mailto:permissions@acm.org
https://doi.org/10.1145/3568421

1.13:2 J. Bertrand et al.

sampling approach, called stratified sampling, in which the nonzeros and the zeros of a sparse ten-
sor are sampled separately at each iteration for accelerating the convergence of the decomposition
method. The stratified sampling approach works as follows. The nonzeros of the input tensor are
sampled uniformly at random. For sampling zeros in a d-dimensional tensor, a d-tuple of indices
is generated randomly and tested to see if the input tensor contains a nonzero at that position. If
the position is nonzero, then the d-tuple is rejected and a new one is generated, until a desired
number of indices corresponding to zeros of the input tensor are sampled. Sampling nonzeros is
a straightforward task, as the nonzeros of a tensor are available, usually, in an array. To sample
from the zeros of a tensor, Kolda and Hong propose a method based on sorting the nonzeros and
then using binary search during query time to see if the tuple exists or not. They report that this
approach is more efficient than other alternatives based on hashing in their tests—which are car-
ried out in Matlab. Since the above implementation of sampling for zeros can be time consuming,
Kolda and Hong propose and investigate other sampling approaches for their stochastic tensor
decomposition method. Among the alternatives, the stratified sampling approach is demonstrated
to be more useful numerically. That is why we are motivated to increase efficiency of the stratified
sampling approach by developing data structures and algorithms for quickly detecting whether a
given position in a tensor is zero or not.

A data structure that answers hyperedge queries can be used as a building block in a more
general setting. For example, one can compute the number of edges or hyperedges contained in
a given set of vertices in time polynomial in the size of the given vertex set, rather than in time
proportional to the sum of the vertex degrees. For vertex sets of small cardinality with high vertex
degrees, this becomes tangible.

Let 7 be a d-dimensional tensor of size so X - - - X s4_1, where s; is the size of the corresponding
dimension. An entry in the tensor is indexed by a d-tuple, e.g., 7 [io, . . ., ig—1]. One can associate
a d-uniform, d-partite hypergraph H = (V, E) with a tensor 7 as follows. In H, the vertex set is

V = UL v where V) = {v(()i), ...,o'"}. Furthermore, there is a hyperedge h € E of the form

> Usi—1
h= [UEO), R vl(j;l)] for each nonzero 7 [iy, . . ., ig—1]. From this correspondence, we see that the
problem of testing if a given position in a tensor is zero can be cast as the problem of testing the
existence of a hyperedge in the associated d-uniform, d-partite hypergraph.

We design and implement a perfect hashing-based approach by building on the celebrated
method by Fredman, Komlds, and Szemerédi (FKS method) [10]. The FKS method stores a
given set S of n elements with O(n) space in such a way that it takes constant time to answer
a membership query in the worst-case. The FKS method thus promises an asymptotically opti-
mal solution to our problem of answering hyperedge queries. After reviewing the original FKS
method in Section 2, we discuss the necessary changes to adapt it to answer hyperedge queries in
Section 3. We first list some theoretical properties of the proposed method that are inherited from
FKS in Section 3.1, for which the proofs are given in Appendix. We then present an approach to
improve space utilization in Section 3.2; while our approach can also be used in the original FKS
method, its effects are much more tangible in our use case. We note that since each element in our
case is of size d, a lookup takes O(d) time—which is not constant if d is part of the input. Since the
queries are of size d, a query response time of O(d) is optimal.

We restrict our attention to d-uniform, d-partite hypergraphs both in describing the proposed
method and experimenting with it. This is so, as it covers the tensor decomposition application.
Furthermore, as we discuss in Section 3.3.1, this is without loss of generality—the method is appli-
cable to general hypergraphs.

To the best of our knowledge, the hyperedge query problem is first addressed by Kolda and
Hong. The underlying problem is that of static hashing and hence existing perfect hashing methods

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:3

can be used. Minimal perfect hash functions (MPHFs) are static data structures that map a
given set with n elements to {0, ...,n — 1}. By using MPHFs, one can store the ids of hyperedges
in a space of size n and answer queries in constant time in the worst case. There are a number
of publicly available MPHF implementations [9, 12, 18, 19, 22]. While these are highly efficient
with practical implementations, the hyperedge query problem should be addressed on its own.
This is so, as the d-dimensional structure of the hyperedges in our target application can enable
special hashing methods, and converting the tensor’s data into other structures for hashing affects
the runtime. One can also use approximate set membership filters based on Bloom filter and its
variants [1, 8, 13, 16, 23]. Approximate set membership filters answer queries in such a way that the
“no” answers are always correct while the “yes” answers could be incorrect (i.e., false positives are
possible but false negatives are not). To use such filters for answering hyperedge queries or in other
computations where exact answers are required, one has to double-check all the “yes” answers
using an exact method. Therefore, a second exact hashing method needs to be built alongside the
chosen approximate set membership method. Hence, such filters promise fast query response with
an increased construction time and memory overhead.

We compare our approach experimentally (Section 4) with a number of methods that use the cur-
rent state-of-the-art minimal and non-minimal perfect hashing methods, and a recent approximate
membership filter. The most efficient version of the proposed method consistently outperforms all
other methods considered. We note that there are recent studies that use random hypergraph
models to build variants of Cuckoo hashing methods [2, 7, 12, 20, 28, 29]. Our work does not build
random hypergraph models for designing hashing schemes; we seek static hashing methods for
querying the existence of hyperedges in a given hypergraph.

2 PRELIMINARIES AND BACKGROUND

For an event &, we use Pr(&) to denote the probability that & holds. For a random variable X, we
use E(X) to denote the expectation of X. Markov’s inequality states that for a random variable
X that assumes only nonnegative values with expectation E(X), the probability that X > ¢ for a
positive ¢ is no larger than @ that is, Pr(X > ¢) < @

Let, U = {0,...,u — 1} be the universe. Recall that a family of hash functions H from U to
{0,...,n — 1} is universal if for any x # y € U, the probability that their key values are equal is
bounded by 1/n [3]. In other words, Pr(h(x) = h(y)) < 1/n for a uniform random function h € H.
This definition can also be found in more recent treatments [24, Chapter 4].

We now give a brief summary of the hashing method by Fredman et al. [10] for static data
sets. This method represents a given set of items using linear space and entertains constant time
existence queries. We do not give the proofs, as some of our proofs for the proposed method in
Section 3 follow closely that of Fredman et al. adapted to our case.

Let U = {0,...,u — 1} be the universe and S C U with |S| = n be the set to be represented. The
FKS method [10] relies on a two-level approach for storing the set S. It needs a prime number p
greater than u — 1 and defines an extended universe U’ = {0, ..., p—1}. First, it chooses an element
k € U’ uniformly at random, and defines the first-level hash function hy : U" — {0,...,n — 1} as
hi(x) = (kx mod p) mod n. It then assigns each element x of S to the bucket B; where i = hy(x).
As the outcome of the hashing function ranges from 0 to n — 1, there are n buckets. Then, for a
bucket B; containing b; > 0 elements, a storage space of size b? is allocated, a number kD e U’ is
chosen at random, and the second-level hash function h) (x) = (kx mod p) mod bi2 is defined
for items in B;. A first requirement is that }; bl.2 should be O(n) so that the method uses linear
space. The second requirement is that each k(! should be an injection for the respective bucket.
In other words, two different elements in B; should have different key values computed with the

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:4 J. Bertrand et al.

function hy (+). If the hash functions are from a universal family, then both of these requirements
can be met with high probability.

The FKS method constructs a representation of the given set by finding the values of k and
k(@) respecting the constraints. These values are found with random sampling and trials. That
is, the FKS method randomly chooses a k € U’ and computes the size of the buckets when the
first-level hash function uses k. If the summation }}; b? is smaller than 3n, then k is accepted, and
the method proceeds to the second level. Otherwise, another k is randomly sampled and tried. A
similar strategy is adopted for the hash functions in the second level. For the bucket B;, a random
k) € U’ is chosen, and the mapping defined by (k‘”x mod p) mod b? is tested to see if it is an
injection for the set of elements assigned to B;. If so, then that k@ is accepted, if not, then another
one is sampled and tried. Fredman et al. note that with the bound }}; b? < 3n, and the injection
requirement of b? space per bucket, one may end up testing many k and k® . Tohave a construction
time of O(n) in expectation, they suggest testing with }}; b < 5n and using 2b? space for each
bucket B;. Under these relaxations, at least one half of the potential k and k) values guarantee
that the two requirements are met. The bounds 3n and 5n given in the original paper can be shown
to be 2n and 4n, when a universal hash function family is used.

In the FKS method, the membership query for an element g € U’ can be answered in constant
time by following the construction of the data structure. First, the bucket containing g is found by
computing i = (kx mod p) mod n. If the bucket B; is empty, then g is not in S. If B; is not empty,
then the value £ = (k) x mod p) mod 2b? is computed, the element at location ¢ is compared with
@, and the result of the comparison is returned as the answer to the query. The comparison between
q and the element stored at the location ¢ is required as more than one element from U’ can map
to {—whereas this can happen for only one element from S.

