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Betweenness centrality (BC) is a popular centrality measure, based on shortest paths, used to quantify the
importance of vertices in networks. It is used in a wide array of applications including social network anal-
ysis, community detection, clustering, biological network analysis, and several others. The state-of-the-art
Brandes’ algorithm for computing BC has time complexities of O(|V||E|) and O(|V||E| + V|2 log |V]) for
unweighted and weighted graphs, respectively. Brandes’ algorithm has been successfully parallelized on mul-
ticore and manycore platforms. However, the computation of vertex BC continues to be time-consuming for
large real-world graphs. Often, in practical applications, it suffices to identify the most important vertices in
a network; that is, those having the highest BC values. Such applications demand only the top vertices in
the network as per their BC values but do not demand their actual BC values. In such scenarios, not only
is computing the BC of all the vertices unnecessary but also exact BC values need not be computed. In this
work, we attempt to marry controlled approximations with parallelization to estimate the k-highest BC ver-
tices faster, without having to compute the exact BC scores of the vertices. We present a host of techniques to
determine the top-k vertices faster, with a small inaccuracy, by computing approximate BC scores of the ver-
tices. Aiding our techniques is a novel vertex-renumbering scheme to make the graph layout more structured,
which results in faster execution of parallel Brandes’ algorithm on GPU. Our experimental results, on a suite
of real-world and synthetic graphs, show that our best performing technique computes the top-k vertices
with an average speedup of 2.5X compared to the exact parallel Brandes’ algorithm on GPU, with an error of
less than 6%. Our techniques also exhibit high precision and recall, both in excess of 94%.
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1 INTRODUCTION

Betweenness centrality (BC) is a crucial centrality metric in graphs and networks that measures
the significance of a vertex. BC(n) is calculated using the number of shortest paths in the graph
passing through vertex, n. It is used in a multitude of applications such as detecting communities
in social and biological networks [7], targeted advertising [12], analysis of disease spreading [16],
and identifying criminal networks [5], and many more. The state-of-the-art Brandes’ algorithm [4]
computes the exact BC values for all vertices in a graph G = (V,E) in time O(|V||E|) for un-
weighted graphs, and time O(|V||E| + V|2 log |V|) for graphs having positive edge-weights. As
suggested by its complexity, computation of BC is quite time-consuming even on graphs of moder-
ate sizes, having hundreds of thousands of vertices and edges. For example, a single-threaded exe-
cution of Brandes’ algorithm takes several hours to terminate on an undirected graph loc-Gowalla
(having ~196,600 vertices and ~950,300 edges).

To make BC computations scalable, Brandes’ algorithm has been successfully parallelized on
multi-core CPUs, many-core GPUs, and distributed systems [10, 19, 20, 25, 31]. Yet, the cost of BC
computation is excessive on modern networks with millions of vertices and tens of millions of
edges. For example, the exact vertex-BC computation on the undirected graph liveJournal (having
~4.8M vertices and ~69M edges) using a parallel implementation of Brandes’ algorithm on a GPU
takes several days to complete. Moreover, often applications are interested in the relative ranking
of the vertices according to their BC scores, rather than their actual BC values. In addition, several
applications demand identifying vertices with highest BC values. Hence, an estimate of the top-k
BC vertices is sufficiently informative.

In this work, we present PARTBC, a host of novel techniques for speeding up the estimation
of top-k vertices with highest BC in a graph, using approximate computing in conjunction with
parallelization. We propose to compute approximate BC values of vertices, such that the relative
ordering of the vertices is maintained. The contributions of this article are as follows.

e To the best of our knowledge, PARTBC is the first system that combines parallelization on
GPU and approximate computing to estimate the top-k BC vertices in a graph.

e Our proposals in PARTBC restrict computation of shortest paths from only a fraction of the
vertices in parallel Brandes’ algorithm based on an online stopping criterion that uses tunable
knobs. The chosen source vertices impart sufficient contribution to the BC of the vertices early
to enable quicker identification of top-k BC vertices, while achieving the desired accuracy.

e We present a novel graph reordering scheme to make the graph layout more structured to
enable efficient coalesced access of data in parallel Brandes’ algorithm on GPU, improving
performance. The modified graph-layout is also beneficial to the vertex-centric parallel im-
plementations of other graph algorithms, such as, single-source-shortest-path computation,
pagerank computation, minimum-spanning-tree, and strongly-connected-component.

e We qualitatively as well as quantitatively assess the effect of our proposals. We observe that a
combination of techniques performs well consistently. Using a suite of seven graphs of vary-
ing characteristics, we illustrate the effectiveness of PARTBC. Our experiments show that
on an average, PARTBC reduces the computation time by 2.5X with mean inaccuracy in the
ballpark of 6%. Further, PARTBC techniques have high precision and recall in excess of 94%.

2 PROBLEM STATEMENT AND PRELIMINARIES

Problem Statement. Given an undirected, unweighted graph G(V, E) and a positive integer k <
|V], find a set of k vertices, Si, where Sy € V and Sk contains vertices having the highest BC values
in G. In this work, we determine the set Sy faster with a small error in set membership.
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ALGORITHM 1: Brandes’ Algorithm

Input: An undirected, unweighted graph G(V, E)
Output: Vertex betweenness centrality

1 be[v] =0 Yo eV //initialization
2 foreach s € V do

3 //Forward Pass: form BFS DAG D

4 forall the v : Node € G do

5 compute o5

6 | compute pred(s, v)

7 Let D be the DAG formed by the forward pass

8 //Backward Pass: backward traverse DAG D
9 forall the v : Node € D do

10 compute 5(v)

11 | be(v) +=85(v)

12 //Reset graph attributes

Betweenness Centrality. Consider that communication among vertices in a graph always pro-
gresses along the shortest paths. Then, the more the number of shortest paths that go through
a particular vertex, the more important is the vertex. This notion of importance is captured by
betweenness centrality.

Brandes’ algorithm [4] is the fastest known algorithm for computing the betweenness centrality
scores of the vertices in a graph. The complexity of Brandes’ algorithm, for an unweighted graph,
is O(nm), where n is the number of vertices in the graph and m is the number of edges. Brandes’
algorithm is presented in Algorithm 1.

The dependency of a vertex v w.r.t. a given source vertex s is ds(v). It is computed using the

following recurrence:
Osv

Sy = ), (1+85(w)). (1)

w

wlvepred(s,w) s
Here, o, is the number of shortest paths from s to v, and pred(s, w) is a list of immediate predeces-
sors of w in the shortest paths from s to w (computed using the forward pass at Line 4). A vertex’s
pred list is bounded by its degree. pred lists of all the vertices together induce a directed acyclic
graph (DAG) D over the graph G. BC of each vertex can then be computed as a summation over
all the sources (computed using the backward pass at Line 9):

be@) = > 8(0). (2)
s#veV
PrROPERTY 1. In Brandes’ algorithm BC of a vertex does not change in the iteration in which it is
the source.

Proor. For each source, s, we compute the BFS DAG rooted at s. Now, s will always lie at one
end of the shortest paths to all other vertices, from s. So, s cannot lie on the shortest path between
any two other vertices, as all the edges have unit weight. Thus, in the iteration in which the vertex
is a source, its BC does not change. The same is captured in Equation (2). O

OBSERVATION 1. Our investigation reveals that high BC vertices are usually either (i) the high-
degree vertices, or (ii) those low-degree vertices that lie on the paths connecting two or more large
well-connected clusters.
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Fustification. High-degree vertices are connected to a large number of vertices and thus lie on a
large number of point-to-point paths. Consequently, these lie on a large number of point-to-point
shortest paths. Further, those low-degree vertices that connect large clusters in a graph, lie on the
shortest paths between the vertices lying in separate clusters. Thus, such vertices too exhibit high
BC.

