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1. Shimura varieties

1.1. The complex points. In their simplest form, Shimura varieties are
just locally symmetric varieties associated to certain connected reductive groups
over Q. So let G be a connected reductive group over Q satisfying the conditions
in 1.5 of Deligne’s article [17]. To be precise, we are actually fixing G and a
morphism h : C× −→ G(R) that is algebraic over R. Let us just remark here that
these conditions are quite restrictive. For example, they exclude the group GLn

as soon as n ≥ 3. The groups G that we want to think about are, for example, the
group GSp2n (the general symplectic group of a symplectic space of dimension
2n over Q) or the general unitary group of a hermitian space over a quadratic
imaginary extension of Q. The conditions on G ensure that the symmetric space X
of G(R) is a hermitian symmetric domain; so X has a canonical complex structure.
Remember that X = G(R)/K′∞, where K′∞ is the centralizer in G(R) of h(C×). In
the examples we consider, K′∞ is the product of a maximal compact subgroup K∞
of G(R) and of A∞ := A(R)0, where A is the maximal Q-split torus of the center
of G. (To avoid technicalities, many authors assume that the maximal R-split
torus in the center of G is also Q-split. We will do so too.)

∗This text was written while I was working as a Professor at the Harvard mathematics de-
partment and supported by the Clay Mathematics Institute as a Clay Research Fellow. I would
like to thank the referee for their useful comments about the first version of this paper.
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The locally symmetric spaces associated to G are the quotients Γ \ X , where
Γ is an arithmetic subgroup of G(Q), that is, a subgroup of G(Q) such that, for
some (or any) Z-structure on G, Γ ∩ G(Z) is of finite index in Γ and in G(Z).
If Γ is small enough (for example, if it is torsion-free), then Γ \ X is a smooth
complex analytic variety. In fact, by the work of Baily and Borel ([4]), it is even a
quasi-projective algebraic variety.

In this text, we prefer to use the adelic point of view, as it leads to somewhat
simpler statements. So let K be a compact open subgroup of G(Af ), where Af =
Ẑ⊗Z Q is the ring of finite adeles of Q. This means that K is a subgroup of G(Af )
such that, for some (or any) Z-structure on G, K ∩ G(Ẑ) is of finite index in K
and in G(Ẑ). Set

SK(C) = G(Q) \ (X ×G(Af )/K),

where G(Q) acts on X ×G(Af )/K by the formula (γ, (x, gK)) 7−→ (γ · x, γgK).
This space SK(C) is related to the previous quotients Γ \ X in the following

way. By the strong approximation theorem, G(Q) \G(Af )/K is finite. Let (gi)i∈I

be a finite family in G(Af ) such that G(Af ) =
∐

i∈I G(Q)giK. For every i ∈ I,
set Γi = G(Q) ∩ giKg−1

i . Then the Γi are arithmetic subgroups of G(Q), and

SK(C) =
∐
i∈I

Γi \ X .

In particular, we see that, if K is small enough, then SK(C) is the set of complex
points of a smooth quasi-projective complex algebraic variety, that we will denote
by SK. These are the Shimura varieties associated to G and h : C× −→ G(R)
(over C). From now on, we will assume always that the group K is small enough.

Remark 1. If G = GL2, then SK is a modular curve, or rather, a finite disjoint
union of modular curves; it parametrizes elliptic curves with a certain level struc-
ture (depending on K). Higher-dimensional generalizations of this are the Shimura
varieties for the symplectic groups G = GSp2n; they are called the Siegel modular
varieties, and parametrize principally polarized abelian varieties with a level struc-
ture (depending on K). Some other Shimura varieties have been given a name.
For example, if G is the general unitary group of a 3-dimensional hermitian vector
space V over an imaginary quadratic extension of Q such that V has signature
(2, 1) at infinity, then SK is called a Picard modular surface.

1.2. The projective system and Hecke operators. If K′ ⊂ K
are two open compact subgroups of G(Af ), then there is an obvious projection
SK′

(C) −→ SK(C), and it defines a finite étale morphism SK′ −→ SK; if K′ is
normal in K, then this morphism is Galois, with Galois group K/K′. So we can see
the Shimura varieties SK as a projective system (SK)K⊂G(Af ) indexed by (small
enough) open compact subgroups of G(Af ), and admitting a right continuous
action of G(Af ).

More generally, if K′,K are two open compact subgroups of G(Af ) and g ∈
G(Af ), then we get a correspondence [K′gK] : SK∩g−1K′g −→ SK × SK′

in the
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following way. The first map is the obvious projection SK∩g−1K′g −→ SK, and the
second map is the composition of the obvious projection SK∩g−1K′g −→ Sg−1K′g

and of the isomorphism Sg−1K′g ∼−→ SK′
. This is the Hecke correspondence asso-

ciated to g (and K,K′).
Let H∗ be a cohomology theory with coefficients in a ring A that has good

fonctoriality properties (for example, Betti cohomology with coefficients in A) and
K be an open compact subgroup of G(Af ). Then the Hecke correspondences define
an action of the Hecke algebra at level K, HK(A) := C(K \G(Af )/K, A) (of bi-
K-invariant functions from G(Af ) to A, with the algebra structure given by the
convolution product), on the cohomology H∗(SK). For every g ∈ G(Af ), we make
11KgK ∈ HK(A) act by the correspondence [Kg−1K].

Let H(A) =
⋃

KHK(A) = C∞
c (G(Af ), A) (the algebra of locally constant func-

tions G(Af ) −→ A with compact support) be the full Hecke algebra, still with
the product given by convolution. Then we get an action of H(A) on the limit
lim−−→
K

H∗(SK). So the A-module lim−−→
K

H∗(SK) admits an action of the group G(Af ).

1.3. Canonical models. Another feature of Shimura varieties is that they
have so-called canonical models. That is, they are canonically defined over a num-
ber field E, called the reflex field, that depends only on G and the morphism
h : C× −→ G(R) (in particular, it does not depend on the open compact sub-
group K of G(Af )). We will use the same notation SK for the model over E.
Here “canonically” means in particular that the action of G(Af ) on the projective
system (SK)K is defined over E. The theory of canonical models was begun by
Shimura, and then continued by Deligne, Borovoi, Milne and Moonen (cf [17], [18],
[13], [46], [47], [51]).

So, if the cohomology theory H∗ happens to make sense for varieties over E (for
example, it could be `-adic étale cohomology, with or without supports), then the
limit lim−−→

K

H∗(SK) admits commuting actions of G(Af ) and of Gal(E/E). Another

way to look at this is to say that the cohomology group at finite level, H∗(SK),
admits commuting actions of HK(A) and of Gal(E/E).