3 A LEAN VARIANT OF FKS

We discuss our adaptation of the FKS method for the hyperedge queries. We first discuss a family
of hash functions for the two levels and show that the two requirements of having a total space of
O(n) and an injection for each bucket are met. We then propose two techniques for reducing the
space requirement of the proposed method.

3.1 The Hash Function and Its Properties

In a d-partite d-uniform hypergraph H = (V, E), the hyperedge set E is a set of d-tuples, which
we will represent for hyperedge queries. Let n denote the number of hyperedges, and p be a prime
number larger than n. Let U be the universe of all d-tuples of the form [xy, .. ., x4-1], where x; is
between 0 and p — 1; in other words, U = {0,...,p— 119 and ECU. A potential approach to adapt
the FKS for hyperedge queries is to convert d-tuples to unique integers by linearizing them. In this
approach, in the case d = 3 for example, [x, x1, x2] can be converted to xo + sy X (x1 + 51 X X3),
where s; corresponds to the size of dimension i; and a longer formula for higher d can be generated
similarly. Afterwards, the FKS method can be used without any modification. Such an approach has
limited applicability—the numbers get quickly too big for sparse tensors, as also noted by Kolda
and Hong [15]. That is why we use d-tuples in defining the hash functions. Furthermore, since
storing d-tuples in the buckets makes the storage requirement depend on d, we store the ids of the
hyperedges in the buckets, which are taken in the given order.

Let x, y be two elements of the universe U. We use x"y = Zflz_ol x;y; to denote the inner product
of the vectors corresponding to x and y. In the proposed approach, as in the FKS method, ak € U
is chosen for the first level, and the hash function h : U — {0,...,n — 1} is defined as h(x) =
(k" x mod p) mod n. Then, each hyperedge x € E is assigned to the bucket B; where i = h(x). We
again use b; to refer to the number of hyperedges from E that are mapped to B;.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:5

Lemma 3.1 below ensures that the linear space requirement can be met for any given set of
hyperedges. We give the proof in Appendix A for completeness, where we also explain why the
bound is 4n, instead of 3n as in the original FKS method.

LEMMA 3.1. For a given set E C U of n hyperedges, there is ak € U such that when (k' x mod
p) mod n is used as the first-level hash function, we have ¥~ b? < 4n.

Lemma 3.1 ensures the existence of a d-tuple resulting in a linear space, but does not specify
how frequent such d-tuples are in the universe. The following corollary, whose proof is in the
Appendix, expresses a relaxation of the requirement on k as done by Fredman et al. to yield many
candidates.

COROLLARY 3.2. Let E C U be a given set of n hyperedges. Then, for at least half of the potential
k € U, whenk is used in the first-level hash function, we have ¥/~ b? < 7n.

Thanks to Corollary 3.2, one needs a constant number of trials, in expectation, to find a k re-
specting the space requirement of 3,/ b? < 7n.

We next show that for each bucket B;, if we use a space of size b?, then we can map each element
to a unique position with a function of the form (k" x mod p) mod b?. The proof is given in the
Appendix for completeness.

LEmMMA 3.3. For each bucket B; with b; > 0 elements, there is ak’ € U such that the function
(k’Tx mod p) mod bl? is an injection for p > bl.z.

While the bound }; b? from Lemma 3.1 does not guarantee p > b?, this must hold in practice
for the original FKS and the proposed method to be efficient. A proposition below (Proposition 3.5)
shows that there are many nonempty buckets, suggesting that a large b; is unlikely for a random k.

As done by Fredman et al., one can relax the storage requirement of each bucket to have a
constant number of trials in expectation to find a k’ defining an injection. This is shown in the
following corollary, whose proof is in the Appendix.

COROLLARY 3.4. Let B; be a bucket with b; > 0 elements. For at least half of the d-tuplesk’ € U, it
holds that the function (k’"x mod p) mod 2b? defines an injection for the elements of B; for p > b?.

3.2 Reducing the Space Requirements

While the previous lemmas show that we can use the FKS method with d-tuples k and k() for each
bucket B;, there is a catch. For a bucket B;, we need a space of size d to store k) This results in a
space requirement of O(nd) over all buckets. The space requirement will thus be large when the
input tensor has a large number n of nonzeros or dimensions d.

An obvious way to reduce the space required to store the k{!s is to avoid creating such a d-tuple
for buckets with at most one element (those buckets B; with b; = 0 or b; = 1). As we discuss in
Proposition 3.5, one will still need, in expectation over all sets F € U of n hyperedges, a total of
Q(nd) space.

ProposITION 3.5. For a randomk # [0, ...,0] and a random set F with n hyperedges, the first-
level hash function using k creates at least n(1 — e~'**/P) nonempty buckets in expectation, where e
is the base of natural logarithm.

The proof of this proposition can be found in the Appendix.

To further reduce the memory requirements and obtain a lean variant of FKS for hyperedge
queries, we propose to share the second-level hash functions among the buckets. This can be
achieved by storing a set K of d-tuples and keeping a reference to one suitable element of K for
each bucket. The proposed variant of FKS is explained in Figure 1. We keep the first level the same

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:6 J. Bertrand et al.

:d/h

Fig. 1. In the proposed variant of FKS, the contents of a bucket B; depend on the number b; of hyperedges
assigned to it. If b; is 0, then nothing is stored for B;. If b; is 1, then the id of the hyperedge mapping to i is

stored. If b; is greater than 1, then the index of a suitable d-tuple from k¢ to k, in K is stored, along with a
space of size be to hold the ids of b; hyperedges assigned to B;.

as in the original FKS method and obtain a k in expected linear time that results in a suitable
bound on the memory utilization as highlighted in Corollary 3.2. On the second level, rather than
keeping a d-tuple per bucket, we keep a set K of d-tuples with cardinality |K| much smaller than
n. The set K is such that for each bucket B; with b; > 1, there is at least one d-tuple in K defining
an injection for the hyperedges in B;, and B; keeps a reference id to this tuple. The data structure
fksStorage holds necessary space for all buckets, one after another. The data structure fksOffset
holds the start of the storage space for each bucket. For an empty bucket B;, nothing is stored
and fksOffset[i] is nil; for a bucket B; with one hyperedge, only the id of that hyperedge is stored
in fksStorage and fksOffset[i] points to that position in fksStorage. For a bucket B; with b; > 1
elements, fksOffset[i] points to the start of B; in fksStorage. The space associated with B; is of size
2b? + 1 in which the id of a d-tuple in K is stored along with the ids of b; hyperedges at suitable
places.

We now discuss how to create the set K of tuples and bound the number of d-tuples we need
to store in K. As the buckets independently need d-tuples for hashing, a random sequence of d-
tuples generated for a bucket is also a random sequence of d-tuples for another one. With this
observation in mind let us fix a random sequence of the d-tuples in the universe U. When we need
arandom d-tuple for a bucket, we try the d-tuples in the fixed random order, until we find one. We
then include those d-tuples that were used by at least one bucket in K. Theorem 3.6 below shows
that the number of d-tuples in K is O(log, n) in the expectation.

THEOREM 3.6. The size of K generated with the above technique will be smaller than 1 + log, n in
expectation for a given set E of n hyperedges.

Proor. For each bucket, we know from Corollary 3.4 that at least half of the tuples from the
universe U defines an injection. For a given bucket B;, let X; be a random variable counting the

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:7

number of trials we did to find a suitable k"), where at the jth trial we consider the jth tuple from
the fixed random sequence. Then,

1
Pr(Xizt)SZ—tforalltandizo,...,n—l.

Let X;; be a random variable taking on value 1 if X; = ¢, and 0 otherwise. Then, the expected
number of buckets for which we did ¢ trials to find an injection is

n—1
n
E(Z Xi,t) T
i=0
by the linearity of expectation. For a given ¢, the probability that there is a bucket for which we
have found a second-level hash at the trial ¢ is

n—-1 n-1
Pr(X; = t for some i) = Pr(ZX,-,t > 1) < E(ZXU) < % s

i=0 i=0
by Markov’s inequality.
Let us define another random variable

Rg = max(X;) ,
1

which corresponds to the maximum number of trials required until a second-level hash function
has been defined for all buckets, and therefore describes the number of d-tuples in K.
We will bound the expectation of Rk to obtain the bound stated in the theorem. We first note

that
(o]
D7
t
t=r 2
n

or-1"

The bound obtained in Equation (1) is very large for small values of r. Indeed, when r is smaller
than log, n, 1 is a better bound on the probability. Therefore, we define a new random variable Y
that is equal to log, n if Rk < log, n and Rx otherwise. We will bound the expectation of Y. Since
E(Y) > E(Rg), the bound will also apply to the expectation of Rk and hence to the number of
tuples in K. We have

IA

Pr(Rgx > r) = Pr(X; > r for some i) < ZPr(X,- = t for some i)

t=r

1)

E(Y) =log, nPr(Rx < log,n) + Z Pr(Rx > r) <log,n + Z zrn_l ,
r=1+log, n r=1+log, n
by using the bound (1) and the fact that Pr(Rx < log, n) < 1. Since
DR
G 2r-1 7 glogyn = 7’
we obtain the result E(Rg) < E(Y) < 1 +log, n. O

We note that Theorem 3.6 can also be useful to understand how far from its average value the
number of elements in K can be. Indeed, we immediately deduce the following corollary from the
proof above.