3 RELATED WORK

We discuss the prominent relevant prior works in the realm of parallel BC computation and approx-
imate BC computation for computing top-k BC vertices. We divide the past works into (1) exact
parallel BC computation, (2) approximate BC computation, and (3) top-k BC vertex computation.

Exact Parallel BC Computation. Madduri et al. [19] propose an efficient parallel implementa-
tion for computing vertex BC on shared memory multicore architectures. They improve the algo-
rithm to use successors instead of predecessors in the computation of the DAG, which produces
a more efficient, locality-friendly algorithm. Sariyuce et al. [27], and McLaughlin and Bader [20]
present efficient parallel implementations for BC computation on GPUs and heterogeneous archi-
tectures. Prountzos and Pingali [25] propose a scalable asynchronous parallel algorithm for BC that
is able to extract massive parallelism. Harshvardhan et al. [9] propose k-level asynchronous para-
digm for parallel graph processing. It improves the performance of traditionally level-synchronous
Breadth-first-search (BFS) traversal by reducing synchronization, which in turn improves the
performance of other algorithms employing BES including betweenness centrality computation.
Solomonik et al. [31] propose a succinct parallel BC algorithm based on novel sparse matrix mul-
tiplication routines with reduced communication. Hoang et al. [10] propose a round-efficient dis-
tributed BC algorithm. Their proposal reduces the number of rounds by 14X and achieves a mean
speedup of 2.1x over Brandes’ algorithm on 256 hosts.

Approximate BC Computation. A survey of various approximate computing strategies is pre-
sented by Mittal [21], including, precision scaling, loop perforation, memoization, selective memory
accesses, data sampling, voltage scaling, inexact reads/writes, lossy compression and using universal
function approximators in various domains for improving performance and reducing the energy
requirements in exchange for acceptable loss in output quality. In one of the first works on approx-
imating vertex BC, Bader et al. [1] propose an adaptive sampling-based approach that reduces the
number of single-source shortest path computations for vertices with high BC. Geisberger et al. [6]
propose a framework for unbiased approximation of the BC values and get a good approximation
to the BC values of the unimportant vertices too. Mostafa [8] proposes a generic randomized frame-
work for unbiased approximation of vertex BC to achieve high efficiency and accuracy. Singh and
Nasre [28] propose techniques for approximate graph processing on GPU. Their proposed tech-
niques: reduced execution, partial graph processing and lossy graph compression, are effective in
computing approximate vertex BC faster in exchange of small inaccuracy. Singh and Nasre [29, 30]
present GPU-specific techniques, aided by approximate computing, to improve memory coalescing,
and reduce memory latency and thread divergence for computing approximate BC faster on GPU.

Top-k BC Vertex Computation. Lee and Chung [14] propose an efficient algorithm to determine
the exact k-highest BC vertices faster by using a block-cut tree of the graph and finding the ex-
act BC of the vertices in each smaller biconnected component using Brandes’ algorithm. Riondato
and Upfal [26] propose progressive sampling schemes based on Rademacher averages to approx-
imate the BC values and extend their argument to compute an approximation of top-k vertices
with probabilistic guarantees. Mumtaz and Wang [22] propose an approximate algorithm for BC
maximization problem. They devise an estimation technique based on progressive sampling with
early stopping conditions to get better accuracy.
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Our approach for finding the top-k vertices entails ordering the source vertices in Brandes’ algo-
rithm to enable us in estimating the top-k BC vertices, which is different from the above approaches.
Further, our work applies these approximate techniques in the context of GPUs.

ALGORITHM 2: Approximate top-k computation

Input: An undirected, unweighted graph G(V, E)
Input: k

Input: desired accuracy (< 100%)

Output: top-k betweenness centrality vertices

1 be[v]=0 Yo eV //initialization
2 //Phase-I

3 G'(V, E) = graphReordering(G) //vertex renumbering

4 /]G =G

5 //Phase-I1
6 nextlter = true
7 while nextlter do

8 nextlter = false

9 s = getSource() //pick source vertex
10 //Forward Pass: form BFS DAG D

1 forall the v : Node € G’ do

12 compute O

13 | compute pred(s, v)

14 Let D be the DAG formed by the forward pass

15 //Backward Pass: backward traverse DAG D
16 forall the v : Node € D do

17 compute s (v)

18 be(v) += d5(v)

19 //Reset graph attributes

20 if stopping criteria not met then

21 L nextlter = true;

4 PARTBC’S APPROACH

In this section, we present PARTBC’s overall approach towards speeding up the computation of top-
k BC vertices in a graph. Section 4.1 discusses parallel Brandes’ algorithm for computing vertex
BC. Section 4.2 briefly describes the in-memory data layout and the parallel implementation of
Brandes’ algorithm, that we use in this work. In Section 4.3, we discuss a novel graph reordering
scheme to improve data locality during parallel execution of Brandes’ algorithm.

Algorithm 2 outlines the approach adopted in PARTBC. The computation proceeds in two phases.
Phase-I performs graph reordering by renumbering the vertices of the graph to bring together in
memory the data of those vertices that are likely to be accessed in tandem in parallel Brandes’
algorithm on GPU. The reordered graph is the input to Phase-II. In Phase-II, BC computation
happens in parallel and the source vertices are picked (Line 9) using the techniques described in
Section 5. The algorithm terminates when the stopping condition is satisfied, which is calculated
online based on the desired accuracy in the set of top-k vertices.

4.1 Parallelization Strategy

Brandes’ algorithm has been shown to be parallelized mainly in two ways: outer parallel and inner
parallel [2, 11, 25]. In outer parallel, multiple source vertices are processed in parallel (line 2 of
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u = blockldx.x  blockDim.x + threadldx.x;
if (u >= G.numNodes) return;
if (level[u] == hops_from_source) { // level—synchronous
end = G.offset[u + 1];
for (i = G.offset[u]; i < end; ++i) {
v = G.edges[i];
if (level[v] == —1) {
level[v] = hops_from_source + 1;
takeNextIter = true;

if(level[v] == hops_from_source + 1)
atomicAdd(&sigmal[v], sigma[u]);
1
(a) Topology-driven Kernel

tid = blockIdx.x « blockDim.x + threadldx.x;
if(tid >= worklist_size) return;
u = in_worklist[tid]; / node processed by thread tid
int hops_from_source = level[u];
end = G.offset[u + 1];
for (i = G.offset[u]; i < end; ++i) {
v = G.edges[i];
if (level[v] == —1) {
level[v] = hops_from_source + 1;
stakeNextlter = true;
if (atomicCAS(&flag[v], 0, 1) == 0) {
index = atomicAdd(activeSize, 1);
out_worklist[index] = v;
13
if (level[v] == hops_from_source + 1)
atomicAdd(&sigmalv], sigma[u]);

' (b) Data-driven Kernel

Fig. 1. Topology-driven and Data-driven implementations of the forward pass of Brandes’ algorithm.

Algorithm 1), but the forward and the backward passes are executed sequentially by each thread.
Thus, the contribution of each source to BC values of other vertices can be computed by the thread
assigned to that source. The final computation of bc(v) involves a reduction of the contribution of
each of the sources. In this scheme, every outer loop iteration requires its own storage, leading to
a substantial space overhead of O(n?) [25].

In inner parallel scheme, however, each source is processed sequentially, but each of the com-
putation steps (lines 4, 9 in Algorithm 1) for a single source are executed in parallel. A crucial
advantage of this approach is its space-efficiency, as DAG (and other transient data) correspond-
ing to only one source need to be maintained at a time. Therefore, such an approach can be used
for large graphs [25].