The goal is now to understand the decomposition of those cohomology groups
as representations of G(Af )×Gal(E/E) (or of HK(A)×Gal(E/E)).

1.4. Compactifications and the choice of cohomology theory.
If the Shimura varieties SK are projective, which happens if and only if the group
G is anisotropic over Q, then the most natural choice of cohomology theory is
simply the étale cohomology of SK. There is still the question of the coefficient
group A. While the study of cohomology with torsion or integral coefficients is also
interesting, very little is known about it at this point, so we will restrict ourselves
to the case A = Q`, where ` is some prime number.

Things get a little more complicated when the SK are not projective, and this is
the case we are most interested in here. We can still use ordinary étale cohomology
or étale cohomology with compact support, but it becomes much harder to study
(among other things, because we do not have Poincaré duality or the fact that
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the cohomology is pure - in Deligne’s sense - any more). Nonetheless, it is still an
interesting problem.

Another solution is to use a cohomology theory on a compactification of SK.
The author of this article knows of two compactifications of SK as an algebraic
variety over E (there are many, many compactifications of SK(C) as a topological
space, see for example the book [11] of Borel and Ji) :

(1) The toroidal compactifications. They are a family of compactifications of
SK, depending on some combinatorial data (that depends on K); they can
be chosen to be very nice (i.e. projective smooth and with a boundary that
is a divisor with normal crossings).

(2) The Baily-Borel (or minimal Satake, or Satake-Baily-Borel) compactification
S

K
. It is a canonical compactification of SK, and is a projective normal

variety over E, but it is very singular in general.

See the book [3] by Ash, Mumford, Rapoport and Tai for the construction of
the toroidal compactifications over C, the article [4] of Baily and Borel for the
construction of the Baily-Borel compactification over C, and Pink’s dissertation
[55] for the models over E of the compactifications.

The problem of using a cohomology theory on a toroidal compactification is
that the toroidal compactifications are not canonical, so it is not easy to make the
Hecke operators act on their cohomology. On the other hand, while the Baily-Borel
compactification is canonical (so the Hecke operators extend to it), it is singular,
so its cohomology does not behave well in general. One solution is to use the
intersection cohomology (or homology) of the Baily-Borel compactification. In the
next section, we say a little more about intersection homology, and explain why it
might be a good choice.

2. Intersection homology and L2 cohomology

2.1. Intersection homology. Intersection homology was invented by Goresky
and MacPherson to study the topology of singular spaces (cf [24], [25]). Let X be
a complex algebraic (or analytic) variety of pure dimension n, possibly singular.
Then the singular homology groups of X (say with coefficients in Q) do not satisfy
Poincaré duality if X is not smooth. To fix this, Goresky and MacPherson modify
the definition of singular homology in the following way. First, note that X ad-
mits a Whitney stratification, that is, a locally finite decomposition into disjoint
connected smooth subvarieties (Si)i∈I satisfying the Whitney condition (cf [24]
5.3). For every i ∈ I, let ci = n − dim(Si) be the (complex) codimension of Si.
Let (Ck(X))k∈Z be the complex of simplicial chains on X with coefficients in a
commutative ring A. The complex of intersection chains (ICk(X))k∈Z is the sub-
complex of (Ck(X))k∈Z consisting of chains c ∈ Ck(X) satisfying the allowability
condition : For every i ∈ I, the real dimension of c∩Si is less than k− ci, and the
real dimension of ∂c∩ Si is less than k− 1− ci. The intersection homology groups
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IHk(X) of X are the homology groups of (ICk(X))k∈Z. (Note that this is the
definition of middle-perversity intersection homology. We can get other interesting
intersection homology groups of X by playing with the bounds in the definition of
intersection chains, but they will not satisfy Poincaré duality.)

Intersection homology groups satisfy many of the properties of ordinary singular
homology groups Hk(X) on smooth varieties. Here are a few of these properties :

• They depend only on X, and not on the stratification (Si)i∈I .

• If X is smooth, then IHk(X) = Hk(X).

• If X is compact, then the IHk(X) are finitely generated.

• If the coefficients A are a field, the intersection homology groups satisfy the
Künneth theorem.

• If U ⊂ X is open, then there are relative intersection homology groups
IHk(X, U) and an excision long exact sequence.

• It is possible to define an intersection product on intersection homology,
and, if X is compact and A is a field, this will induce a nondegenerate linear
pairing

IHk(X)× IH2n−k(X) −→ A.

(I.e., there is a Poincaré duality theorem for intersection homology.)

• Intersection homology satisfies the Lefschetz hyperplane theorem and the
hard Lefschetz theorem (if A is a field for hard Lefschetz).

Note however that the intersection homology groups are not homotopy invari-
ants (though they are functorial for certain maps of varieties, called placid maps).

2.2. L2 cohomology of Shimura varieties and intersection ho-
mology. Consider again a Shimura variety SK(C) as in section 1 (or rather, the
complex manifold of its complex points). For every k ≥ 0, we write Ωk

(2)(S
K(C))

for the space of smooth forms ω on SK(C) such that ω and dω are L2. The
L2 cohomology groups H∗(2)(S

K(C)) of SK(C) are the cohomology groups of the
complex Ω∗(2). These groups are known to be finite-dimensional and to satisfy

Poincaré duality, and in fact we have the following theorem (remember that S
K

is
the Baily-Borel compactification of SK) :

Theorem 2.1. There are isomorphisms

Hk
(2)(S

K(C)) ' IH2d−k(S
K
(C), R),

where d = dim(SK). Moreover, these isomorphisms are equivariant under the
action of HK(R). (The Hecke algebra acts on intersection homology because the
Hecke correspondences extend to the Baily-Borel compactifications and are still
finite, hence placid.)
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This was conjectured by Zucker in [67], and then proved (independently) by
Looijenga ([44]), Saper-Stern ([61]) and Looijenga-Rapoport ([45]).

So now we have some things in favour of intersection homology of the Baily-
Borel compactification : it satisfies Poincaré duality and is isomorphic to a natural
invariant of the Shimura variety. We will now see another reason why L2 co-
homology of Shimura varieties (hence, intersection homology of their Baily-Borel
compactification) is easier to study than ordinary cohomology : it is closely re-
lated to automorphic representations of the group G. (Ordinary cohomology of
Shimura varieties, or cohomology with compact support, is also related to auto-
morphic representations, but in a much more complicated way, see the article [22]
of Franke.)