COROLLARY 3.7. The probability that the number of d-tuples in K exceeds tlog, n + 1 is bounded
byn't.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:8 J. Bertrand et al.

Another more intuitive way of seeing the O(log, n) bound of Theorem 3.6 is as follows. A ran-
domly sampled k” € U defines an injection with probability more than 1/2 for a given bucket by
Corollary 3.4. If we try a randomly sampled k’ on all buckets, then we will have an injection for
half of the buckets in expectation. We can then randomly sample another d-tuple, which will again
define an injection for half of the remaining buckets in expectation. By continuing this way, we
see that O(log, n) tuples will thus be enough to define all injections, in expectation.

Based on Corollary 3.7, we suggest to create the set K to contain 2logn tuples at the outset.
In the off chance that those tuples are not enough to define an injection for each bucket, new
tuples can be created easily. The expected runtime of construction can then be bounded as O(nd).
This is so, since k can be found in expectation with two trials, where each trial is tested in O(nd)
time. Then O(2d log n) time is spent in creating K. By the intuitive explanation of Theorem 3.6, we
see that another O(nd) time is spent in perfectly hashing all buckets, leading to an overall O(nd)
runtime bound in expectation.

A query for the existence of a hyperedge q € U can be answered by first checking the size of
the bucket B; where i = (k' q mod p) mod n. If b; = 0, then q is not a hyperedge of the given
hypergraph. If b; = 1, then the query is answered by comparing q with the hyperedge whose
id is stored for B;. If b; > 1, then the associated d-tuple from K is retrieved as k), and ¢ =
(q"k mod p) mod 2b? is computed. If there is an id stored at the location ¢, then the query is
answered by comparing that hyperedge with q. If there is no id at the location ¢, then q is not in
the hypergraph. A query can thus be read and answered in O(d) time.

The space requirement can further be reduced by having more than n buckets; see the discussion
following the proof of Lemma 3.1 given in Appendix and also the original FKS method [10, Section
4]. The gist of the idea is to reduce the number of items in the buckets so that fksStorage would
need less total space. In the extreme case that we have n? buckets, fksStorage will just contain
n entries with a suitable k; however, this time fksOffset will be of size n?. However, with slightly
more buckets than hyperedges, reductions in the space requirements will be observable in practice.
Furthermore, with larger number of buckets than hyperedges, the number of buckets with at most
one hyperedge will increase and hence the construction time and query response time are likely
to reduce. In the experiments, we analyze this parameter and find around 2.4 X n buckets to result
in about the same space requirement when n buckets are used, while improving the construction
and query response time.

3.3 Further Discussions

3.3.1 Addressing General Hypergraphs. We focus on the d-partite, d-uniform hypergraphs as
this is a large class covering the requirements of the tensor decomposition application. The pro-
posed method is not limited to this class. We can apply the algorithms to any hypergraph, without
a requirement that the vertices belong to disjoint partitions or that the hyperedges are all of equal
size. Let H = (V,E) be a hypergraph and r be the maximum size of a hyperedge in E. Let us as-
sume that 0 is not a member of V. We now define a new hypergraph H" = (V’,E’) as follows.
The vertex set V' = JI2; V® where V() = V U {0} fori = 0,...,r — 1. The hyperedge set E’
contains a hyperedge e’ for each unique hyperedge e € E of the original hypergraph. To create
e’ from e, we first sort the vertices in e and use them in this order for the first |e| dimensions of
e’. For the dimensions |e|,...,r — 1, we append a 0 to e’ from the corresponding vertex partition
V® . The hypergraph H’ is therefore r-uniform and r-partite. Any query hyperedge q for H can be
converted similarly into a query hyperedge q’ for H’ by sorting its vertices, and adding the vertex
0 to q’ for all missing dimensions j = |ql,...,r — 1 so that q’ becomes of size r as well. A query q
posed on H can therefore be answered equivalently by the query q" on H'.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:9

The above transformation of padding queries and hyperedges with 0 for missing positions
should be done implicitly; otherwise, the runtime and space requirements can increase prohibi-
tively. In particular, when processing a hyperedge in H’, only the original vertices should be used
while computing inner products with the k vectors. If the hyperedges and queries are not sorted
at the outset, then one needs to sort them, in which case query response time can increase in
complexity.

3.3.2 Space Complexity. The proposed method strives to achieve worst case optimal query re-
sponse time on hypergraph data while maintaining the space requirement linear in the number n of
hyperedges. Other perfect hash functions deal with the bits-per-key complexity, which measures
the storage required to represent a minimum perfect hash function. The current state-of-the-art
MPHFs generally target less than 3 bits/element. We do not concern ourselves with this complexity
measure, as the motivating application stores the hyperedges in O(nd)-space to answer queries for
zeros of the tensor, and the yes answers are checked with respect to the input. While it is always
good to reduce the space requirement, the bits-per-key complexity is not deemed to be an impor-
tant aspect [18], and the query time is of utmost importance for the motivating application. To store
the hash functions of the proposed method, one at least needs to store k, the number of elements,
and the index of a d-tuple in K for each bucket with more than one element—one does not store the
ids of hyperedges in buckets, see Figure 1. Since the number of d-tuples in K is O(log, n), one needs
Q(log, log,(n)) bits to store the id of a d-tuple per bucket. That is, the bits-per-key complexity will
be Q(log, log,(n)) to store the ids of d-tuples per bucket. This quantity is greater than 4 even when
n = 10°, which is already much larger than the bits-per-key complexity of the current state-of-the-
art MPHFs. When this bit-complexity is too much, or when its implementation with standard data
types requires too much space, then methods with smaller memory requirement are preferable.

4 EXPERIMENTS

We compare the proposed algorithm called FKSlean with the following current state-of-the-art
hashing methods based on different approaches:

BBHash [18]: a minimal perfect hash function. It has a parameter y for which the original
paper suggests values 1, 2 and 5, where y = 1 optimizes space, y = 5 optimizes the lookup
time, and y = 2 is in between. We use BBHash with y = 1and y = 5.

RecSplit [9]: another minimal perfect hash function. It has two parameters (LEAF_SIZE,
bucket_size), where the configurations (8,100) and (5,5) are suggested in the original paper.
We use RecSplit with these two configurations.

PTHash [22]: the most recent minimal perfect hash function to the best of our knowledge,
whose recent implementation [21] also creates non-minimal hash functions for efficiency.
The original paper identifies four configurations that we use in our experiments: (1) C-C,
a = 0.99, ¢ = 7, which optimizes the lookup time; (2) D-D, a = 0.88, ¢ = 11, which optimizes
the construction time; (3) EF, @ = 0.99, ¢ = 6, which optimizes the space effectiveness of the
function; (4) D-D, a = 0.94, ¢ = 7, which optimizes the general trade-off. We use the version
that creates non-minimal hash functions.

FastFilter: This method uses one of the latest approximate set membership filters called 3-wise
XOR binary fuse filters [13] to filter out “no” answers and then needs to call one of the exact
hashing methods for the “yes” answers.

We also experiment with a method that we call HashalaFKS.

HashalaFKS: the standard average-case constant time hashing method available in the
C++ standard library as unordered_map; we propose to use the first-level hash function

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:10 J. Bertrand et al.

(k"x mod p) mod n of FKSlean with it. There is no second-level hashing in HashalaFKS.
The tuple k used for HashalaFKS enjoys the same properties as that of FKSlean in reducing
the collisions (the number of hyperedges per bucket). We experiment with HashalaFKS as
its core is available in the standard library, the proposed hash function is a good one, and
one can easily deploy it.

In a preliminary set of experiments, we also tried a sort-based method, as it was used before
in the original tensor decomposition application [15]. This method sorts the hyperedges in linear
time using radix sort [4, Section 8.3], and then uses a binary search scheme to answer queries. We
observed that the query time in this case was an order of magnitude larger than that of FKSlean
on a large set of instances that we use in this section, and hence deemed it too slow. We thus
do not give results with it. We note that comparison-based search can be improved [14], these
nonetheless will be inferior to constant time methods that we use in our experiments; especially
since sorting and searching will need to work on d-dimensional data. To use the hashing methods
BBHash, RecSplit, and PTHash in our context, we created the corresponding hash functions on the
n hyperedges of a given hypergraph, and then used the resulting mapping function to uniquely
store the id of each hyperedge in an array of suitable size. The resulting approaches are called
uBBH, uRecSplit, and uPTHash, respectively, where the configurations are specified with (1) and
(5) for BBHash, (8, 100) and (5, 5) for RecSplit, and (1)-(4) for PTHash. All codes are compiled with
g++ version 9.2 with options -03, -std=c++17 -march=native as used in PTHash. We carry out
the experiments on a machine having Xeon(R) CPU E7-8890 v4 with a clock-speed of 2.20GHz. All
codes are available at https://gitlab.inria.fr/bora-ucar/hedge-queries.