4.2 Graph Layout

We use the popular Compressed Sparse Row (CSR) storage format to represent the graph. CSR
representation stores only the non-zero elements of the adjacency matrix, i.e., the edges of the
graph. Figure 2 shows the CSR representation of the graph G. The CSR format uses two arrays
to represent the graph: offset array and edges array. The offset array is sorted by vertex-ID and
stores each vertex’s starting offset into the edges array. The edges array stores the neighbors of the
vertices contiguously, that is, the neighbors of vertex 0, followed by neighbors of vertex 1 and so
on.

Further, we use the vertex-centric approach, wherein a thread is assigned to a vertex. Our parallel
implementation of BC uses three kernels—one for the forward pass (Figure 1) and two as part of
the backward pass. The two backward pass kernels compute ¢ values and accumulate BC values.
We employ both topology-driven (Figure 1(a)) and data-driven implementations (Figure 1(b)) of
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Fig. 2. Original graph G and its CSR representation.

the forward pass kernel. In topology-driven implementations [24], all vertices are assumed to be
active (i.e., required to be processed) at every step. So, in every iteration, all vertices are processed
even if there is no useful work to do at some vertices. In our parallel implementation of Brandes’
algorithm, this approach is useful when a large number of vertices are active at a level of the
breadth-first-traversal, in the forward pass. Work inefficiency in this approach is counterbalanced
by the large number of GPU threads. In contrast, in data-driven implementations [24], at a step,
only those vertices are processed at which there is work to do. The data-driven approach maintains
a worklist of active vertices at any time. This approach is work-efficient. This is helpful in our
parallel implementation of Brandes’ algorithm in cases when only a few vertices are active at
a level of the breadth-first-traversal, in the forward pass. One approach may be better than the
other depending on the structure and connectivity of the graph. Our implementation automatically
chooses one of the two implementations (data-driven or topology driven) based on the skewness
of the vertex degree distribution. This enables us to have a fast parallel execution of Brandes’
algorithm for graphs with varying characteristics. For graphs with skewed degree distribution
(Icoeft. of skewness| >0.05), such as social networks, topology-driven implementation is chosen,
while data-driven implementation is used for graphs with uniform degree (|coeff. of skewness|
<0.05), such as road networks.

4.3 Improved Graph Layout

A natural way to compute top-k BC vertices faster is to improve performance of the exact parallel
implementation of Brandes’ algorithm. With this motivation, we propose a scheme to modify the
graph layout to make it more structured to make it amenable for GPU-based processing. We intend
to improve the memory coalescing and better utilize GPU’s high memory bandwidth.

The forward-pass of Brandes’ algorithm involves breadth-first-search (BFS) traversal of the
graph from a designated source vertex in every iteration. In our parallelization strategy of the
forward-pass (Figure 1), we process the vertices in a level-synchronous fashion and the thread
assigned to a vertex updates the attributes of its neighbors. Reordering of vertices is shown to be
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effective in improving the spatial locality of vertices by assigning consecutive IDs to those that are
likely to be accessed in tandem [3, 17, 23]. To improve vertex-centric processing, PARTBC proposes
a novel vertex-renumbering scheme to modify the graph layout such that the connected vertices
and their data are together for GPU-based processing,.

For instance, in Figure 2, assume the warp-size to be 4. The vertices 4-7 are assigned to threads
having the same ID as the vertex. With vertex centric processing, the warp-threads will access the
attributes of the first neighbor of the respective vertices concurrently, and so on. Hence, the warp
threads will access the locations 0, 8, 2, and 10 in the node attributes array together. Further assume
that the accesses to a chunk of 4 words can be coalesced. Clearly, the accesses to the destination ver-
tices’ {0, 8, 2, 10} data in the node attributes array are not coalesced, since these lie in three separate
four-word chunks. We renumber the vertices such that the vertices to be accessed by the warp-
threads are assigned nearby IDs; this results in improved coalescing. The vertex-renumbering is
performed once at the time of loading the graph. The following is the renumbering scheme (for
Line 3 in Algorithm 2):

Algorithm 3 presents the pseudocode for the vertex renumbering technique. We pick a lowest
degree neighbor of a vertex having the highest degree and perform a BES traversal on the graph, to
obtain a BFS tree (line 3, Algorithm 3). The vertices at the same level in the BFS tree are assigned IDs
in a round-robin fashion (lines 6-10, Algorithm 3): the first neighbor of each of the parents from
the previous level is assigned a new ID followed by the renumbering of all the second-neighbors,
and so on. The foregoing renumbering scheme ensures that the threads of a warp access nearby
locations while accessing the attributes of the destination vertices in the node attributes array. Since
the graph is undirected, the renumbering helps improve the coalescing in every outer iteration of
Brandes’ algorithm. The choice of the source of this BFS traversal helps on two accounts: (i) As we
will see, we are likely to pick a vertex with low-degree as a source vertex in Brandes’ algorithm
(Section 5). So, picking a low-degree neighbor of the high-degree vertex as source ensures near-
perfect coalesced accesses in an iteration of the Brandes’ algorithm. (ii) A high-degree vertex is
likely to be visited more often over all iterations in BC computation (Sections 5). So picking a
neighbor of a high-degree vertex is a better choice than starting at an arbitrary vertex.

ALGORITHM 3: PARTBC technique for vertex renumbering

Input: An undirected, unweighted graph G(V, E)
Output: Reordered graph G'(V, E)
1 vlevel = 0 Yo e G.V

2 Node s = minimum degree node

3 BREADTH_FIRST_TRAVERSAL(G, s) //Assigns levels to nodes
4 gld = 0;

s.id = gld++;

@

for i = 0.. numLevels-2 do // numLevels is number of BFS levels
for j = 0.. (max node degreeinL;)do // L; is the list of nodes at level i
for Node n : L; do
L if (n.degree > j) && (n.neighbors[j] € L;11) then

o ® N

=
5]

L n.neighbors[jl.id = gld++

For example, in the graph G from Figure 2, vertex 12 has the highest degree. We perform BFS
from vertex 8, which is a lowest degree neighbor of 12. Vertex 8 is at level zero, vertices 5 and
12 are at level 1, vertices 3, 6, 7, 11, 14 are at level 2, while other vertices are at level 3. Figure 3
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Fig. 3. Graph G after vertex renumbering and its CSR representation.

shows the graph with vertices renumbered, with its memory layout. The attributes array for the
destination vertices has more coalesced accesses in the renumbered graph.

The renumbering-scheme is applicable, in general, to several graph algorithms that are imple-
mented using the vertex-centric approach and vertex values are propagated by updating neighbors’
values through outgoing edges. Examples of such algorithms include single-source-shortest-path
computation, pagerank computation, minimum-spanning-tree computation, among others.

5 TECHNIQUES FOR FAST BC ESTIMATION

We present a systematic study of the use of approximations in the computation of top-k between-
ness centrality vertices. Our key observation is that not all sources in Brandes’ algorithm (line 2,
Algorithm 1) contribute equally to the BC values. We present a bouquet of techniques to identify
vertices to be picked as sources that yield enough contribution to the BC of the vertices early to
facilitate quicker identification of top-k BC vertices. Our strategy is to identify those vertices that
would eventually have high BC values, in the early iterations of the Brandes’ algorithm.

