Modelling Reactive Electrified Interfaces: From DFT to Force Fields

Stephan N. STEINMANN

Importance of Solid/Liquid Interfaces

The Wishlist Accurate energies Steinmann, Michel, Sautet PCCP, 2016, 18, 31850. Phase space sampling Solid Liquid **Metal** surfaces Interfaces **Benchmark** Pt data LABORATOIRE Wikipedia

Gautier, Steinmann, Fleurat-Lessard, Michel, Sautet, PCCP. 2015, 17, 28921.

Osawa and co-workers, Langmuir 1998, 14, 6992.

System for Method Validation: Pyridine@Au(111) Experimental Data

1.5 V: No pyridine^[2]

0.1 V vs SHE (flat) 0.6 V vs SHE (vertical) -0.15 to 0.15 V 0.4 to 0.5 V Flat^[1,2,3] Vertical^[1,2,3]

[1] Wieckowski and co-workers, *J. Electroanal. Chem.* **1993** 355, 147.
[2] Wieckowski and co-workers, *Langmuir* **1990** 6, 974.
[3] Osawa and co-workers, *Langmuir* **1998**, *14*, 6992.

< -0.5 V ≧ No pyridine^[1,3] ♀

Pyridine@Au(111) Homogenous Background Countercharge

Neurock et al., PRB 2006, 73, 165401; Filhol, PCCP 2011, 13, 7675.

Steinmann and Sautet, JPCC, 2016.

Pyridine@Au(111)

Solid: Homogeneous background (SC)

Broken: Boltzmann distribution of an electrolyte (PB)

Electrolyte distribution improves agreement

Steinmann and Sautet, JPCC, 2016.

QM/MM

QM: Metal surface+adsorbate MM: Electrolyte

Comparison of PB with MM Electrolyte (1 M)

- Distributions are remarkably similar
- **×** PB electrolyte looses fine structure and approaches the surface too closely

Accuracy of implicit solvent models for metal surfaces unknown

Steinmann, Michel, Sautet PCCP, 2016, 18, 31850.

How to assess different force fields?

PBE-dDsC, 400 eV cutoff, 4 layers, VASP.

Which force fields are available?

GAL17 qualitatively correct orientational preference

Steinmann, Ferreira de Morais, Goetz, Fleurat-Lessard, Iannuzzi, Sautet, Michel, *J Chem Theory Comput.* **2018**, 14, 3238.

GAL17: Solid/liquid interface

1 ns MM: 2 CPUh 10 ps QM: 140'000 CPUh (2 months real time on 96 CPUs)

10 Random 8 Occurences 6 4 2 0 20 40 0 60 80 100 120 140 160 180 $\theta / ^{\circ}$

DF1 GAL 17

Orientations in 1st layer (10 ps)

10 ps are not enough for convergence Competition between water-water and Pt/water delicate No definite answers about the "true" structure (yet)

12

Conclusions

Pyridine adsorption: Electrolyte description is non-trivial

Standard force fields are inaccurate for Metal/Water

GAL17 is a novel Water/Pt(111) force field with improved accuracy Available in AmberTools18

> The community needs more Method development and validation

Acknowledgements

Paul Clabaut and Ruben Staub

Carine Michel

Andreas Götz

Paul Fleurat-Lessard

ANR

Philippe Sautet

UC San Diego Marcella Iannuzzi

ENS DE LYON

TOTAL