We first describe the data set, implementation, and the measurement details in the next two
subsections. We then determine the extension parameter for FKSlean in Section 4.3. Using the
determined parameter, in Section 4.4, we compare FKSlean with the other methods listed at the
beginning of this section. We then investigate the space requirement of FKSlean in Section 4.5,
and finally give a summary of experimental results in Section 4.6.

4.1 Data Set

We present experiments both on real-life data corresponding to matrices and tensors, and synthetic
data. We use the real-life data to compare the different algorithms, and use the synthetic data to
investigate the behavior of different methods with respect to different problem parameters.

We take tensors from FROSTT [26], and build the associated d-uniform d-partite hypergraphs.
The properties of the hypergraphs are shown in Table 1. The hypergraphs in the table are sorted
in decreasing order of the number n of hyperedges, first for matrices, then for tensors. The tensors
delicious-3d and delicious-4d contain the same data, with different dimensions. It turns out
that the hyperedges are unique with or without the fourth dimension. Therefore, both hypergraphs
have the same number of hyperedges. A similar observation is made concerning flickr-+d, while
the number of hyperedges in vast-2015-mc1-*d differ only by 91. We also experiment with three
bipartite graphs that correspond to real-life matrices available in The SuiteSparse Matrix Collec-
tion [5]; the original files from this collection list nonzeros that are on or below the main diagonal,
which we use as the hyperedges. These are listed in the table with d = 2. These tensors and ma-
trices arise in diverse real-world applications; ranging from natural language learning (nell-*),
to e-mail data (sender-receiver-word-date in enron), and protein graphs (kmer_A2a) to social net-
works (com-0Orkut).

The synthetic data are built using a model similar to the well-known Erdés-Renyi random graph
model. Given a desired number d of parts, a desired number s of vertices in each part, and a desired
number n of hyperedges, the model R(d, s, n) creates a random hypergraph as follows. First, n

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

https://gitlab.inria.fr/bora-ucar/hedge-queries

Table 1. Real-life Test Data Corresponding to the Hypergraphs Used in the Experiments

Algorithms and Data Structures for Hyperedge Queries

1.13:11

name d size in each dimension n

kmer_A2a 2 170,728,175 x170,728,175 180,292,586

queen_4147 2 4,147,110 X 4,147,110 166,823,197

com-Orkut 2 3,072,441 X 3,072,441 117,185,083

nell-1 3 2,902,330 X 2,143,368 X 143,599,552
25,495,389

delicious-3d 3 532,924 X 17,262,471 X 140,126,181
2,480,308

delicious-4d 4 532,924 X 17,262,471 X 140,126,181
2,480,308 X 1,443

flickr-3d 3 319,686 X 28,153,045 X 112,890,310
1,607,191

flickr-4d 4 319,686 X 28,153,045 X 112,890,310
1,607,191 x 731

nell-2 3 12,092 X 9,184 x 28,818 76,879,419

enron 4 6,066 X 5,699 X 244,268 X 1,176 54,202,099

vast-2015-mc1-3d 3 165,427 X11,374 X 2 26,021,854

vast-2015-mc1-5d 5 165,427 X 11,374 X 2 X 100 X 89 26,021,945

chicago_crime 4 6,186 X 24 X 77 X 32 5,330,673

uber 4 183 X24 X 1,140 x 1,717 3,309,490

Ibnl-network 5 1,605 X 4,198 X 1,631 X 4,209 X 1,698,825
868,131

hyperedges are created by sampling their vertices in the ith part uniformly at random from the
range [0, s). Then, duplicate hyperedges are discarded. Note that the number of hyperedges can
be slightly smaller than n, and that the maximum element in a part can be different from (s — 1).

4.2 Implementation and Measurement Details

To use BBHash, PTHash, and RecSplit, we convert each input into 64-bit integers using Spooky-
HashV2. This function is also used by RecSplit implementation to handle keys different from 128-
bit strings. We call SpookyHashV2 on each hyperedge by casting (no copy) the hyperedge to char
*. We modified RecSplit to use such 64-bit integers as input (instead of bit-strings of length 128
bits). We use two arrays to implement FKSlean, as shown in Figure 1. Here, fksStorage is a con-
tiguous array for storing all buckets one after another; fksOffset is an array of size (n + 1), and
fksOffset[i] stores the start of bucket B;’s storage in fksStorage.

We use fastmod library [17] for all (- mod n) operations, and fast modulo operations with
Mersenne primes [27] to compute (- mod p) for p = 23! — 1; one can also use the fastmod library
for efficiency in case this p is not large enough. For the mod 2b? operations, we use the standard
modulo operator % in C++. For reading the tensors from the disk, we use PIGO [11].

The construction time reported for FKSlean includes all the steps: finding the first-level hash
satisfying Lemma 3.1 or Corollary 3.2, allocating fksOffset and fksStorage, building the set K
of 2log(n) d-tuples, and setting up the data structure as shown in Figure 1.

We report the average of five runs in all measurements per hypergraph. A number q of queries
are generated by mixing a set of existing hyperedges and a set of random hyperedges using a
parameter t, called hit-ratio. First [X g] hyperedges from the given hypergraph are chosen uni-
formly at random; then the remaining queries are generated by setting their ith coordinate with

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:12 J. Bertrand et al.

24
1.57\‘\‘\;——;*1_1__’_.

M

30

(Total storage) / n
w
&
Construction Time [s]
&

Query Response Time [s]

1 12515175 2 22525275 3 32535375 4 :‘l]‘251‘51‘75 % 2‘252‘52‘75 ; 3‘253‘53‘75 4‘! ‘1 1‘251‘51‘75 2‘ 2‘252‘52‘75 ; 3‘253‘53‘75 A‘
P [} P
(a) Total storage requirement (b) Construction time (c) Query response time

Fig. 2. Analysis of the extension parameter p of FKSlean on nell-1.

5.5
5 |
4.5 -

50 2.5

AS’M “
40 4
15

(Total storage) / n
w
L
Construction Time [s]
&

Query Response Time [s]

T T
1 12515175 2 22525275 3 32535375 4 1 12515175 2 22525275 3 3.2535375 4 1 12515175 2 22525275 3 32535375 4
P P 3

(a) Total storage requirement (b) Construction time (c) Query response time

Fig. 3. Analysis of the extension parameter p of FKSlean on kmer_A2a.

rand()%s[i] where s[i] is the size of the tensor in dimension i. At each of the five repetitions of
the experiments, the same set of queries is used. We use t = 0.5 for all experiments below, unless
otherwise stated. The time to generate the queries is not included in the query response time that
we report.

4.3 Determining the Extension Parameter for FKSlean

As described in Section 3.2, the total storage requirement of FKSlean for the arrays fksOffset and
fksStorage is contingent on the number of buckets. The higher the number of buckets, the less
storage is needed for fksStorage. As an extreme, if we increase the number of buckets to n?, then
each bucket can have at most one element with a suitable k. Furthermore, the construction time
and the query time are also affected: with an increased number of buckets, there will be more
buckets with at most one element, and hence the first-level hashing will suffice in more cases.

We study the impact of increasing the number of buckets on the storage requirement, and the
performance of the construction and the query phases of FKSlean. Figures 2 and 3 show the effect
of varying the number of buckets for two representative inputs from our test-suite. We set the
number of buckets to pn, where p > 1. We call p the extension parameter. As we can observe from
Figures 2(a) and 3(a), with increase in p, the total storage requirement of FKSlean initially decreases
up to a point and then it increases. We also observe from Figures 2(b) and 3(b) that the construction
time monotonically decreases with increase in p. Similarly, the query response time also goes
down with increase in p, as we observe in plots Figures 2(c) and 3(c). We perform this study on the
synthetic data set of random hypergraphs as well, and observe similar trends; especially the total
storage requirements were almost always identical to the plots in Figures 2(a) and 3(a).