Based on Property-1and Observation-1 from Section 2, we hypothesize that to impart a big share
of their BC values early to the eventual high BC vertices, we should preferentially pick the low- and
moderate-degree vertices as sources. The intuition is that such a choice of sources would increase
the BC score of the high-degree vertex and not of the low and the moderate-degree neighbors of
it. This would widen the gap between the eventual low and high BC vertices, thus allowing us to
decide the top-k vertices in the early iterations. For our purpose, we categorize the vertices into
low-order, moderate-order and high-order vertices. In the list of vertices sorted in ascending order
by vertex degree, the first 25% are the low-order vertices, the next 50% are moderate-order vertices
and the remaining 25% are the high-order vertices. Our experiments and analysis revealed that the
number of iterations required for termination are indeed fewer when preferentially picking low-
and moderate-order neighbors of high order vertices as sources. So, the high-level idea is to devise
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schemes that enable us to pick such vertices as sources in the early iterations. Careful filtering of
the source vertices promises substantial performance gains because of reduced total work done.

Termination of execution. For each of the techniques, there are two ways to specify the termi-
nation of execution. One, we may specify the number of iterations as a percentage («%) of the total
number of iterations. Two, we may specify an online stopping criterion to get the desired accu-
racy. The second approach is preferable, since it allows us to control the performance-accuracy
tradeoff.

For the latter approach, we need to define a metric that captures the quality of the top-k ver-
tices reported. A desired metric for computing the output quality of top-k betweenness centrality
vertices in a graph is the set difference between the set of exact top-k vertices and those computed
using an approximate technique. This quality metric requires knowing the ground-truth (i.e., the
exact top-k vertices), which would be available only upon running Brandes’ algorithm to com-
pletion. Hence, we require a metric that can be computed in each iteration of Brandes’ algorithm
rather than at the end of the computation, to help us decide if we have reached the desired accuracy
and thus terminate the execution.

A plausible proxy for the above metric is: tracking the vertex having the kth highest BC value
in every iteration and checking if the vertex having the kth highest BC value has stabilized (i.e., it
is unchanged for all remaining iterations).

LEMMA 1. If the kth highest BC vertex does not change across iterations, then the set of top-k BC
vertices is unaltered.

Proor. Consider two consecutive iterations of the outermost loop in Brandes’ algorithm: i and
i+1,suchthati <i+1 < |V]. Note that BC of a vertex monotonically increases in every iteration.
Let the set of vertices, V, be partitioned into two sets, S and S’. S contains the top-k (k < |V]) BC
vertices and S = V' \ S. At each iteration, we maintain the invariant that the cardinality of S is k
and that it holds the top-k BC vertices. Further, let us define a sequence on the elements of set S:
s = (v1,02,0s,...,0k) such that BC(v;) > BC(v;) > BC(v3) ... > BC(vg). Let vg € S be the last
element in the sequence 7, at the end of iteration i. Now, suppose at the end of iteration i + 1, a
vertex from S’ moves to S (due to increase in its BC value), then a vertex from S must move to S’
to maintain the invariant. Further, the vertex that moves from S’ to S must have BC greater than
or equal to BC(vg). So, the element to be displaced from S must have BC equal to BC(vg). Let us
assume the last element in sequence s, i.e., vk, will be displaced in the event of multiple vertices
having the same BC value as vg. Thus, if the element vy is the same after iterations i and i + 1,
then it implies that the rest of the elements in the set S are also unaltered. The result holds for any
two iterations i and j s.t. i < j < |V]. O

There are two issues with using the aforementioned proxy metric: (1) It requires determining
the kth highest BC vertex after every iteration (which has a time complexity of O(|V])), thus
introducing significant time overhead. (2) The vertex with the kth highest BC needs to be tracked
for all iterations to establish that the position of kth highest BC vertex is unchanged—this makes
this metric unsuitable for online error estimation.

To design a pragmatic scheme for accurate estimation of online error, we draw on the obser-
vation that by the iteration when the ranks of highest few BC vertices are settled, the other high
BC vertices also get a sufficiently large share of their respective BC values. Thus, tracking only a
fixed number of highest BC vertices may suffice.

In each iteration of Brandes’ algorithm, we maintain the set, S;, of top-¢ (t < k) vertices. We
track the number of successive iterations for which the set S; remains unchanged. We terminate
the execution when this count reaches C;. The choices of ¢t and C; depend on the techniques
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used for picking the source vertices (Sections 5.1 through 5.5.2) and the type of the input graph.
This scheme enables us to accurately estimate on-the-fly when the error in the top-k becomes
substantially small.

Our experiments showed that for the techniques in Sections 5.1-5.3, 40 < ¢t < 50 and
5 < Cy < 10 result in desirable speedups and accuracy. However, for the techniques presented
in Sections 5.4-5.5,5 < t < 10 and 3 < C; < 5 are sufficient to achieve similar accuracy as the
previous techniques. This can be attributed to the fact that the choice of sources using the latter
techniques imparts a larger share of the respective BC values to the vertices quicker. Hence, stabi-
lization of the ranks of a few high BC vertices for a few iterations indicates that the ranks of the
other vertices are also stabilized, with a good chance.

We discuss the proposed PARTBC techniques below.

5.1 Selection of Source Vertices (Random)

From a uniformly random permutation of the vertices, we select a subset, guided by the stopping
criterion. With this technique, we pick source vertices with varied connectivity and characteris-
tics. In real-world scale-free graphs (that have many low-degree vertices and a few high-degree
vertices), the probability of picking the high-degree vertices as source early is low due to their num-
ber. Hence, random selection of vertices naturally leads to selection of low- and moderate-degree
sources. The vertices so picked include a fair number of non-high-degree neighbors of high-degree
vertices. Hence, the BC scores of the vertices acquired in the early iterations causes the relative BC
scores of the graph vertices to be representative of their relative exact BC values, leading to a high
accuracy in top-k computation with a small number of iterations. However, we need a large value
of t for getting high accuracy in less outerloop iterations. High value of t warrants computing the
tth-largest BC vertex (Lemma 1) in each iteration, adding up to a high overhead.

5.2 Vertex Selection in Ascending Degree Order (Ascending)

A natural order is based on vertex degree: ascending and descending. We pick the vertices as
sources in Brandes’ algorithm in that order. The overhead of sorting of vertices (O(|V|log V1)),
which is a one time operation, is a tiny fraction of the overall computation time of exact BC scores.
We observe that in several real-world graphs, the low-degree vertices are connected to other low-
degree vertices. So, the DAG formed by selection of a low-degree vertex as source has more levels
as compared to the one resulting from picking a high-degree vertex as source; the DAG formed also
has on an average few vertices at each level. However, when the sources are selected in ascending
order of degrees, the vertices with high BC may not get enough contribution in the early iterations.
This happens because the high-degree vertices appear towards the bottom of the DAG and thus not
many vertices are reachable through them; this results in reducing the dependency contribution.
Further, in real world graphs, low-degree vertices are connected to other low-degree vertices, so
few low-order vertices are neighbors of high-order vertices. Hence, larger number of iterations
are required to determine the top-k accurately. Similar to the Random technique, we need a large
value of t, adding a significant execution overhead.

5.3 Vertex Selection in Descending Degree Order (Descending)

In this technique, we arrange the source vertices in decreasing order by degree. Generally, the
high-degree vertices are found to be connected to other high-degree vertices. Hence, the DAG
formed from such a vertex will have fewer levels, and on an average high number of vertices at
each level. Since the sources selected are in descending order, all the vertices with high BC receive
large BC contributions in the early iterations, because the high-degree vertices tend to appear at
the top of the DAG, which results in more vertices being reachable via them. The moderate- and
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Fig. 4. A high-degree vertex having a low-degree neighbor.

low-order neighbors of high-order vertices are picked sooner than when following ascending order
for selecting sources. So, fewer iterations are required to estimate the top-k with high accuracy.
However, similar to Ascending, computing the stopping criteria has a high overhead.