2.3. L2 cohomology of Shimura varieties and discrete auto-
morphic representations. For an introduction to automorphic forms, we
refer to the article [10] of Borel and Jacquet and the article [54] of Piatetski-
Shapiro. Let A = Af ×R be the ring of adeles of Q. Very roughly, an automorphic
form on G is a smooth function f : G(A) −→ C, left invariant under G(Q),
right invariant under some open compact subgroup of G(Af ), K∞-finite on the
right (i.e., such that the right translates of f by elements of K∞ generate a fi-
nite dimensional vector space; remember that K∞ is a maximal compact subgroup
of G(R)) and satisfying certain growth conditions. The group G(A) acts on the
space of automorphic forms by right translations on the argument. Actually, we
are cheating a bit here. The group G(Af ) does act that way, but G(R) does not;
the space of automorphic forms is really a Harish-Chandra (g,K∞)-module, where
g is the Lie algebra of G(C). An automorphic representation of G(A) (or, really,
G(Af ) × (g,K∞)) is an irreducible representation that appears in the space of
automorphic forms as an irreducible subquotient.

Note that there is also a classical point of view on automorphic forms, where
they are seen as smooth functions on G(R), left invariant by some arithmetic
subgroup of G(Q), K∞-finite on the right and satisfying a growth condition. From
that point of view, it may be easier to see that automorphic forms generalize
classical modular forms (for modular forms, the group G is GL2). The two points
of view are closely related, cf. [10] 4.3 (in much the same way that the classical
and adelic points of view on Shimura varieties are related). In this article, we
adopt the adelic point of view, because it makes it easier to see the action of Hecke
operators.

Actually, as we are interested only in discrete automorphic representations
(see below for a definition), we can see automorphic forms as L2 functions on
G(Q) \G(A). We follow Arthur’s presentation in [1]. First, a word of warning :
the quotient G(Q)\G(A) does not have finite volume. This is due to the presence
of factors isomorphic to R>0 in the center of G(R). As in 1.1, let A∞ = A(R)0,
where A is the maximal R-split torus in the center of G. Then G(Q) \G(A)/A∞
does have finite volume, and we will consider L2 functions on this quotient, instead
of G(Q) \G(A).

So let ξ : A∞ −→ C× be a character (not necessarily unitary). Then ξ extends
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to a character G(A) −→ C×, that we will still denote by ξ (cf. I.3 of Arthur’s
introduction to the trace formula, [2]). Let L2(G(Q) \ G(A), ξ) be the space of
measurable functions f : G(Q) \G(A) −→ C such that :

(1) for every z ∈ A∞ and g ∈ G(A), f(zg) = ξ(z)f(g);

(2) the function ξ−1f is square-integrable on G(Q) \G(A)/A∞.

Then the group G(A) acts on L2(G(Q) \ G(A), ξ) by right translations on
the argument. By definition, a discrete automorphic representation of G is an
irreducible representation of G(A) that appears as a direct summand in L2(G(Q)\
G(A), ξ). It is known that the multiplicity of a discrete automorphic representation
π in L2(G(Q) \G(A), ξ) is always finite; we denote it by m(π). We also denote by
Πdisc(G, ξ) the set of discrete automorphic representations on which A∞ acts by
ξ. For the fact that discrete automorphic representations are indeed automorphic
representations in the previous sense, see [10] 4.6. (The attentive reader will have
noted that automorphic representations are not actual representations of G(A) -
because G(R) does not act on them - while discrete automorphic representations
are. How to make sense of our statement that discrete automorphic representations
are automorphic is also explained in [10] 4.6.)

Now, given the definition of discrete automorphic representations and the fact
that SK(C) = G(Q) \G(A)/(A∞K∞ ×K), it is not too surprising that the L2 co-
homology of the Shimura variety SK(C) should be related to discrete automorphic
representations. Here is the precise relation :

Theorem 2.2. (Borel-Casselman, cf. [9] theorem 4.5) Let K be an open compact
subgroup of G(Af ). Then there is a HK(C)-equivariant isomorphism

H∗(2)(S
K(C))⊗R C '

⊕
π∈Πdisc(G,1)

H∗(g,A∞K∞;π∞)m(π) ⊗ πK
f .

(This is often called Matsushima’s formula when SK(C) is compact.)
We need to explain the notation. First, the “1” in Πdisc(G, 1) stands for the

trivial character of A∞. (We have chosen to work with the constant sheaf on SK,
in order to simplify the notation. In general, for a non-trivial coefficient system on
SK(C), other characters of A∞ would appear.) Let π ∈ Πdisc(G, 1). Then π is an
irreducible representation of G(A) = G(R)×G(Af ) so it decomposes as a tensor
product π∞ ⊗ πf , where π∞ (resp. πf ) is an irreducible representation of G(R)
(resp. G(Af )). We denote by πK

f the space of K-invariant vectors in the space of
πf ; it carries an action of the Hecke algebra HK(C). Finally, H∗(g,A∞K∞;π∞),
the (g,A∞K∞)-cohomology of π∞ (where g is as before the Lie algebra of G(C)),
is defined in chapter I of the book [12] by Borel and Wallach.

This gives another reason to study the intersection homology of the Baily-Borel
compactifications of Shimura varieties : it will give a lot of information about
discrete automorphic representations of G. (Even if only about the ones whose
infinite part has nontrivial (g,A∞K∞)-cohomology, and that is a pretty strong
condition.)
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Note that there is an issue we have been avoiding until now. Namely, in 1.3,
we wanted the cohomology theory on the Shimura variety to also have an action
of Gal(E/E), where E is the reflex field (i.e., the field over which the varieties
SK have canonical models). It is not clear how to endow the L2 cohomology of
SK(C) with such an action. As we will see in the next section, this will come
from the isomorphism of H∗(2)(S

K(C)) with the intersection homology of S
K
(C)

and from the sheaf-theoretic interpretation of intersection homology (because this
interpretation will also make sense in an étale `-adic setting).

3. Intersection (co)homology and perverse sheaves

We use again the notation of section 2.

3.1. The sheaf-theoretic point of view on intersection homol-
ogy. Intersection homology of X also has a sheaf-theoretical interpretation. (At
this point, we follow Goresky and MacPherson and shift from the homological to
the cohomological numbering convention.) For every open U in X, let ICk(U) be
the group of (2n− k)-dimensional intersection chains on U with closed support. If
U ′ ⊂ U , then we have a map ICk(U) −→ ICk(U ′) given by restriction of chains. In
this way, we get a sheaf ICk on X. Moreover, the boundary maps of the complex
of intersection chains give maps of sheaves δ : ICk −→ ICk+1 such that δ ◦ δ = 0,
so the ICk form a complex of sheaves IC∗ on X. This is the intersection complex
of X. Its cohomology with compact support gives back the intersection homology
groups of X :

Hk
c (X, IC∗(X)) = IH2n−k(X).