In an initial study, for p = 1.0, the storage requirement of FKSlean was observed to be slightly
less than 5n, which are also seen in Figures 2(a) and 3(a). Based on the empirical evidence shown
in Figures 2 and 3, we identify p = 2.4 as a sweet-spot for FKSlean. Fixing the number of buckets
to 2.4n reduces the total storage requirement below 5n and reduces the construction and query

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:13

Table 2. Construction Time for the Ten Methods on Real-life Tensors

uRecSplit uBBH uPTHash
name HashalaFKS (s) | (8,100) (5,5) | (1) ()| (1) (2) (3) (4) | FKSlean
kmer_A2a 83.66 5,55 1.39 316 154|185 1.17 253 1.53 0.49
queen_4147 56.34 7.59 1.70 | 3.58 1.82 | 224 138 3.15 1.78 0.72
com-Orkut 51.74 571 1.25| 249 1.22 | 154 1.00 223 1.28 0.56
nell-1 68.89 530 1.22 | 259 134|170 1.05 210 1.20 0.47
delicious-3d 64.71 549 122|249 130|159 1.02 222 1.32 0.55
delicious-4d 65.68 547 1.23 | 255 1.27 | 1.60 1.01 2.23 1.29 0.55
flickr-3d 51.59 552 1.19| 245 118|156 0.99 222 1.27 0.55
flickr-4d 50.08 5.69 1.21 | 241 1.19 | 1.58 1.00 2.22 1.30 0.53
nell-2 34.05 5,66 1.15| 241 1.00 | 148 097 216 1.25 0.57
enron 24.17 5.64 1.17 | 247 087 | 1.47 0.97 203 1.22 0.58
vast-2015-mc1-3d 10.68 6.12 1.17 | 256 0.82 | 1.44 096 1.92 1.20 0.64
vast-2015-mc1-5d 11.64 555 1.09 | 227 0.76 | 1.27 0.83 1.74 1.04 0.60
chicago-crime 1.63 8.13 1.44 |3.20 097 | 147 1.10 190 1.29 0.36
uber 0.77 10.45 1.87 | 411 1.26 | 1.80 1.40 2.29 1.60 0.42
Ibnl-network 0.25 16.45 2.85 | 6.25 198 | 253 2.08 3.12 2.29 0.63
geo-mean 6.57 136 | 2.88 1.19 | 1.65 1.10 2.24 137 0.54

The absolute runtime of HashalaFKS is given in seconds. The construction time of the other methods are normalized
with respect to that of HashalaFKS. Lower values imply better performance.

time compared to that with n buckets. In the remainder of the experiments, we set the number of
buckets to 2.4n for FKSlean unless otherwise stated.

4.4 Comparisons

4.4.1 With Exact Hashing Methods. Table 2 presents the construction time of the ten meth-
ods on the real-life hypergraphs from Table 1. For every hypergraph, the absolute runtime of
HashalaFKS is given in seconds, while the runtime of the other methods are normalized with
respect to HashalaFKS. The last row of this table gives the geometric mean of the ratios of con-
struction times to that of HashalaFKS. As seen in this table, on all inputs, the construction time
of all methods but FKSlean are longer than that of HashalaFKS—as indicated by values greater
than 1 for all the methods except FKSlean. FKSlean’s construction time is 0.54 of HashalaFKS’s on
average. FKSlean is the fastest method followed by uPTHash-(2).

Table 3 presents the query response times for the ten methods to answer 107 queries on hyper-
graphs from Table 1. In this table, the absolute query response time of HashalaFKS is given in sec-
onds. The response time of the other methods are normalized with respect to that of HashalaFKS.
Geometric mean of the ratios of the response time of different methods to that of HashalaFKS
are given in the last row. As seen in this table, among all methods, HashalaFKS’s query response
is the largest, in general. FKSlean has the fastest query response on all the inputs, followed by
uPTHash-(1) and uPTHash-(4). FKSlean is nearly four times faster than HashalaFKS on average,
and is nearly twice as fast, on average, compared to the next best performing methods.

To investigate how the methods behave with respect to the number of hyperedges and the
dimension, we present further experiments with the random hypergraph family R(d,s,n). In
the first set of experiments, we investigate how the runtime of different methods change with the
number n of hyperedges. To do so, we compare all methods on the random hypergraphs R(d, s, n)
with d = 4, s = 10°, and n taking different values in the range 10° to 5 X 10%. Ideally, we expect
the construction time to increase linearly with the increasing n, and the query response time to
remain nearly constant, independent of n, for all the methods.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:14 J. Bertrand et al.

Table 3. Query Response Time for 107 Queries with the Ten Methods

uRecSplit uBBH uPTHash
name HashalaFKS (s) | (8,100) (5,5) | (1) (5)| (1) (2) (3) (4) | FKSlean
kmer_A2a 6.93 0.76 0.73] 0.84 0.81 | 044 052 0.54 047 0.21
queen_4147 6.35 0.73 0.72 | 0.80 0.77 | 0.46 0.53 0.56 0.48 0.24
com-Orkut 6.49 0.69 0.70 | 0.73 0.73 | 0.45 0.51 0.54 0.46 0.23
nell-1 6.85 0.69 0.69 | 0.75 0.75] 0.50 0.51 0.54 0.46 0.24
delicious-3d 6.69 0.71 0.69 | 0.76 0.74 | 0.48 0.53 0.57 0.49 0.25
delicious-4d 6.81 0.74 0.77 | 0.81 0.78 | 0.63 0.69 0.65 0.64 0.28
flickr-3d 6.65 0.68 0.67 | 0.72 0.70 | 0.48 0.52 0.56 0.49 0.24
flickr-4d 6.49 0.72 0.74 | 0.77 0.76 | 0.63 0.69 0.65 0.64 0.28
nell-2 6.52 0.67 0.63 | 0.69 0.69 | 0.48 0.52 0.56 0.49 0.24
enron 6.60 0.69 0.68 | 0.70 0.69 | 0.59 0.63 0.62 0.60 0.28
vast-2015-mc1-3d 6.53 0.61 0.57 | 0.63 0.56 | 0.46 0.49 0.53 047 0.24
vast-2015-mc1-5d 6.71 0.63 0.61 | 0.65 0.60 | 0.52 0.56 0.58 0.53 0.30
chicago-crime 5.32 0.52 0.50 | 0.56 0.52 | 0.39 043 0.45 0.39 0.27
uber 4.75 0.48 0.44 | 0.51 0.52] 032 036 0.39 0.33 0.25
Ibnl-network 3.67 0.54 0.48 | 0.58 0.60 | 0.34 039 0.41 0.34 0.23
geo-mean 0.65 0.63 | 0.69 0.68 | 0.47 0.52 0.54 0.48 0.25

For HashalaFKS, its absolute query response time is given in seconds. The response time of the other methods are
normalized with respect to that of HashalaFKS. Lower values imply better performance.

URecSplit(8,100) —B— UBBH(1) - -% - UPTHash(3) - -O -
uPTHash(1) —w%— uPTHash(4) —+— uRecSplit(5,5) —il—
'a UBBH(5) - -@ - uPTHash(2) - -4 -
—_— HashalaFKS —%— FKSlean - -4 -
103
£
= 102 d
c 10
e
1
o 10
>
-
-lJ; 100 4
c
S 1
Q10"
102 - T T T T \
106 5x10 107 5x107 108 5x108

n

Fig. 4. The construction time of all methods on random hypergraphs in seconds. The x- and y-axes are in
log-scale. At n = 5 x 108, the plots correspond to, from top to bottom, the methods as listed in the legend
(from left to right, top to bottom).

The plot for the construction times of the different methods on the random hypergraphs with
10° < n < 5%10® is shown in Figure 4. The x-axis the and y-axis are both in the log-scale. From the
figure, we observe that FKSlean consistently has the shortest construction time compared to the
other methods on random hypergraphs as before. We further observe that for most of the methods
the construction time varies linearly with n, as expected in theory. For instance, for uBBH-(1) there
is a ten-fold increase in the construction time (1 to 10 s) as n goes from 10° to 10”. For HashalaFKS
and FKSlean, the construction time does not always increase linearly with n, but is largely linear
for the most part. For instance, for FKSlean, after n = 107 the construction time increases nearly
linearly with n.

We next compare the query response times of different methods on the R(d, s, n) hypergraphs
family with the same parameters as before. Figure 5 presents the results for the query response

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:15

—_ HashalaFKS —¥%— uRecSplit(5,5) —il— uBBH(1) - -% -
) uRecSplit(8,100) —B— uBBH(5) - -@ - uPTHash(2) - -& -
— uPTHash(3) - -G - uPTHash(4) —+—

[0} uPTHash(l) —w— FKSlean - -4 -

E

l_

()

(]

C

o

o

wn

[0

o4

>

_

()

=}

o

0 — T T T T T
106 5x10% 107 5x107 108 5x108
n

Fig. 5. The response time for 107 queries, in seconds, of all methods on the random hypergraphs. The x-axis
is in log-scale. At n = 5x 102, the plots correspond to, from top to bottom, the methods as listed in the legend
(from left to right, top to bottom).

time; the x-axis is in the log-scale. From the figure, we reconfirm that FKSlean is consistently
considerably faster than the others for all values of n. We also see that the query response time
of all methods increases with the increasing number of hyperedges. This is because for larger n,
the internal data structures take up more memory. As a result, the random accesses in the data
structures increase the overall look up time.