5.4 Selecting Low-Degree Neighbors of High Degree Vertices

From Observation-1, high-degree vertices and the cut-vertices connecting large clusters are more
likely to have large BC values. We also note that in Brandes’ algorithm, when we pick a vertex as
a source, the BC values increase more for those vertices that are at the initial levels of the DAG
and have more vertices reachable from them. Thus, based on Property-1, to reduce the polluting
of the vertices (increase in BC value of an unimportant vertex by as much as an important vertex,
in an iteration), it is beneficial to pick the immediate neighbors of high-degree vertices as sources
(Figure 4). Further, among the immediate neighbors we pick the low-degree neighbors as sources
first, with the assumption that the low-degree vertices are likely to have lower BC than the high-
degree vertices, in general. Consider the scenario in Figure 4. Suppose v and w are low-degree
1-hop and 2-hop neighbors, respectively, of a high-degree vertex, u. In this case, we prefer to pick
the vertex v over w, as source. Picking v (1-hop neighbor of u) as source would increase the BC of u
more than that of w, in that iteration, and hence widen the gap between their BC values, enabling
computation of top-k vertices in fewer iterations. With this technique, the vertices connecting
large clusters also get a high BC value, as desired. When a source is selected, the DAG formed has
as the dominator of many other vertices, those vertices that connect large clusters; thus, all the
vertices receive enough BC contribution.

The technique can be combined with Ascending and Descending. We consider only the high-order
vertices and sort them in descending order by degree. Further, the neighbors of each of these are
sorted in ascending order by degree. Additionally, vertices having equal degrees are arranged in
ascending order by vertex id. We then select the neighbors in a round-robin fashion. Round-robin
means that we select the unpicked lowest-degree neighbor of the highest degree vertex, followed
by the lowest-degree neighbor of the second-highest vertex, that is not already selected, and so on.
For example, in Figure 5, the vertices selected as sources are vla, v2a, . . ., vta, v1b, v2b, and so on,
in that sequence.

A caveat in the round-robin selection of source vertices is that in real-world graphs, high-degree
vertices are often neighbors of other high-degree vertices, and this scheme may end up selecting
the high-degree neighbors (instead of the low-degree neighbors) of high-degree vertices. To ad-
dress this issue, we select only the low-order neighbors.

Interestingly, setting the threshold on the neighbors’ degrees prohibits the selection of those
high-order vertices as sources that are the neighbors of other high-order vertices. Since a vertex is
chosen as source only once, this also prevents selection of a vertex with high-degree over a vertex
with low-degree.

The threshold for high-order, moderate-order and low-order vertices can be tuned to control
the accuracy in the top-k vertices, and the resulting speedup. We call this technique Restricted-
Round-Robin (RRR). Additionally, the number of low- and moderate-order neighbors of
high-order vertices picked as source using this technique are substantially high by design. So,
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Fig. 5. Arrangement of vertices for the Round-Robin technique.

this method provides improved accuracy compared to earlier techniques, but Random, for similar
speedups. Further, unlike in the prior techniques, the stopping condition here can be faithfully
computed by tracking only up to 5 highest BC vertices across iterations, which is computable in

o(1).

5.5 Dynamic Selection of Source

In this technique, we also take into account the BC scores of the vertices up to that iteration
to determine the source vertex for the next iteration. We observe that once the vertices get a
healthy share of their respective final BC scores, the vertices with low BC are likely to continue
having a low relative BC score in the subsequent iterations. We exploit this observation to select
that so far unpicked vertex as source for the next iteration that has the least BC value up to that
iteration. Again, based on Property-1, we further try to minimize the BC value of that particular
vertex by selecting it as source. By minimizing BC value of the lowest BC vertex, we increase all the
other remaining vertices’ BC values and not just of a select few. So by selecting different sources
dynamically, all the vertices having moderately high or high BC values get contributions relative
to the vertices’ eventual BC values by selecting the low BC vertices as sources and this also widens
the gap between the eventual high BC and low BC vertices.

Now, to provide the vertices sufficient representative share of their BC values before going for
the dynamic scheme, we execute the initial few iterations of the Brandes’ algorithm. The choice
of the source vertices for these initial iterations is crucial, since we want the vertices to have
sufficient share of the BC values as quickly as possible. In the entire execution, no vertex is picked
more than once. We discuss the heuristics for selecting these initial sources. We empirically found
that selecting 5% source vertices is reasonable for contributing a good share of BC values to each
vertex (and also improves execution time).

5.5.1 Descending (Dyn). We sort the vertices in descending order of their degrees. We then pick
the top 5% vertices from this sorted list as the initial set of source vertices. After the 5% outer loop
iterations, in the subsequent iterations, the vertex picked as source is a vertex with the least BC
score up to that iteration that has not been picked already.

5.5.2  Restricted Round Robin (DynRR). We observed that with selection of fewer source ver-
tices, RRR achieves better results than Dyn. However, if large number of sources are selected, then
Dyn works better and has smaller error compared to RRR for the same number of sources. This
suggests that picking the initial set of source vertices using RRR is beneficial.

For the first 5% iterations, we select the vertices as sources in a round robin fashion, selecting
only those that have degree less than a threshold (which is set to average vertex degree). Further,
for the selection of sources in the iterations following the first 5%, we consider neighbors of vertices
having degree greater than the average degree. From this subset of vertices, the one having the least
BC value up to that iteration is selected as source for the next iteration. This helps limit the search
space further to only those vertices that when picked as source contribute significantly to boosting

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 12. Pub. date: November 2021.



12:14 S. Singh et al.

Table 1. Input Graphs

Graph V] |E| Graph type
fb-Friendships (FB) 63,731 817,035 | Facebook friendship graph
soc-Pokec (SP) | 1,632,803 | 30,622,564 | Online social network
loc-Gowalla (LG) | 196,591 950,327 | Location-based social network
roadnetSF (RNSF) | 174,424 221,802 | San Francisco road network
usroad48 (RNUS) | 102,615 147,656 | Continental US road network
rmat17 (RMT) | 130,977 | 2,091,451 | R-MAT using GTgraph
random17 (RNM) | 131,072 | 2,096,902 | Random graph using GTgraph

Table 2. Effect of Vertex Numbering on Exact GPU Parallel Version

Time (s) Speedup Graph reordering

Graph NVR VR (NVR/VR) time (s)
fb-Friendships 972 797 1.22%x 5
soc-Pokec 204,360 166,150 1.23% 32
loc-Gowalla 25,486 21,598 1.18% 9
roadnetSF 2,762 2,444 1.13% 5
usroad48 3,629 3,211 1.13% 4
rmatl7 1,477 1,241 1.19% 6
random17 587 564 1.04% 7

NVR: no vertex renumbering; VR: with vertex renumbering.

the values of the important vertices. Selecting the sources based on BC values computed till then
increases the BC values of their neighbors (the high-degree vertices), which improves accuracy.

DynRR is found to perform the best among all the techniques, that is, it either has the lowest
error for the same number of source vertices compared to other techniques, or it achieves better
speedup than the other techniques for similar accuracy. It works well for all types of graphs and
produces uniform results for all values of k.

Additionally, the number of low- and moderate-order neighbors of high-order vertices picked
as source using Dyn and DynRR technique are substantially high by design. So, these methods
provide improved accuracy and speedups compared to earlier techniques. Further, the stopping
condition requires us to keep track of only up to 5 highest BC vertices across iterations, which is
computable in O(1). Hence, the overhead of computing the stopping criteria is negligible in each
iteration.