Its cohomology groups IHk(X) := Hk(X, IC∗(X)) are (by definition) the intersec-
tion cohomology groups of X.

3.2. Perverse sheaves. This point of view has been extended and gener-
alized by the invention of perverse sheaves. The author’s favourite reference for
perverse sheaves is the book by Beilinson, Bernstein and Deligne ([6]).

To simplify, assume that the ring of coefficients A is a field. Let D(X) be the
derived category of the category of sheaves on X. This category is obtained from
the category of complexes of sheaves on X modulo homotopy by introducing formal
inverses of all the quasi-isomorphisms, i.e. of all the morphisms of complexes that
induce isomorphisms on the cohomology sheaves. (This is a categorical analogue
of a ring localization.) Note that the objects of D(X) are still the complexes of
sheaves, we just added more morphisms. The homological functors on the category
of complexes of sheaves (such as the various cohomology functors and the Ext and
Tor functors) give functors on D(X), and a morphism in D(X) is an isomorphism
if and only if it is an isomorphism on the cohomology sheaves.

This category D(X) is still a little big, and we will work with the full subcat-
egory Db

c(X) of bounded constructible complexes. If C∗ is a complex of sheaves,
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we will denote its cohomology sheaves by HkC∗. Then C∗ is called bounded if
HkC∗ = 0 for k << 0 and k >> 0. It is called constructible if its cohomology
sheaves HkC∗ are constructible, that is, if, for every k ∈ Z, there exists a stratifi-
cation (Si)i∈I of X (by smooth subvarieties) such that HkC∗

|Si
is locally constant

and finitely generated for every i.
For every point x of X, we denote by ix the inclusion of x in X.

Definition 1. A complex of sheaves C∗ in Db
c(X) is called a perverse sheaf if it

satisfies the following support and cosuport conditions :

(1) Support : for every k ∈ Z,

dimC{x ∈ X|Hk(i∗xC∗) 6= 0} ≤ −k.

(2) Cosupport : for every k ∈ Z,

dimC{x ∈ X|Hk(i!xC∗) 6= 0} ≤ k.

We denote by P (X) the category of perverse sheaves on X.

Remark 2. Let x ∈ X. There is another way to look at the groups i∗xHkC∗ and
i!xHkC∗. Choose an (algebraic or analytic) embedding of a neighbourhood of x
into an affine space Cp, and let Bx denote the intersectioon of this neighbourhood
and of a small enough open ball in Cp centered at x. Then

Hk(i∗xC∗) = Hk(Bx, C∗)

Hk(i!xC∗) = Hk
c (Bx, C∗).

Remark 3. As before, we are only considering one perversity, the middle (or
self-dual) perversity. For other perversities (and much more), see [6].

Note that perverse sheaves are not sheaves but complexes of sheaves. However,
the category of perverse sheaves satisfies many properties that we expect from a
category of sheaves, and that are not true for Db

c(X) (or D(X)). For example,
P (X) is an abelian category, and it is possible to glue morphisms of perverse
sheaves (more precisely, categories of perverse sheaves form a stack, say on the
open subsets of X, cf. [6] 2.1.23).

3.3. Intermediate extensions and the intersection complex.
Now we explain the relationship with the intersection complex. First, the intersec-
tion complex is a perverse sheaf on X once we put it in the right degree. In fact
:

Proposition 3.1. The intersection complex IC∗(X) is an object of Db
c(X) (i.e.,

it is a bounded complex with constructible cohomology sheaves), and :

(1) For every k 6= 0,

dimC{x ∈ X|Hk(i∗xIC
∗(X)) 6= 0} < n− k.



10

(2) For every k 6= 2n,

dimC{x ∈ X|Hk(i!xIC
∗(X)) 6= 0} < k − n.

(3) If U is a smooth open dense subset of X, then IC∗(X)|U is quasi-isomorphic
(i.e., isomorphic in Db

c(X)) to the constant sheaf on U .

Moreover, the intersection complex is uniquely characterized by these properties
(up to unique isomorphism in Db

c(X)).

In particular, IC∗(X)[n] (that is, the intersection complex put in degree −n)
is a perverse sheaf on X.

Even better, it turns out that every perverse sheaf on X is, in some sense,
built from intersection complexes on closed subvarieties of X. Let us be more
precise. Let j : X −→ Y be a locally closed immersion. Then there is a functor
j!∗ : P (X) −→ P (Y ), called the intermediate extension functor, such that, for
every perverse sheaf K on X, the perverse sheaf j!∗K on Y is uniquely (up to
unique quasi-isomorphism) characterized by the following conditions :

(1) For every k ∈ Z,

dimC{x ∈ Y −X|Hk(i∗xj!∗K)) 6= 0} < −k.

(2) For every k ∈ Z,

dimC{x ∈ Y −X|Hk(i!xj!∗K) 6= 0} < k.

(3) j∗j!∗K = K.

Remark 4. Let us explain briefly the name “intermediate extension”. Although
it is not clear from the way we defined perverse sheaves, there are “perverse coho-
mology” functors pHk : Db

c(X) −→ P (X). In fact, it even turns out that Db
c(X)

is equivalent to the derived category of the abelian category of perverse sheaves
(this is a result of Beilinson, cf. [5]). We can use these cohomology functors to
define perverse extension functors pj! and pj∗ from P (X) to P (Y ). (For example,
pj! = pH0j!, where j! : Db

c(X) −→ Db
c(Y ) is the “extension by zero” functor be-

tween the derived categories; likewise for pj∗). It turns out that, from the perverse
point of view, the functor j! : Db

c(Y ) −→ Db
c(X) is right exact and the functor

j∗ : Db
c(Y ) −→ Db

c(X) is left exact (that, if K is perverse on X, pHkj!K = 0 for
k > 0 and pHkj∗K = 0 for k < 0). So the morphism of functors j! −→ j∗ induces
a morphism of functors pj! −→ pj∗. For every perverse sheaf K on X, we have :

j!∗K = Im(pj!K −→ pj∗K).