We next investigate the behavior of the methods under study with respect to d. For this analysis,
we pick HashalaFKS, uRecSplit-(5,5), uPTHash-(2), uPTHash-(4), uBBH-(5), and FKSlean, since
these methods have good performance so far. We analyse the performance of these methods in
both the construction and the query phases. Figure 6(a) and 6(b) show the construction and query
response time of these methods on the random hypergraphs R(d, s, n), where d = {4, 8, 16},s = 100,
and n = 2 X 10”. We see in Figure 6(a) that the construction time of FKSlean is the least of all the
remaining methods for all values of d, as before. We further observe that the construction time of
uRecSplit-(5,5), uPTHash-(2), uPTHash-(4), and uBBH-(5) are very stable with the increasing value
of d. This is because all these methods first map the input to a 64-bit integer before proceeding
with the computation. As a result, the increase in the dimensions does not affect the performance
of these methods after this mapping. However, we observe that for HashalaFKS and FKSlean, the
construction time increases with the increasing d. This is because for these methods, the work done
per hyperedge increases with the increasing d. Figure 6(b) shows the query response time of the six
methods on 107 queries. The query response time of FKSlean is the shortest for all values of d. Like
their construction times, the query response times of uRecSplit-(5,5), uPTHash-(2), uPTHash-(4),
and uBBH-(5), are stable with increasing d. Furthermore, the query response time of HashalaFKS
and FKSlean increase with the increasing d. This is again because of the increase in the work done
per query with the increase in d.

4.4.2 FKSlean vs FastFilter. In this section, we compare FKSlean with FastFilter. FastFilter
method uses 3-wise XOR binary fuse filters first, and for all the “yes” answers it calls FKSlean (with
p = 2.4), since this method is identified as the fastest in the previous subsection. To use FastFilter,
we again use SpookyHashV2.

We compare FastFilter with two different variants of FKSlean—with p = 1.0 and p = 2.4.
Figure 7 shows the comparison of query response times of FastFilter and FKSlean, for 107 queries,
on two large inputs, with varying hit ratios. We observe that for both nell-1 (Figure 7(a)) and

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:16

HashalaFKS —¥—

—_—

uRecSplit(5,5) —ll—

UPTHash(4)
FKSlean - -/ -

J. Bertrand et al.

HashalaFKS —¥—
UBBH(5) - @ -

UPTHash(2) - -& -
FKSlean - -/ -

uRecsSplit(5,5) —ll—

UPTHash(2) - -4 - UBBH(5) - @ - o UPTHash(4) —+—
2 [}
] £
£ F
= b
c
S S
S &
2)
ﬁ -4
c Fa
Q]
O =]
4 A o
T T T T T T
4 8 16 4 8 16
d d

(a) Construction time

(b) Query response time

Fig. 6. The construction time and the query response time for 107 queries, in seconds, of six methods in
hypergraphs from the family R(d,s,n) for d = {4,8,16}, s = 10°, and n = 2 x 107. At d = 16, the plots
correspond to, from top to bottom, the methods as listed in the legends (from left to right, top to bottom).

FastFilter - @ - FKSlean(p=1.0) —%— FKSlean(p=2.4) - - FastFilter - @ - FKSlean(p=1.0) —%— FKSlean(p=2.4) - 4 -

Query Response Time [s]

T T T T T
0 0.1 02 03 04 05 06 0.7 08 09 1

hit-ratio

(a) nell-1

Query Response Time [s]

T T T T T
0O 01 02 03 04 05 06 0.7 0.8 09
hit-ratio

(b) kmer_A2a

=

Fig. 7. Comparison of query response times of FKSlean and FastFilter for 107 queries on two instances.

kmer_A2a (Figure 7(b)), the query response time of FKSlean (with p = 2.4) is lower than FastFilter
for all hit-ratios. However, the query response time of FKSlean (with p = 1.0) is higher than that
of FastFilter till the hit-ratio reaches 0.6; thereafter, the former has a lower query response time.

We further zoom-in on the performance of FastFilter and observe that the lookup using 3-wise
XOR binary fuse filters takes up a significant chunk of the total query response time. For instance,
for nell-1, the 3-wise XOR binary fuse filters lookup takes 0.45 s of the total query response time of
0.93 s, for hit-ratio t = 0. For kmer_A2a, the 3-wise XOR binary fuse filters lookup takes 0.47 s of
the total query response time of 0.92 s, for hit-ratio t = 0.

We next compare the construction times of FKSlean (with p = 2.4) and FastFilter. The con-
struction time of FastFilter is always more than that of FKSlean. This is expected, since FastFilter
constructs 3-wise XOR binary fuse filters and FKSlean data structure. We look closely at the time
spent in the construction phase of the 3-wise XOR binary fuse filters and FKSlean. We observe that
for nell-1, the total construction time for the FastFilter is 52.80 seconds. Of this, 21.73 s are spent
in the construction of the 3-wise XOR binary fuse filters, while 31.07 s are spent in constructing the
FKSlean data structure. We further observe that for kmer_A2a, the total construction time of Fast-
Filter is 65.63 s. Of this, 25.16 s are spent in the construction of the 3-wise XOR binary fuse filters,
while 40.47 s are spent in constructing the FKSlean data structure. In general, across all the inputs,
we find that constructing 3-wise XOR binary fuse filters takes at least 60% of the construction time
of the FKSlean, which attests the efficiency of FKSlean.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:17

Table 4. Storage Requirement of FKSlean for fksOffset and fksStorage Arrays, Normalized by n

H1 H2 | H3| H4| H5| H6 | H7 | H8| HO9 | H10| H11 | H12 | H13 | H14 | H15
473 | 470 | 4.74 | 4.74 | 4.74 | 474 | 4.73 | 4.73 | 4.74 | 473 | 4.73 | 473 | 475 | 4.51 | 4.65
The hypergraphs are labeled Hi, for i = 1, .. ., 15 and are given in the same order as Table 1.

4.5 Storage Requirement of FKSlean

We now look at the storage requirement of FKSlean, and see how the theoretical properties shown
in Lemma 3.1 and Proposition 3.5 compare with the results in practice. Table 4 shows the storage
requirement of FKSlean for the arrays fksOffset and fksStorage for the input tensors from Table 1.
The storage requirement, computed in terms of the number of cells of the two arrays, is normalized
by the number n of hyperedges for each input data. From the table, we observe that the storage
requirement of FKSlean is always comfortably less than 5n for all the inputs. The geometric mean
storage requirement of FKSlean across all the input tensors is 4.71n.

4.6 Summary of Experimental Observations

We summarize the findings of our experiments. Our extensive comparative study of the different
methods shows that among all the methods, FKSlean is always the best performing method—
it has the least construction time, as well as, the least query response time on all the real-life,
and synthetic inputs. uPTHash is the next best method among the exact perfect hashing methods
considered, both in construction and query response. However, we note that among the four
variants of uPTHash, the same variant is not always the fastest in both construction and query.
For instance, among the different variants of PTHash, uPTHash-(2) has the least construction time
on average (cf. Table 2). However, uPTHash-(1) has the least query response time on average (cf.
Table 3). Thus, the choice of the uPTHash variant needs to factor in the resulting trade-off
between the construction time and the query response time.

The construction time of all exact methods varies nearly linearly with the number n of hyper-
edges (cf. Figure 4). The query response time of all methods increases gradually with increasing
n (cf. Figure 5). The construction time and the query response time of uRecSplit, uPTHash, and
uBBH are unaffected by the dimension of the input hypergraphs. However, the performance of
HashalaFKS and FKSlean depends on the dimension of the input data (cf. Figures 6(a) and 6(b)).
Next, FKSlean (with p = 2.4) has a better query response than FastFilter for all hit-ratios (cf.
Figure 7). Finally, HashalaFKS’s construction time is lower than all perfect hashing methods but
FKSlean. However, its query response time is the largest among all the methods under study.
Notwithstanding its inferior query response time, an advantage HashalaFKS offers is simplicity
and the ease of use. To use HashalaFKS, one just needs to implement routines for determining
a prime number p > n and for computing (k’x mod p) mod n. The unordered_map from C++
standard library takes care of the rest.

We note that the way the proposed FKSlean method handles the hyperedges natively makes a
difference. To use BBHash, RecSplit, PTHash, and 3-wise XOR binary fuse filters one has to quickly
convert the input data to 64-bit integers, or map the input data to a smaller universe (which is
called universe reduction [27]). While this reduction/conversion does not take much time with the
common libraries used, such as SpookyHashV2, it is not negligible. This is so even for FastFilter,
as the proposed FKSlean (with the extension parameter p = 2.4) was demonstrated to be faster
in query response. Apart from the overhead incurred during the universe reduction, there is also
a theoretical issue associated with the worst case optimal hashing methods. Such reductions can
create duplicate keys with a very small probability. In the presence of duplicate keys, the proposed
FKSlean and other mentioned methods will have infinite loops unless the codes are modified to
guard against the duplicates.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:18 J. Bertrand et al.

While FKSlean exhibits a superior performance than the other methods, it takes up more mem-
ory than the minimal and non-minimal perfect hashing methods considered in the experiments.
On average FKSlean’s storage requirement is 4.71n (cf. Table 4) unsigned integers (or the id type).