6 EXPERIMENTAL EVALUATION

We evaluate the performance and effectiveness of PARTBC’s techniques for estimating top-k BC
vertices.

Experimental Setup. We use input graphs (Table 1) from SNAP [15] and KONECT [13], with
different characteristics, to study the efficacy of our approach. These include social networks (such
as Pokec) having small-world property, road networks (such as San Francisco) having large diame-
ters, RMAT graphs, which are synthetically generated scale-free graphs [18], and random graphs,
which do not exhibit any specific structure. We perform experiments on a machine with an Intel
Xeon E5-2640 v4 @ 2.4 GHz CPU having 64 GB RAM and Nvidia Tesla P100 GPU having 3,584
cores spread across 56 SMXs with 12 GB memory. The machine runs CentOS 7.5 (64-bit). We use
CUDA 8.0 to compile and execute our methods on the GPU.

Baselines. We use two baselines to evaluate our techniques. First, we compare the performance of
PARTBC against the exact parallel Brandes’ algorithm on GPU for computing top-k vertices. This

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 12. Pub. date: November 2021.



PARTBC: Faster Estimation of Top-k Betweenness Centrality Vertices on GPU 12:15

Table 3. Performance of PARTBC w.r.t. Exact Parallel
Brandes’ Algorithm and ABRA

Speedup wor.t Speedup breakdown
Graph P pwrt (w.r.t. exact parallel)
Exact Parallel | ABRA| VR DynRR

fb-Friendships 2.80% 4.28% | 1.22X 2.29%
soc-Pokec 2.76X 4.31x | 1.20X 2.30%
loc-Gowalla 2.48% 4.16X | 1.18X 2.10x
roadnetSF 2.71% 4.72% | 1.13X 2.40%
usroad48 2.68% 4.63% | 1.13X 2.37%
rmat17 2.65X 4.18%x | 1.19% 2.22X
random17 1.67X 1.92X | 1.04x 1.61%
geomean 2.5% 3.88x | 1.15% 2.17x

VR: Vertex Renumbering; Error ~6%.

is Baseline-I. Second, we compare the performance of PARTBC with ABRA [26], the state-of-the-art
in approximate BC top-k computation. This is Baseline-IIL

Effect of graph reordering. The execution times for the exact BC computation (which dominates
top-k computation) on the graphs for Baseline-I are presented in Table 2. In Table 2, we report
the time taken in the exact BC computation with and without the graph reordering (Phase-I of
Algorithm 2). Note that the graph reordering technique is independent of Phase-II of Algorithm 2
and depends only on the input graph. We also report the time taken for graph reordering, which is
observed to be negligible (less than 1%) compared to the total execution time of the BC computation.
This reaffirms our time-investment in vertex renumbering,.

We observe that the performance of the exact parallel version on the modified graph layout
(resulting from vertex-renumbering) is consistently better than that on the original layout, for all
types of graphs, resulting in an average speedup of 1.15X. The improvement is primarily due to
better global memory coalescing. We also observe that power-law graphs (such as FB), get bene-
fited more due to coalescing. This happens due to high number of active vertices in an iteration
(due to small diameter), in the level-synchronous BFS traversal in the forward-pass. This leads to
more coalesced memory accesses once the graph is made more structured. For road networks (e.g.,
RNSF), the gains are limited as only a few vertices are active in each iteration and the number
of accesses to nearby vertices (after renumbering) is limited. Due to a lack of structure, random
graphs are not sensitive to vertex renumbering.

6.1 Overall Results

We evaluate the inaccuracy of PARTBC techniques as follows: Let bcg be the exact set of top-
k vertices, and bcg be the set of top-k reported by PARTBC. The error incurred for each of the

. . begnbe
techniques is measured as 1 — 12cc0becl

Each of PARTBC’s techniques returns a set of top-k vertices. By design, for a technique, its recall
and precision are equal, since the number of false positives (vertices incorrectly included in top-k)
and the number of false negatives (the actual top-k vertices, which are missed in the reported top-

k) are equal. The recall and precision are given by W. Thus, low inaccuracy of a technique
implies high recall and precision, which is desirable.

Comparison with Baseline-I and Baseline-II. Table 3 compares the performance of
DynRR from PARTBC with the two baselines. We report the speedups averaged across k €
{100, 500, 1,000, 2,000, 3,000, 5,000} for error ~6% for both ABRA and PARTBC.
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Table 4. Comparison of
Performance of CPU Version of
DynRR w.r.t. ABRA for Error ~6%

Speedup of
Graph DynRR w.r.t. ABRA
on CPU

fb-Friendships 1.32%
soc-Pokec 1.55%
loc-Gowalla 1.28%
roadnetSF 1.74%
usroad48 1.86X
rmat17 1.45%
random17 1.12x
geomean 1.45%
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Fig. 6. Performance comparison of CPU version of DynRR and ABRA for different error%.

We observe that the geomean speedup of PARTBC w.r.t. Baseline-I is 2.5X while that w.r.t. ABRA
is 3.88%. Note that ABRA has a multi-threaded CPU implementation, which we executed with 24
threads for best performance in our setup. We also present a breakdown of the contribution of each
of the two phases of Algorithm 2 in the speedup achieved w.r.t. Baseline-1. The results show that
for the size and type of graphs in our test suite, the PARTBC outperforms ABRA consistently without
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Table 5. Performance of PARTEDGE
w.r.t. Exact GPU-Parallel Brandes’
Algorithm on the Reordered Graph

Graph Speedup w.r.t. Error
exact parallel

fb-Friendships 2.01x 10%
soc-Pokec 2.02% 10%
loc-Gowalla 2.01x 10%
roadnetSF 2.02% 9%
usroad48 2.02%x 9%
rmat17 2.02% 10%
random17 2.00x 12%
geomean 2.01x 10%

failing the accuracy constraint. This is because ABRA uses an iterative progressive-sampling-based
approximation algorithm. Its execution time is contingent on the sample size, the number of sam-
ples, and the number of iterations, all of which grow with the size of the graph for a specified value
of accuracy. Additionally, the sample size is updated in each iteration. In contrast, PARTBC scales
well with the size of the graph. There is very gradual increase in the overhead (which primarily
includes time for graph reordering in Phase-I, time for online selection of sources, and time for
computing the termination condition) with increase in graph size. In addition, PARTBC reduces
the amount of work done by the same factor irrespective of the size of the graph, for obtaining the
specified accuracy. Hence, even for moderate-sized graphs as in our test-suite, ABRA takes longer
than PARTBC across graphs and different values of k. All techniques in PARTBC consistently out-
perform ABRA on moderate- and large-sized graphs. ABRA performs better than PARTBC with better
accuracy on small graphs such as Enron-email (|V'| = 36,682 |E| = 183,831). Since ABRA runs on CPU,
we also compare ABRA with a CPU-only version of PARTBC. Table 4 presents the comparison of
CPU-only version of DynRR w.r.t. ABRA. We observe that the geomean speedup of the CPU-version
of DynRR w.r.t. ABRA is 1.45X. DynRR consistently performs better than ABRA for error ~6% even
on CPU. Figure 6 shows the speedup of CPU-only version of DynRR w.r.t. ABRA for different error
values. We observe that for most of the graphs, ABRA performs better than DynRR for error <2%.
In the case of random graph (RNM), ABRA outperforms DynRR if the desired accuracy is up to 4%.
In the case of road-network graph (RNUS), DynRR is consistently better than ABRA for all error
values. The power-law graphs have a heavy tail and the high-degree vertices are connected to
other high-degree vertices. In road-networks, however, the vertex degrees are small and largely
uniform. So, DynRR performs well on power-law graphs and road-networks, since such graphs
have sufficient number of low- and moderate-degree neighbors of high-degree vertices, which the
technique attempts to prioritize during source selection. However, DynRR does not perform well
on the random graph. This is primarily because random graphs often lack structure and there is a
paucity of low- and moderate-degree neighbors of high-degree vertices, rendering the technique
less effective.