Now we come back to the description of the category of perverse sheaves on X.
Let F be a smooth connected locally closed subvariety of X, and denote by iF its
inclusion in X. If F is a locally constant sheaf on F , then it is easy to see that
F [dim F ] is a perverse sheaf on F ; so iF !∗F [dim F ] is a perverse sheaf on X (it has
support in F , where F is the closure of F in X). If the locally constant sheaf F
happens to be irreducible, then this perverse sheaf is a simple object in P (X). In
fact :
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Theorem 3.2. The abelian category P (X) is artinian and noetherian (i.e., every
object has finite length), and its simple objects are all of the form iF !∗F [dim F ],
where F is as above and F is an irreduible locally constant sheaf on F .

Finally, here is the relationship with the intersection complex. Let iF : F −→ X
be as above. Then, if F is the constant sheaf on F , the restriction to F of the
perverse sheaf iF !∗F [dim F ] is isomorphic to IC∗(F )[dim F ]. In fact, we could
define the intersection complex on a (possibly singular) variety Y with coefficients
in some locally constant sheaf on the smooth locus of Y , and then the simple
objects in P (X) would all be intersection complexes on closed subvarieties of X.

3.4. `-adic perverse sheaves. Now we come at last to the point of this
section (to make the Galois groups Gal(E/E) act on the intersection (co)homology
of S

K
(C)).

Note that the definitions of the category of perverse sheaves and of the interme-
diate extension in 3.2 and 3.3 would work just as well in a category of étale `-adic
sheaves. So now we take for X a quasi-separated scheme of finite type over a field
k, we fix a prime number ` invertible in k and we consider the category Db

c(X, Q`)
of bounded `-adic complexes on X. (To avoid a headache, we will take k to be
algebraically closed or finite, so the simple construction of [6] 2.2.14 applies.) Then
we can define an abelian subcategory of perverse sheaves P (X) in Db

c(X, Q`) and
intermediate extension functors j!∗ : P (X) −→ P (Y ) as before (see [6] 2.2). In
particular, we can make the following definition :

Definition 2. Suppose that X is purely of dimension n, and let j : U −→ X
be the inclusion of the smooth locus of X in X. Then the (`-adic) intersection
complex of X is

IC∗(X) = (j!∗Q`,U [n])[−n],

where Q`,U is the constant sheaf Q` on U . The `-adic intersection cohomology
IH∗(X, Q`) of X is the cohomology of IC∗(X).

3.5. Application to Shimura varieties. We know that the Shimura
variety SK and its Baily-Borel compactification S

K
are defined over the number

field E. So we can form the `-adic intersection cohomology groups IH∗(S
K

E , Q`).
They admit an action of Gal(E/E). Moreover, if we choose a field isomorphism
Q` ' C, then the comparison theorems between the étale topology and the classical
topology will give an isomorphism IH∗(S

K

E , Q`) ' IH∗(S
K
(C), C) (cf. chapter 6 of

[6]).

The isomorphism of 2.2 between intersection homology of S
K
(C) and L2 co-

homology of SK(C), as well as the duality between intersection homology and
intersection cohomology (cf. 3.1), thus give an isomorphism

IH∗(S
K

E , Q`) ' H∗(2)(S
K(C))⊗ C,
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and this isomorphism is equivariant under the action of HK(C). We know what
L2 cohomology looks like as a representation of HK(C), thanks to the theorem of
Borel and Casselman (cf. 2.3).

Using this theorem and his own trace invariant formula, Arthur has given a
formula for the trace of a Hecke operator on H∗(2)(S

K(C)) ⊗ C (cf. [1]). This for-
mula involves global volume terms, discrete series characters on G(R) and orbital
integrals on G(Af ).

The problem now is to understand the action of the Galois group Gal(E/E).
We have a very precise conjectural description of the intersection cohomology of
S

K
as a HK(C)×Gal(E/E)-module, see for example the articles [34] of Kottwitz

and [7] of Blasius and Rogawski.
In the next sections, we will explain a strategy to understand how at least part

of the Galois group Gal(E/E) acts.

4. Counting points on Shimura varieties

We want to understand the action of the Galois group Gal(E/E) on the intersection
cohomology groups IH∗K := IH∗(S

K

E , Q`). It is conjectured that this action is
unramified almost everywhere. Thus, by the Chebotarev density theorem, it is
theoretically enough to understand the action of the Frobenius automorphisms at
the places of E where the action is unramified, and one way to do this is to calculate
the trace of the powers of the Frobenius automorphisms at these places. However,
for some purposes, it is necessary to look at the action of the decomposition groups
at other places. This is part of the theory of bad reduction of Shimura varieties,
and we will not talk about this here, nor will we attempt to give comprehensive
references to it. (Let us just point to the book [31] of Harris and Taylor.)

In general, intersection cohomology can be very hard to calculate. First we
will look at simpler objects, the cohomology groups with compact support H∗c,K :=
H∗c(S

K
E

, Q`). Assume that the Shimura varieties and their compactifications (the
Baily-Borel compactifications and the toroidal compactifications) have “good”
models over an open subset U of SpecOE , and write SK for the model of SK.
(It is much easier to imagine what a “good” model should be than to write down
a precise definition. An attempt has been made in [49] 1.3, but it is by no means
optimal.) Then, by the specialization theorem (SGA 4 III Exposé XVI 2.1), and
also by Poincaré duality (cf. SGA 4 III Exposé XVIII), for every finite place p of
E such that p ∈ U and p 6 |`, there is a Gal(Ep/Ep)-equivariant isomorphism

H∗c,K = H∗c(S
K
E

, Q`) ' H∗c(SK
Fp

, Q`),

where Fp is the residue field of OE at p. In particular, the Gal(E/E)-representation
H∗c,K is unramified at p.

Now, by Grothendieck’s fixed point formula (SGA 4 1/2 Rapport), calculating
the trace of powers of the Frobenius automorphism on H∗c(SK

Fp
, Q`) is the same as

counting the points of SK over finite extensions of Fp.
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Langlands has given a conjectural formula for this number of points, cf. [40]
and [34]. Ihara had earlier made and proved a similar conjecture for Shimura
varieties of dimension 1. Although this conjecture is not known in general, it is
easier to study for a special class of Shimura varieties, the so-called PEL Shimura
varieties. These are Shimura varieties that can be seen as moduli spaces of abelian
with certain supplementary structures (P : polarizations, E : endomorphisms, i.e.
complex multiplication by certain CM number fields, and L : level structures). For
PEL Shimura varieties of types A and C (i.e., such that the group G is of type A
or C), Langlands’s conjecture had been proved by Kottwitz in [35]. Note that all
the examples we gave in 1.1 are of this type. Conveniently enough, the modular
interpretation of PEL Shimura varieties also gives a model of the Shimura variety
over an explicit open subset of SpecOE .