5 CONCLUSION

We investigated the problem of answering queries about the existence of a given hyperedge in
a given hypergraph, with a special focus on d-partite, d-uniform hypergraphs arising in a tensor
decomposition application. We proposed a perfect hashing method called FKSlean based on a well-
known approach [10]. FKSlean has provably smaller space requirements than a direct adaptation
of the original approach, thanks to the reuse of hash functions. Experimental results demonstrated
in practice that the space requirement is in fact less than 5n plus an additional O(d log, n) term for
storing the shared hash functions. We compared FKSlean with the methods using the current state-
of-the-art MPHFs, approximate set membership filters, and the unordered_map from C++ standard
library equipped with the first-level hash function used by FKSlean. Experiments on real-life and
synthetic data showed that FKSlean achieves the shortest query response time among all alterna-
tives while also having the least construction time of all. We have addressed the parallelization of
the construction phase of FKSlean recently [25].

We have three lines of future work. On the application of interest with tensors, we need an
implementation of the stochastic gradient method in an efficient library (instead of in Matlab) to
test the effects of the proposed method in that particular application. On the more algorithmic front,
we plan to address the dynamic case where hyperedges may get inserted or deleted. A suitable
starting point is provided by Dietzfelbinger and others [6]. On the theoretical side, we observed
that for any randomly chosen d-tuple k in the first-level hashing, the quantity }}; b? was always
comfortably smaller than the upper bound we have shown. Can a tighter upper bound be shown
theoretically?

APPENDIX
A OMITTED PROOFS

We give the omitted proofs from Section 3. For convenience, we repeat the body of the lemmas
and corollaries.

We start with Lemma 3.1 repeated below. Its proof follows closely the original proof by Fredman
et al. and is given for completeness. After the proof, we explain why the upper bound is higher
than that of the original theorem of Fredman et al.

» Restatement of Lemma 3.1: For a given set E C U of n hyperedges, there is a k € U such that
when (k”x mod p) mod n is used as the first-level hash function, we have Y,/ b? < 4n.

Proor. For a given k, let blgk) denote the number of hyperedges in E having the same hash value

i = (kx mod p) mod n. The number of two-element subsets {x y} of E with the same hash value
. b® . bR BM-1) —1 BP0 .
i is therefore (:) that is — . We will compute Y ci T so that we can obtain
the average number of two-element subsets of E with the same hash value over all potential k
K k')
tuples. As there is at least one k’ for which the corresponding sum Y7, G 2(D
than the average, we will use that k” to attain the bound stated in the lemma.

We first observe that

(k)

ZZ Z Kk e U : xmodp) modn:(kTymodp) mod n}|, (2)

keU i=0 x,y€E
X#FY

is no larger

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:19

as the right-hand side counts the total number of times any two different hyperedges x, y of E have
the same value for hash value over allk € U.
We will bound the right-hand side of Equation (2) from above. For this, we need a bound on the
number of different k for which any x,y € E give the same value
(k"x mod p) mod n = (k”y mod p) mod n. (3)

In other words, we want to count the number of different k for which we have

(ka—kTy) mod p € {0, +n,+2n,...,+ [p— 1J n} . (4)

n
Since x # y, there is at least one dimension 0 < ¢ < d such that x; # y,. Let us arbitrarily pick
one such ¢ and write

ke(xe —ye) + Z kj(x; - yj)) mod p € {0, +n,+2n,...,+ [p " lJ n} . (5)
Jj#l

Note that the number of alternatives in the right-hand side of Equation (5) is less than 271’ +1. Since
we treat each pair X,y once, we can assume xy > y, without loss of generality. Let us take a value
v from the right-hand side of Equation (5) and fix (k¢ (x¢ — y¢) + X j2¢ kj(x; — y;)) mod p = v. We
will count the number of k tuples for which this equality holds. Then, multiplying with the upper
bound on the number of elements in the right-hand side, 27‘0 + 1, will give the total number of times
any pair x,y € E satisfies Equation (3).

At Equation (5), we can freely set any k; for j # £, and k, must then be chosen accordingly with
these selections to make the equation hold. Because p is prime, for each distinct configuration of
the k; values for j # ¢, there is a unique value of k, that makes Equation (5) hold. In other words,
for any value in the right-hand side of Equation (4), there are p®~! different k tuples, which are
formed by considering all different p values for each k; for j # €.

As there are no more than 27[’ + 1 different right-hand side values in Equation (4), and for each
one we have at most p¢~! different k tuples satisfying Equation (3), we obtain an upper bound on
the right-hand side of Equation (2) as

%\ -1

Z l{k € U : (k"x mod p) mod n = (k’y mod p) mod n}| < p®- (—+1) 5 ,
n

X,yES
X#y
. th n(n—1) .
simce ere are —5 palrs X,Yy.

Combining with the left-hand side of Equation (2), we see that
Ly b(k)

3 3w (R) M

keU i=0

50 0
Since there are p? different k, for at least one of them the inner sum > %

larger than the average. That is,

should be no

=l p®p® 1) _12p+nn(m-1)

< , (6)
= 2 p n 2
for a k. Let k’ denote the tuple attaining that bound. Then,
n—1 n—1
K) 5 (K K

b - b <3(n-1), (7)

i=0 i=0
as n < p. Since 3,77, 1 b(= = n, we obtain the bound stated in the lemma. O

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:20 J. Bertrand et al.

In the original FKS method, we have scalar values. Therefore, the equivalent of Equation (4) is

-1
k(x—y)modpe{O,i-n,iZn,...,ilp Jn}

n

Since p is prime and both k and x — y are less than p, the equality k(x —y) mod p = 0 cannot hold,
and the set on the right-hand side is {+n, £2n, ... Lp In}. This difference affects the upper
bound, as obtained above.

Consider now that we have n’ buckets with n < n” < p. In this case, the first level hashing will
use (- mod p) mod n’ to hash the hyperedges, and thus there will be i—‘f,’ +1 different right-hand side
values in Equation (4) Following through the proof above, we see that the upper bound in Equa-
tion (7) reduces to 3% -7 (n — 1). Thus, the total space requirement of individual buckets (fksStorage
in Figure 1) reduces and the space requirements for holding the buckets (fksOffset in Figure 1)
increases.

» Restatement of Corollary 3.2: Let E C U be a given set of n hyperedges. Then, for at least
half of the potential k € U, when k is used in the first level hash function, we have Y,/ b? < 7n.

M p® 1)

2
Then, by Equation (6) and the fact that p > n, we have E(X) < 3@. By Markov’s inequality,
Pr(X > 3(n-1)) < S]E:flxi), and hence Pr(X > 3n) < % Therefore, we have Pr(X < 3n) > %,
W (0 _

and hence for at least half of the randomly chosen k, we have }; b (bzi D < 3n. The event that
Y.i b? < 7n is identical to the event 2X + n < 7n, and hence holds with probability no smaller than
1/2. Therefore, at least half of k € U satisfies the bound of the corollary. m]

Proor. Let X be the random variable representing > ; when we randomly choose k.

» Restatement of Lemma 3.3: For each bucket B; with b; > 0 elements, there is ak’ € U such
that the function (k’”x mod p) mod b? is an injection for p > b?.

Proor. The proof follows the same approach used in proving Lemma 3.1. There are two differ-
ences: here we have at most 2| 2 77 L l+1 potential values for a pair to have an equal hash value (the

equivalent of Equation (4)), and the total number of pairs is % instead of w This leads to
an average (over all possible k) no larger than one for each position in the storage space of size b?
for p > bl.z. And hence, k’ can be chosen. |

» Restatement of Corollary 3.4: Let B; be a bucket with b; > 0 elements. For at least half of
the d-tuples k’ € U, it holds that the function (k’”x mod p) mod 2b? defines an injection for the
elements of B; for p > b?.

Proor. We follow the proof of Lemma 3.1 (and Lemma 3.3), while replacing E by B;, n by b;,
and by defining b;k) to be the number of elements of B; that map to j € {0, ..., 2b% — 1} with the
function (k’"x mod p) mod 2b?. We obtain the inequality

2b2-1 b(k’ b(k))

> ‘T(Z[ZbZIJ“)@'

k'eU j=0
By arithmetic simplification and using p > b?, we obtain

2b2-1 b(k')(b(k’)

PPN STV ®

k’eU j=0

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

Algorithms and Data Structures for Hyperedge Queries 1.13:21

. et By
Let X be the random variable representing 3, —“————

By Equation (8),

when we randomly choose k’.

1
E(X) < -,
(0 < 3

over all potential k" € U. For a randomly chosen k’ not to be an injection, b](k,) > 2 must hold for

some j € {0,...,2b? — 1}. In that case, we will have the event X > 1. By Markov’s inequality,
1
Pr(X 2 1) <E(X) < 7.