As observed, PARTBC outperforms the Baseline-I in exchange for lower accuracy. This is ex-
pected due to the lower overall work done by the PARTBC techniques.

Besides the two baselines, we also explore a divergent approach to approximate top-k BC ver-
tices, for establishing a different comparison point for PARTBC techniques. We call this approach
PARTEDGE. PARTEDGE deletes ~50% edges of the input graph by picking the edges to remove uni-
formly at random while ensuring that the graph remains a single connected component. The ver-
tices are not deleted. This modified graph is input to the exact GPU-parallel version of Brandes’
algorithm. Note that with PARTEDGE, the number of outerloop iterations is [V, however, in every
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Table 6. Performance of ParTBC w.r.t. Exact
GPU-Parallel Brandes’ Algorithm on the
Reordered Graph

Mean Mean Mean Mean

24 (24
speedup | error speedup | error
01| 7.6x 9.7% 01| 83x 16.4%
02| 33x 7.3% 02| 3.9x 11.9%
Elos| 26x 54% || o | 03] 27 8.6%
Tlo4| 18x 49% || 2| 04| 22x 7.1%
Slos| 13x 3.7% 05| 1.8x 5.5%
06| 12% 3.0% 06| 12% 4.2%
07| 11x 2.4% 07| 11x 3.0%
08| 1ix 2.0% 08| 1ix 2.0%
01 7.4x 27.7% 01 73x 17.3%
02| 32x 20.1% 02| 32x 13.0%
o | 03| 24x 14.6% || & |03 | 24x 9.6%
;g 04| 1.6x 120% || 5 [ 04| 17x 8.7%
g 05| 13x 93% || § 05| 14x 6.6%
g 0.6 11X 49% || 2|06 1.2X 5.0%
07| 11x 36% || A 07| 11x 47%
08| 11x 2.2% 08| 1.1x 3.5%
01] 81x 11.9% 01] 87x 15.8%
02| 3.6x 10.0% 02| 38x 10.5%
03| 24x 7.9% 03| 28x 8.1%
o | 04] 21X 7.1% gé 04| 21x 6.9%
§ 0.5 1.6X 5.8% || & |05 1.7x 5.3%
06| 1.2x 42% || & 06| 13x 4.1%
07| 1i1x 3.0% 07| 12x 2.8%
08| 1.1x 2.5% 08| 1.1x 1.6%

outerloop iteration, the edges traversed are only ~%. Hence, the overall work done is lesser com-
pared to the exact version. Table 5 compares the performance of PARTEDGE with the exact parallel
implementation of Brandes’ algorithm, on the reordered graph. We observe that with PARTEDGE,
the mean speedup is 2.01X at the expense of 10% mean error w.r.t. the exact parallel Brandes’ al-
gorithm for computing the top-k vertices. The speedup is on account of a reduction in the total
work done by 50%, since with PARTEDGE we process only 50% edges in every iteration of Brandes’
algorithm. The error in top-k vertex computation is contingent on which edges are removed from
the original graph. Since the removal of edges impacts connectivity and structure of the graph, the
effect of edge removal on error also depends on the characteristics of the original graph. As we
can observe, with the removal of nearly 50% edges, the error is ~10% for power-law graphs, while
it is ~9% for road-networks and 12% for random graph. In contrast to PARTEDGE, with the DynRR
technique, we achieve <6% error for a speedup ~2x.

Evaluation of Source Selection Techniques in PARTBC. We next evaluate the effect of the
approximate techniques for selection of sources (Section 5). We do so by using the parallel imple-
mentation of Brandes’ algorithm (from Baseline-I) executed on the modified graph layout, post
vertex-renumbering as the new baseline. We call this Baseline-III. In Table 6, we report the com-
parison of the PARTBC techniques with Baseline-III. This is the geomean speedup and error of the
different techniques in PARTBC computed across k € {100,500, 1,000, 2,000, 3,000, 5,000} for all
graphs in our testbed. a denotes the fraction of vertices chosen as sources.

We observe that the techniques achieve high speedups for smaller . This is due to fewer outer-
loop iterations. However, as one would expect, the approximation error is also high. As « increases,
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both the speedup and the error reduce. Out of the six variants, Random and DynRR achieve the least
error. The effective difference across techniques, however, reduces with increasing «; for instance,
beyond a = 0.8, all the techniques achieve similar accuracy.

We observe that for & > 0.5, the overall mean error is less than 6% for techniques Random, RRR,
Dyn, DynRR, with decent speedups. Thus, these techniques bear the potential to estimate the set
of top-k vertices faster with a small accuracy loss for a variety of graphs.

To examine the robustness of the proposed techniques, we study the effect of varying k, on error.
Figure 7 shows the variation in error with k on different graphs for various proposed techniques
for @ = 0.5. As a general trend across all graphs, the absolute error in top-k increases with k.

For @ = 0.5, the error is least for road-network graph (RNUS)—below 6% across all techniques,
while the error is highest for random graph (RNM). In the case of RNUS graph, RRR maintains
the least error (below 2%) for all k. Random, Dyn, and DynRR follow in closely with error less than
3%. The increase in error with k is slow for these four techniques. RRR leads to the least error
for road-networks, because a road-network has low, uniform vertex degrees. Thus selecting the
vertices in a round robin fashion selects favorable source vertices. Random technique performs
well on road-networks, since vertices have similar characteristics.

We note that for power-law graphs (e.g., SP, RMT), the error is small (below 6%) for Random,
Dyn, and DynRR techniques. The error for these three techniques decreases rapidly with increase
in k, and the errors are also very similar for large k. Up to k = 2,000, Random has the least error
(below 4%), but for higher k, the Dyn and DynRR have the least errors (below 4%). In general, DynRR
performs well for larger k for all graphs, because the initial set of seed vertices selected using round
robin technique provides a fair share of the BC values to the various important vertices.
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Among all the graphs, random graph (e.g., RNM) exhibits the highest error. This is because of a
lack of well-defined structure. It is noteworthy that for DynRR (Figure 8), the error does not exceed
7% for any of the graphs for & = 0.5 for reasonably large k in our setup. The deviation in error is
also small. Overall, DynRR emerges as a very stable technique that works consistently well across
all but random graphs, for all k. We observed similar trends in error for o = 0.8.

6.2 Effects of the Fraction of Source Vertices

Figures 10 and 11 show the variation in error with « for various proposed techniques for k = 500
and k = 5,000, respectively. For each graph, for each technique, the error decreases with increase
in a, since a higher value of « translates to performing more work and moving closer to the exact
version (a = 1).

For k = 500, we observe that for road-network graphs (e.g., RNUS), beyond « = 0.3 the change
in error is small and very gradual, for Dyn and DynRR. The error is also low. The small slope of the
curve suggests that there is little change in the relative ordering of the BC scores of the vertices
on choosing more source vertices. This also hints at the scalability of these techniques for road-
networks. We may terminate Brandes’ algorithm after 30% iterations, without incurring high error,
and gain immensely in execution time.