In fact, Kottwitz has done more than counting points; he has also counted the
points that are fixed by the composition of a power of the Frobenius automor-
phism and of a Hecke correspondence (with a condition of triviality at p). So,
using Deligne’s conjecture instead of Grothendieck’s fixed point formula, we can
use Kottwitz’s result to understand the commutating actions of Gal(E/E) and of
HK(Q`) on H∗c,K. (Deligne’s conjecture gives a simple formula for the local terms
in the Lefschetz fixed formula if we twist the correspondence by a high power of the
Frobenius. It is now a theorem and has been proved independently by Fujiwara in
[23] and Varshavsky in [63]. In the case of Shimura varieties, it also follows from
an earlier result of Pink in [57].)

Using his counting result, Kottwitz has proved the conjectural description of
IH∗K for some simple Shimura varieties (cf. [36]). Here “simple” means that the
Shimura varieties are compact (so intersection cohomology is cohomology with
compact support) and that the phenomenon called “endoscopy” (about which we
are trying to say as little as possible) does not appear.

One reason to avoid endoscopic complications was that a very important and
necessary result when dealing with endoscopy, the so-called “fundamental lemma”,
was not available at the time. It now is, thanks to the combined efforts of many
people, among which Kottwitz ([33]), Clozel ([15]), Labesse ([38], [16]), Hales ([30]),
Laumon, Ngo ([43], [53]), and Waldspurger ([64], [65], [66]).

Assuming the fundamental lemma, the more general case of compact PEL
Shimura varieties of type A or C (with endoscopy playing a role) was treated
by Kottwitz in [34], admitting Arthur’s conjectures on the descripton of discrete
automorphic representations of G. Actually, Kottwitz did more : he treated the
case of the (expected) contribution of H∗c,K to IH∗K. Let us say a word about
Arthur’s conjectures. Arthur has announced a proof of a suitable formulation of
his conjectures for classical groups (that is, symplectic and orthogonal groups),
using the stable twisted trace formula. His proof is expected to adapt to the case
of unitary groups (that is, the groups that give PEL Shimura varieties of type A),
but this adaptation will likely require a lot of effort.

Let us also note that the case of compact PEL Shimura varieties of type A
should be explained in great detail in the book project led by Michael Harris ([8]).

This does not tell us what to do in the case where SK is not projective. First
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note that the modular interpretation gives us integral models of the Shimura va-
rieties but not of their compactifications. So this is the first problem to solve.
Fortunately, it has been solved : See the article [21] of Deligne and Rapoport for
the case of modular curves, the book [14] by Chai and Faltings for the case of
Siegel modular varieties, Larsen’s article [42] for the case of Picard modular vari-
eties, and Lan’s dissertation [39] for the general case of PEL Shimura varieties of
type A or C. This allows us to apply the specialization theorem to intersection
cohomology. In particular, we get the fact that the Gal(E/E)-representation IH∗c,K

is unramified almost everywhere, and, at the finite places p where it is unramified,
we can study it by considering the reduction modulo p of the Shimura variety and
its compactifications.

Next we have to somehow describe the intersection complex. If the group G
has semi-simple Q-rank 1, so it has only one conjugacy class of rational parabolic
subgroups, then the Baily-Borel compactification is simpler (it only has one kind
of boundary strata) and we can obtain the intersection complex by a simple trun-
cation process from the direct image on S

K
of the constant sheaf on SK. The

conjectural description of IH∗K is know for the cases G = GL2 (see the book [20])
and the case of Picard modular surfaces, i.e., G = GU(2, 1) (see the book [41]).
In the general case of semi-simple Q-rank 1, Rapoport has given in [58] a formula
for the trace of a power of the Frobenius automorphism (at almost every place) on
the stalks of the intersection complex.

In the general case, the intersection complex is obtained from the direct image
of the constant sheaf on SK by applying several nested truncations (cf. [6] 2.1.11),
and it is not clear how to see the action of Frobenius on the stalks of this thing.
We will describe a solution in the next section.

5. Weighted cohomology

In this section, j will be the inclusion of SK in its Baily-Borel compactification
S

K
, and j∗ will be the derived direct image functor. Here is the main idea :

instead of seeing the intersection complex IC∗(S
K
) as a truncation of j∗Q`,SK by

the cohomology degree (on various strata of S
K − SK), we want to see it as a

truncation by Frobenius weights (in the sense of Deligne). This idea goes back to
the construction by Goresky, Harder and MacPherson of the weighted cohomology
complexes in a topological setting (i.e., on a non-algebraic compactification of the
set of complex points SK(C)).

5.1. The topological case. As we have mentioned before, the manifold
SK(C) has a lot of non-algebraic compactifications (these compactifications are
defined for a general locally symmetric space, and not just for a Shimura vari-
ety). The one used in the construction of weighted cohomology is the reduc-
tive Borel-Serre compactification SK(C)RBS (cf. [11] III.6 and III.10; the reduc-
tive Borel-Serre compactification was originally defined by Zucker in [67], though
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not under that name). The reductive Borel-Serre compactification admits a map
π : SK(C)RBS −→ S

K
(C) that extends the identity on SK(C); we also denote by

j̃ the inclusion of SK(C) in SK(C)RBS .
The boundary SK(C)RBS−SK(C) of SK(C)RBS has a very pleasant description.

It is a union of strata, each of which is a locally symmetric space for the Levi
quotient of a rational parabolic subgroup of G; moreover, the closure of a stratum
is its reductive Borel-Serre compactification. (A lot more is known about the
precise geometry of the strata, see, e.g., [27] 1D).

The weighted cohomology complexes are bounded constructible complexes Wµ

of C or Q-vector spaces on SK(C)RBS extending the constant sheaf on SK(C),
constructed by Goresky, Harder and MacPherson in [27] (they give two construc-
tions, one for C-coefficients and one for Q-coefficients, and then show that the two
constructions agree). They depend on a weight profile µ (which is a function from
the set of relative simple roots of G to Z + 1

2 ). The basic idea of weighted coho-
mology is to consider the complex j̃∗C (or j̃∗Q) on SK(C)RBS and to truncate it,
not by the cohomology degree as for the intersection complex, but by the weights
of certain tori. More precisely, on a strata S corresponding to a Levi subgroup
M, we truncate by the weights of the Q-split torus AM in the center of M (the
group AM (Q) acts on j̃∗C|S by what Goresky, Harder and MacPherson call Looi-
jenga Hecke correspondences). The weight profile specifies, for every strata, which
weights to keep.