Therefore, Pr(X < 1) > %, and hence at least half of the potential k’ € U defines an injection for
B; for p > b?. mi

» Restatement of Proposition 3.5: For a random k # [0,...,0] and a random set F with n
hyperedges, the first level hash function using k creates at least n(1 — e"1*?/?) nonempty buckets
in expectation, where e is the base of natural logarithm.

PrOOF. For each x € U let us define a random variable RX taking on the value (k”x mod p) mod
n for a tuple k. We will compute for any tuple k, the number of sets F C U of cardinality n such
that for all x in F we have RX # i. We will obtain for each value i the probability over k and F that
bucket B; is non-empty. By summing over i, we will obtain the expected number of non-empty
buckets for a randomly chosen k and a random set F of size n.

We first compute the expected value over k and F of the random variable Rllf.’i =|{xeF |R,1§ # i}
For a fixed tuple k # [0, ..., 0], let us find the number of x € U such that Rﬁ =i If R1; = i, then
we should have

kamodpe{i,iin,ii2n,ii3n,...,iingn}. 9)
This means that there are

—1—-i
w2 P
n

possible values for k”x mod p. For any value j in the right-hand side of Equation (9), let us consider
the tuples x/ such that kY x/ mod p = j. Since k is not uniformly zero, there is an index ¢ such that
k¢ # 0. Then, for any of the p?~! possible values of x], where r # £, there exists one unique value
of x-é’; such that kTx/ mod p = j. Thus, there exist p?~! such x/ tuples for j. This yields a total of
p?~1t; alternatives for x such that Equation (9) holds, and hence for which RX = i, among all p¢
elements of U.

There are therefore (¥ d_l‘r(lp_ti)) sets F for which RX # i, where the symbol (Z) = #ﬁb)! is
the binomial coefficient. Then, for a fixed tuple k, the probability that none of the elements of a

random F maps to i is
(Pd’l'(P*ti))

n

(%)

Pr (lep,i = 0) =Pr (ﬁxeFRl; * i)
(pd"«p—m)
n

)

Pr(NerRy # i) =

We can thus bound Pr(R]} ; = 0) as follows:

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

1.13:22 J. Bertrand et al.

as

n-t;

11
~. N
il |
(=] —_
—
—_
|
el
e QU
& |
_
|
~. | =~
S —

<

IN
—_——
—
|
=
U

<e P <e P

>2- % -5 z1- % by the definition of ¢; and the fact thatp > n > i.

By defining a binary variable Y; = 1 if bucket B; is empty and another one Z = }}; Y;, we see
that the expected number of empty buckets is

n-1
E(Z) = Y E(Y) <ne'"7
i=0

for a randomly chosen k and a random set of n hyperedges, which concludes the proof. |

ACKNOWLEDGMENT

We thank Julian Shun, the Reproducibility Referee, for his help in ensuring that the computational
results in the manuscript are reproducible.

REFERENCES

(1]
(2]

B. H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (1970), 422-426.
https://doi.org/10.1145/362686.362692

F. C. Botelho, R. Pagh, and N. Ziviani. 2013. Practical perfect hashing in nearly optimal space. Info. Syst. 38, 1 (2013),
108-131.

[3] J. L. Carter and M. N. Wegman. 1979. Universal classes of hash functions. 7. Comput. Syst. Sci. 18, 2 (1979), 143-154.

(10]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (3rd ed.). The MIT Press,
Cambridge, MA.

T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software 38,
1(2011), 1:1-1:25.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. 1994. Dynamic perfect
hashing: Upper and lower bounds. SIAM 7. Comput. 23, 4 (1994), 738-761.

M. Dietzfelbinger and S. Walzer. 2019. Dense peelable random uniform hypergraphs. In Proceedings of the 27th Annual
European Symposium on Algorithms (ESA’19) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 144), M. A.
Bender, O. Svensson, and G. Herman (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
38:1-38:16.

P. C. Dillinger, L. Hiibschle-Schneider, P. Sanders, and S. Walzer. 2021. Fast Succinct Retrieval and Approximate
Membership using Ribbon. Retrieved from https://arxiv.org/abs/2109.01892

E. Esposito, Thomas Mueller Graf, and S. Vigna. 2020. RecSplit: Minimal perfect hashing via recursive splitting. In
Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX 20). SIAM, Philadelphia, PA, 175-
185.

M. L. Fredman, J. Komlos, and E. Szemerédi. 1984. Storing a sparse table with O(1) worst case access time. 7. ACM
31,3 (1984), 538-544.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

https://doi.org/10.1145/362686.362692
https://arxiv.org/abs/2109.01892

Algorithms and Data Structures for Hyperedge Queries 1.13:23

[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]

K. Gabert and U. V. Catalyiirek. 2021. PIGO: A parallel graph input/output library. In Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW’21). IEEE CPS, 276-279. https://doi.org/10.
1109/IPDPSW52791.2021.00050

M. Genuzio, G. Ottaviano, and S. Vigna. 2016. Fast scalable construction of minimal perfect hash functions. In Pro-
ceedings of the 15th International Symposium on Experimental Algorithms. Springer-Verlag, 339-352.

T. M. Graf and D. Lemire. 2022. Binary fuse filters: Fast and smaller than Xor filters. ACM J. Exp. Algor. 27, Article
1.5 (Dec. 2022), 15 pages. https://doi.org/10.1145/3510449

P.-V. Khuong and P. Morin. 2017. Array layouts for comparison-based searching. ACM J. Exp. Algor. 22, Article 1.3
(May 2017), 39 pages. https://doi.org/10.1145/3053370

T. G. Kolda and D. Hong. 2020. Stochastic gradients for large-scale tensor decomposition. SIAM J. Math. Data Sci. 2,
4(2020), 1066-1095.

H. Lang, T. Neumann, A. Kemper, and P. Boncz. 2019. Performance-optimal filtering: Bloom overtakes cuckoo at
high throughput. Proc. VLDB Endow. 12, 5 (2019), 502-515. https://doi.org/10.14778/3303753.3303757

D. Lemire, O. Kaser, and N. Kurz. 2019. Faster remainder by direct computation: Applications to compilers and
software libraries. Softw. Pract. Exp. 49, 6 (2019), 953-970. https://doi.org/10.1002/spe.2689

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo. 2017. Fast and scalable minimal perfect hashing for massive key
sets. In Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 75), C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman (Eds.). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 25:1-25:16. https://doi.org/10.4230/LIPIcs.SEA.2017.
25

L. Miiller, P. Sanders, R. Schulze, and W. Zhou. 2014. Retrieval and perfect hashing using fingerprinting. In Proceed-
ings of the International Symposium on Experimental Algorithms, J. Gudmundsson and J. Katajainen (Eds.). Springer
International Publishing, 138-149.

R. Pagh and F. F. Rodler. 2001. Cuckoo hashing. In Proceedings of the 9th Annual European Symposium on Algorithms
(ESA’01), F. M. auf der Heide (Ed.). Springer, Berlin, 121-133.

G. E. Pibiri and R. Trani. 2021. Parallel and External-Memory Construction of Minimal Perfect Hash Functions with
PTHash. Retrieved from https://arxiv.org/abs/2106.02350.

G. E. Pibiri and R. Trani. 2021. PTHash: Revisiting FCH minimal perfect hashing. In Proceedings of the 44th SIGIR,
International Conference on Research and Development in Information Retrieval. ACM, 1339-1348.

F. Putze, P. Sanders, and J. Singler. 2010. Cache-, hash-, and space-efficient bloom filters. ACM 7. Exp. Algor. 14, Article
4 (Jan. 2010), 18 pages. https://doi.org/10.1145/1498698.1594230

P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev. 2019. Sequential and Parallel Algorithms and Data
Structures: The Basic Toolbox. Springer, Cham, Switzerland.

S. Singh and B. Ucar. 2022. An efficient parallel implementation of a perfect hashing method for hypergraphs. In
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 265-274.
DOI:10.1109/TPDPSW55747.2022.00056

S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. 2017. FROSTT: The Formidable Repository of
Open Sparse Tensors and Tools. Retrieved from http://frostt.io/.

M. Thorup. 2015. High-speed Hashing for Integers and Strings. Retrieved from https://arxiv.org/abs/1504.06804.

S. Walzer. 2020. Random hypergraphs for hashing-based data structures. Ph.D. Dissertation. Technische Universitéit
Ilmenau, Germany.

S. Walzer. 2021. Peeling close to the orientability threshold: Spatial coupling in hashing-based data structures. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’21). SIAM, 2194-2211.

Received 31 May 2021; revised 28 April 2022; accepted 19 September 2022

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.13. Publication date: December 2022.

https://doi.org/10.1109/IPDPSW52791.2021.00050
https://doi.org/10.1145/3510449
https://doi.org/10.1145/3053370
https://doi.org/10.14778/3303753.3303757
https://doi.org/10.1002/spe.2689
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://arxiv.org/abs/2106.02350
https://doi.org/10.1145/1498698.1594230
10.1109/IPDPSW55747.2022.00056
http://frostt.io/
https://arxiv.org/abs/1504.06804