The error tends to decrease slowly in case of SP and RMT graphs with DynRR, RRR, Dyn and
Random for a > 0.5. For RNM graph, it is seen that there is a steep decrease in error values with
increase in a. This shows that relative ordering of vertices continues to change even for high a.
Thus, for random graphs, exact BC needs to be computed for top-k. Overall, we observe that the
technique DynRR has quite good accuracy for most of the graphs (Figure 9) for @ > 0.5. At @ = 0.5,
the error is less than 5% for most of the graphs and as « increases the percentage error decreases,
which indicates the robustness and the scalability of the technique. We observed similar trends for
higher values of k.

The results suggest that the techniques DynRR and Random are comparable. In practice, both
the techniques have their advantages. DynRR is faster than Random because of a lower overhead
in computing the stopping condition. However, a benefit Random has over DynRR is simplicity.
In contrast to DynRR, Random does not require an involved and difficult (for the average user)
parameter selection based on the input graph characteristics.

6.3 Controlling the Number of Outerloop Iterations

For all the techniques in PARTBC, the number of outerloop iterations can be tuned by setting an
appropriate stopping criterion. For every technique, the speedup and error are tied to the number
of outerloop iterations. As discussed in Section 5, the stopping criterion is a function of C; and
t. In general ¢t dominates C; in governing the number of iterations as the top-¢ vertices typically
stabilize in P (>C;) iterations.

The trends in Figures 10 and 11 can be used as guidelines for setting C; and ¢ for different types
of graphs. In general, to get good speedups and accuracy across all the proposed techniques, C;
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and ¢ should both be set to a small value for road-networks. For power-law graphs, C; and ¢ should
be higher.

In our experiments, for DynRR, we assign C; = 5 and ¢ = 5 for power-law graphs, and C; = 4
and t = 3 for road-networks. This resulted in execution of 55% outerloop iterations for LG graph
and 28% iterations for the RNUS graph using DynRR. However, for Random, we assign C; = 10 and
t = 50 for power-law graphs, and C; = 5 and ¢ = 40 for road-networks. This resulted in execution
of 60% outerloop iterations for LG graph and 35% iterations for the RNUS graph using Random.

6.4 Discussion on Quality of the Reported Top-k Vertices

To assess the quality of the top-k vertices reported by the proposed techniques, we consider two
measures: (i) The mean exact rank of the vertices in top-k that are not reported using the approx-
imate techniques. (ii) The mean exact rank of the vertices that are not in the exact top-k but are
erroneously included.

We argue, on empirical evidence, that the vertices we report as top-k are indeed important. We
observe that the top-k vertices we fail to include in the set of top-k vertices are the ones that have
their true ranks close to k, based on their exact BC scores. So, our techniques miss out on less

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 12. Pub. date: November 2021.



12:22

Top-100 =S Top-1000 =3 Top-3000 21
Top-500 NN Top-2000 1 Top-5000 ——1

100
90 |-

80
70
60
50
40 |
30
20 -
10 -

Avg. Vertex Rank Missed (%)

i
Avg. Vertex Rank Missed (%)

FB SP LG RMT RNUS
Graphs

(a) a =0.2

RNM

et al.

100
90 |-

Avg. Vertex Rank Missed (%)
o
3
T

Top-100 S Top-1000 =1 Top-3000 2
Top-500 M Top-2000 C— Top-5000 ——1

Fig. 12. Average rank of top-k vertices missed (expressed as a percentage of k).

FB SP LG RMT
Graphs
(c)a=0.8

K/(Avg. Erroneous Vertex Rank Included)

= Top 100 55 Top 1000 T Top 3000 =23
e Top500 M Top 2000 = Top 8000 =)
(]
?-é 100 -
2 L o ]
= 90
5 eop .
5 T0r .
2 eo0f .
g 50 -
2 a0t 1
£
=} 30 -
ih 20 -
-
51 10 ~
2
0
FB SP LG RMT RNUS RNM
Graphs
(a) @ =0.2

S. Singh
i S5 oo 5 oo 5
100 o
90 -
80 -
70 - -
60 -
50 -
a0 | 4
30 -
20 -
10 - -
0
FB SP LG RMT RNUS RNM
Graphs
(b)a=0.5
RNUS RNM

Top-100 S Top-1000 =31 Top-3000 2
Top-500 M Top-2000 T Top-5000 1

FB SP LG RMT RNUS
Graphs
(b) & = 0.5

K/(Avg. Erroneous Vertex Rank Included)
o
3
T

Top-100 S Top-1000 =1 Top-3000 2
Top-500 M. Top-2000 C— Top-5000 ——1

Fig. 13. Average rank of vertices erroneously included in top-k (expressed as k / Avg. rank).

FB SP LG RMT
Graphs
(c)ax=0.8

RNUS RNM

important vertices among the exact top-k. Figure 12 shows the average true rank of the vertices
we missed for DynRR. The average rank is expressed as a fraction of k. The vertices having lower
ranks are more important. In the plot, values close to 100% depict that the vertices we missed
have an actual rank closer to k. We observe that for low « (Figure 12(a)), we miss more number
of important vertices for all types of graphs. This is due to high error in the reported top-k. For
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a = 0.5 (Figure 12(b)), the values lie between 90% and 100% for all graphs except for random graphs,
for which the error in top-k is high. Following a similar trend, the accuracy approaches 100% for
a = 0.8 (Figure 12(c)) for all the graphs. Among the graphs, road network is the most stable for
all k for all @, while random graph is the most unstable. In general, we observe that average rank
of the vertices missed (as a percentage of k) is proportional to the accuracy of the technique. This
shows that we miss the vertices having true ranks in the range (accuracy% of k, k).

We further observe that the vertices we erroneously include in the top-k vertices are also among
the important vertices although they are not in the exact top-k vertices. To verify this, we observed
the following ratio:

k

true avg. rank of erroneous vertices

Figure 12 shows this ratio, expressed as a percentage, for DynRR. The higher the R, the closer is
the average rank of the erroneous vertices to k. From the plot, we can compute the range of the
true ranks of the erroneously included vertices to be within ((1 — 1/R) X k) away from k on an
average. For a = 0.5 (Figure 13(b)), the values are in the range 90%-100% for all the graphs except
random graph. The true rank of the vertices erroneously included in the top-k are in the range
[k+1, o_%e X k), that is, [k + 1, 1.1 X k). For higher «, the range shrinks. For & = 0.8 (Figure 13(c)),
the range reduces to [k + 1, 1.02 X k) on an average for all graphs except random graph. Since the

true rank of the erroneous vertices is close to k, the vertices we include in the top-k are important.

7 CONCLUSIONS

In this article, we presented a systematic study of lightweight heuristics for selecting source ver-
tices in Brandes’ algorithm that enable us to determine the relative ordering among the vertices
quicker. We established that preferentially picking low-degree neighbors of high-degree vertices
in Brandes’ algorithm ensures that all graph vertices receive a sizeable fraction of their respective
eventual BC scores in the early iterations; thus, facilitating quicker estimation of the top-k vertices.
We demonstrated empirically that our proposed techniques compute the top-k BC vertices 2.5X
faster compared to the exact parallel Brandes’ algorithm, with a mean error of less than 6% on
graphs of varying characteristics. We identified that in most real-world graphs, the high-degree
vertices that are connected to other high-degree vertices tend to have a high relative BC score. In
addition, the vertices that are connected to well-connected clusters within the graph (e.g., a cut
vertex) also have a high BC score.

Our techniques have a high precision and recall. These are robust and work well for larger val-
ues of k. Further, we proposed a novel vertex-renumbering scheme to make the graph layout more
structured, having better locality, to enable efficient coalesced accesses to/from global memory in
parallel Brandes’ algorithm. This resulted in a mean speedup of 1.15X. The renumbering scheme
is beneficial to other parallel graph algorithms on GPU that employ vertex-centric push-style im-
plementations.
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