Of course, it is not that simple. The complex j̃∗C is an object in a derived
category (which is not abelian but triangulated), and it is not so easy to truncate
objects in such a category. To get around this problem, the authors of [27] construct
an incarnation of j̃∗C, that is, an explicit complex that is quasi-isomorphic to j̃ ∗C
and on which the tori AM (Q) still act. (In fact, they construct two incarnations,
one of j̃∗C and one of j̃∗Q).

The upshot (for us) is that the functor π∗ : Db
c(S

K(C)RBS) −→ Db
c(S

K
(C))

sends two of these weighted cohomology complexes to the intersection complex on
S

K
(C) (they are the complexes corresponding to the lower and upper middle weight

profiles). On the other hand, the weighted cohomology complexes are canonical
enough so that the Hecke algebra acts on their cohomology, and explicit enough so
that it is possible to calculate the local terms when we apply the Lefschetz fixed
point formula to them. This is possible but by no means easy, and is the object
of the article [26] of Goresky and MacPherson. Then, in the paper [29], Goresky,
Kottwitz and MacPherson show that the result of [26] agrees with the result of
Arthur’s calculation in [1].

The problem, from our point of view, is that this construction is absolutely not
algebraic, so it is unclear how to use it to understand the action of Gal(E/E) on
IH∗(SK, Q`).

Remark 5. There is another version of weighted cohomology of locally symmetric
spaces : Franke’s weighted L2 cohomology, defined in [22]. In his article [52], Nair
has shown that Franke’s weighted L2 cohomology groups are weighted cohomology
groups in the sense of Goresky-Harder-MacPherson.
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5.2. Algebraic construction of weighted cohomology. First, the
reductive Borel-Serre compactification is not an algebraic variety, so what we are
really looking for is a construction of the complexes π∗W

µ, directly on the Baily-
Borel compactification. This looks difficult for several reasons. The Baily-Borel
compactification is very singular, which is one of the reasons why Goresky, Harder
and MacPherson use the less singular reductive Borel-Serre compactification in
the first place. Besides, the boundary strata in S

K
correspond to maximal rational

parabolic subgroups of G, and several strata in SK(C)RBS can be (rather brutally)
contracted to the same stratum in S

K
(C). It is possible to give a description of

the stalks of π∗W
µ (see the article [28] of Goresky, Harder, MacPherson and Nair),

but it is a rather complicated description, much more complicated than the simple
description of the stalks of Wµ.

The idea is that the action of the Looijenga Hecke correspondences should cor-
respond in some way to the action of the Frobenius automorphism in an algebraic
setting. This is actually a very natural ideal. Looijenga himself uses the fact that
the eigenspaces of the Looijenga Hecke correspondences are pure in the sense of
mixed Hodge theory (cf. [44] 4.2), and we know that the weight filtration of Hodge
theory corresponds to the filtration by Frobenius weights in `-adic cohomology (cf.
for example [6] 6.2.2). So the correct algebraic analogue of the truncations of [27]
should be a truncation by Frobenius weights (in the sense of Deligne’s [19], see also
chapter 5 of [6]). As a consequence, the most natural place to define the algebraic
analogues of the weighted cohomology complexes is the reduction modulo p of an
integral model of S

K
, where p is a finite place of E where good integral models

exist. (But see the remark at the end of this subsection.)
In fact, it turns out that we can work in a very general setting. Let Fq be a finite

field, and X be a quasi-separated scheme of finite type over Fq. Then we have the
category of mixed `-adic complexes Db

m(X, Q`) on X, cf. [6] 5.1. (Here “mixed”
refers to the weights of the complexes, and the weights are defined by considering
the action of the Frobenius automorphisms on the stalks of the complexes; for more
details, see [19] or [6] 5). In particular, we get a category Pm(X) of mixed `-adic
perverse sheaves on X as a subcategory of Db

m(X, Q`). One important result of the
theory is that mixed perverse sheaves admit a canonical weight filtration. That is,
if K is an object in Pm(X), then it has a canonical filtration (w≤aK)a∈Z such that
each w≤aK is a subperverse sheaf of K of weight ≤ a and such that K/w≤aK is
of weight > a.

This functor w≤a on mixed perverse sheaves does not extend to Db
m(X, Q`) in

the näıve way; that is, the inclusion functor from the category of mixed sheaves of
weight ≤ a to Db

m(X, Q`) does not admit a right adjoint. But we can extend w≤a

in another way. Consider the full subcategory wD≤a of Db
m(X, Q`) whose objects

are the complexes K such that, for every k ∈ Z, the k-th perverse cohomology
sheaf pHkK is of weight ≤ a. (If we wanted to define the complexes of weight ≤ a,
we would require pHkK to be of weight ≤ a + k.) Then wD≤a is a triangulated
subcategory of Db

m(X, Q`), and the inclusion wD≤a ⊂ Db
m(X, Q`) does admit

a right adjoint, which we denote by w≤a (because it extends the previous w≤a).
Likewise, we can define a full triangulated subcategory wD≥a of Db

m(X, Q`), whose
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inclusion into Db
m(X, Q`) admits a left adjoint w≥a (extending the functor K 7−→

K/w≤a−1K on mixed perverse sheaves). This is explained in section 3 of [48].
Then the analogue of the theorem that π∗W

µ is the intersection complex (for a
well-chosen weight profile µ) is the :

Theorem 5.1. ([48] 3.1.4) Let j : U −→ X a nonempty open subset of X and K
be a pure perverse sheaf of weight a on U . Then there are canonical isomorphisms
:

j!∗K ' w≤aj∗K ' w≥aj!K.

More generally, if we have a stratification on X, we can choose to truncate by
different weights on the different strata (cf. [48] 3.3); in this way, we get analogues
of the other weighted cohomology complexes, or rather of their images on the
Baily-Borel compactification. We also get somewhat more explicit formulas for
w≤a, and hence the intersection complex ([48] 3.3.4 and 3.3.5), analogous to the
formula of [6] 2.1.11, but where all the truncations by the cohomology degree have
been replaced by weight truncations. The reason this makes such a big difference is
that the weight truncation functors w≤a and w≥a are exact in the perverse sense.
(Interestingly enough, it turns out that, in this setting, the weighted cohomology
complexes are canonically defined and have nothing to do with Shimura varieties.
In fact, there is another application of these ideas, to Schubert varieties, see [50].)

Remark 6. We want to make a remark about the construction of the weighted co-
homology complexes on the canonical models S

K
(and not their reduction modulo

a prime ideal). The construction of [48] 3 is very formal and will apply in every cat-
egory that has a notion of weights and a weight truncation on “perverse” objects.
For example, it should apply without any changes to Saito’s derived category of
mixed Hodge modules. In fact, Arvind Nair has just informed the author that he
has indeed been able to construct weighted cohomology complexes in the category
of mixed Hodge modules, and to prove that the weighted cohomology complexes
he obtained on the Baily-Borel compactification of a Shimura variety are the push-
forwards of the Goresky-Harder-MacPherson weighted cohomology complexes on
the reductive Borel-Serre compactification. As an application of this, he was able
to prove that Franke’s spectral sequence ([22] 7.4) is a spectral sequence of mixed
Hodge structures (for the locally symmetric spaces that are Shimura varieties).

Now suppose that X is a quasi-separated scheme of finite type over a number
field. We can define `-adic perverse sheaves on X, and we can also define a notion of
weights for `-adic complexes on X (cf. Deligne’s [19] 1.2.2 and Huber’s article [32]).
The problem is that mixed perverse sheaves on X do not have a weight filtration
in general (because number fields have more Galois cohomology than finite fields).
To circumvent this problem, we could try to work in the derived category of the
abelian category of mixed perverse sheaves on X admitting a weight filtration.
Then it is not obvious how to construct the 4/5/6 operations on these categories.
It might be possible to copy Saito’s approach in [59] (where he constructs and
studies the derived category of mixed Hodge modules); see also Saito’s preprint
[60]. As far as the author knows, this has not been worked out anywhere.
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5.3. Application to the cohomology of Shimura varieties. Once
we have the interpretation of the intermediate extension functor given in the pre-
vious subsection, it becomes surprisingly easy to calculate the trace of Frobenius
automorphisms on the stalks of IC∗(S

K
). We should mention that one reason it

is so easy is that one of the main ingredients, a description of the restriction to
the boundary strata of the complex j∗Q` (where j is again the inclusion of SK in
S

K
) has been provided by Pink in [56]. And of course, the whole calculation rests

on Kottwitz’s calculations for the cohomology with compact support (in [35]). In-
cluding Hecke correspondences in the picture is just a matter of bookkeeping, and
the final result of the Lefschetz trace formula appears in [49] 1.7.

This is not the end of the story. It still remains to compare the result of the
Lefschetz fixed point formula with Arthur’s invariant trace formula, in order to try
to prove the result conjectured in 10.1 of Kottwitz’s article [34]. This is basically
a generalization of part I of [34] to include the non-elliptic terms. Given the work
done by Kottwitz in [34] and [37], it requires no new ideas, but still takes some
effort. In the case of general unitary groups over Q, it is the main object of the
book [49] (along with some applications).

Even then, we are not quite done. If we want to prove the conjectural descrip-
tion of IH∗(S

K
, Q`) given in [34] or [7], we still need to know Arthur’s conjectures.

Some applications that do not depend on Arthur’s conjectures are worked out
in the book [49] (subsection 8.4). They use a weak form of base change from
unitary groups to general linear groups, for the automorphic representations that
appear in the L2 cohomology of Shimura varieties. (If we knew full base change,
then we would probably also know Arthur’s conjectures.) Let us mention the two
main applications :

• The logarithm of the L-function of the intersection complex is a linear combi-
nation of logarithms of L-functions of automorphic representations of general
linear groups ([49] corollary 8.4.5). In fact, we can even get similar formulas
for the L-functions of the HK(Q`)-isotypical components of the intersection
cohomology, as in [49] 7.2.2. However, the coefficients in these linear combi-
nations are not explicit, and in particular [49] does not show that they are
integers.

• We can derive some cases of the global Langlands correspondence (cf. [49]
8.4.9, 8.4.10). Note however that one of the conclusions of [49] is that, in
the end, we do not get more Galois representations in the cohomology of
noncompact unitary varieties than we would in the cohomology of compact
unitary Shimura varieties. In particular, the cases of the Langlands corre-
spondence that are worked out in [49] can also be obtained using compact
Shimura varieties and gluing of Galois representations (cf. the last chapters
of the book project [8] or the article [62] of Shin; note that Shin also considers
places of bad reduction).
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[50] S. Morel, Note sur les polynômes de Kazhdan-Lusztig, to appear in Mathematische
Zeitschrift.

[51] B. Moonen, Models of Shimura varieties in mixed characteristics, Galois representa-
tions in arithmetic algebraic geometry (Durham, 1996), 267–350, London Math. Soc.
Lecture Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998.

[52] A. Nair, Weighted cohomology of arithmetic groups Ann. of Math. (2) 150 (1999),
no. 1, pp. 1–31.

[53] B. C. Ngo, Le lemme fondamental pour les algèbres de Lie, submitted,
arXiv:0801.0446

[54] I. Piatetski-Shapiro, Classical and adelic automorphic forms. An introduction, in
Automorphic forms, representations, and L-functions (Proc. Symposia in Pure Math.,
volume 33, 1977), part 1, pp. 185–188.

[55] R. Pink, Arithmetical compactification of mixed Shimura varieties, dissertation, Bon-
ner Mathematische Schriften 209 (1989).

[56] R. Pink, On `-adic sheaves on Shimura varieties and their higher direct images in
the Baily-Borel compactification, Math. Ann. 292 (1992), pp. 197–240.

[57] R. Pink, On the calculation of local terms in the Lefschetz-Verdier trace formula and
its application to a conjecture of Deligne, Annals of Math., 135 (1992), pp. 483–525.

[58] M. Rapoport, On the shape of the contribution of a fixed point on the boundary :
The case of Q-rank one, in [LR], p 479-488, with an appendix by L. Saper and M.
Stern, pp. 489–491.

[59] M. Saito, On the derived category of mixed Hodge modules, Proc. Japan Acad. Ser.
A Math. Sci. 62 (1986), no. 9, pp. 364–366.



22

[60] M. Saito, On the Formalism of Mixed Sheaves, preprint RIMS n784 (1991),
http://arxiv.org/abs/math/0611597

[61] L. Saper et M. Stern, L2-cohomology of arithmetic varieties, Annals of Math. 132
(1990), n1, pp. 1–69.

[62] S. W. Shin, Galois representations arising from some compact Shimura varieties, to
appear in Annals of Math.

[63] Y. Varshavsky, A proof of a generalization of Deligne’s conjecture, Electron. Res.
Announc. Amer. Math. Soc. 11 (2005), pp. 78–88.

[64] J.-L.Waldspurger, Le lemme fondamental implique le transfert, Comp. Math. 105
(1997), n◦2, pp. 153–236.

[65] J.-L.Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math.
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