ALGO1 2021-2022

Examen du 14 janvier 2022

Seul document autorisé: une feuille A4 manuscrite. Justifier soigneusement vos réponses. Ne répondre aux questions * que si vous n'avez que cela à faire. On note $[n] := \{1, \ldots, n\}$.

- Exercice 1 NP-complétude. On suppose admis dans cette question que 3-SAT est NP-complet.
 - 1. Montrer que décider s'il existe un stable (ensemble de sommets deux à deux non-adjacents) de taille k dans un graphe G est NP-complet.
 - 2. Déduire de la question précédente que décider s'il existe un vertex-cover (ensemble de sommets qui intersecte toutes les arêtes) de taille k dans un graphe G est NP-complet.
 - 3. L'entrée du problème de couverture est une collection de n sous-ensembles X_1, \ldots, X_n de [n] et un entier k. Déduire de la question précédente que décider s'il existe une famille de k parties choisies dans X_1, \ldots, X_n dont l'union est [n] est NP-complet.
- Exercice 2 Point Bonus. Les cinq exercices suivants correspondent à cinq paradigmes: Glouton, diviser pour régner, algorithme randomisé, programmation dynamique, recherche locale (mais ils ne sont pas cités dans le bon ordre...). Retrouver la bonne bijection.
- Exercice 3 Paradigme 1. On dit qu'un tableau C[1, ..., m] est un soustableau d'un tableau A[1, ..., n] s'il existe une fonction strictement croissante fde [m] dans [n] telle que C[i] = A[f(i)] pour tout i = 1, ..., m. Si de plus f est de la forme f(i) = i + k pour une constante k, on dit que C est un facteur de
 - 1. Proposer un algorithme en $O(n^2)$ qui admet en entrée deux tableaux A et B de taille n et retourne la longueur d'un plus grand facteur commun.
 - 2. Même question pour sous-tableau commun. En déduire un algorithme qui calcule une plus longue sous-suite croissante dans un tableau d'entiers.
 - 3. * La généralisation directe à deux matrices A et B conduit à deux problèmes: plus grande sous-matrice carrée commune (lignes et colonnes pas forcément consécutifs) et plus grand bloc carré commun (lignes et colonnes consécutifs). Quelle est la complexité de ces deux problèmes?
- Exercice 4 Paradigme 2. Une inversion dans un tableau A[1, ..., n] d'entiers deux à deux distincts est un couple i < j tel que A[i] > A[j].
 - 1. Proposer un algorithme en $O(n.\log n)$ (ou au pire en $O(n.\log^2 n)$) qui calcule le nombre d'inversions d'un tableau A en entrée.
 - 2. * Lorsque les valeurs de A[1, ..., n] sont au plus n^3 , montrer que l'on peut calculer la parité du nombre d'inversions en O(n).

ALGO1 2021-2022

- Exercice 5 - Paradigme 3. On se donne n sous-ensembles X_1, \ldots, X_n de [n]. Une couverture est une collection de X_i dont l'union est [n]. La densité d'un ensemble non vide $Y \subseteq [n]$ est le maximum de $|Y \cap X_i|/|Y|$ pour $i = 1, \ldots, n$.

- 1. Montrer que s'il existe un ensemble de densité $\varepsilon > 0$, alors toute couverture a taille au moins $1/\varepsilon$.
- 2. A présent, si tous les ensembles Y ont densité au moins $\varepsilon > 0$, montrer que l'on peut en temps polynomial trouver une couverture de taille $(\ln n)/\varepsilon$. (On rappelle que $\ln(1+x) \le x$).
- 3. Que peut-on dire du problème de couverture?
- 4. * Quelle est la complexité de calculer un sous-ensemble de densité minimale?
- Exercice 6 Paradigme 4. Un réseau de neurones de Hopfield est une pondération entière w de toutes les paires d'entiers distincts de [n]. Ainsi, pour tout $i \neq j$, $w_{ij} = w_{ji}$ est un entier positif ou négatif. Une configuration c est une fonction c de [n] dans $\{-1,1\}$ (il y a donc 2^n configurations). On dit que c est stable si pour tout $i \in [n]$ on a $\sum_{j \in [n] \setminus \{i\}} c(i)c(j)w_{ij} \geq 0$.
 - 1. Pour tout [n], proposer un réseau de Hopfield avec tous les w_{ij} négatifs et admettant au moins n configurations stables.
 - 2. Proposer un algorithme faiblement polynomial (i.e. polynomial en $\sum |w_{ij}|$ et pas en $\sum \log |w_{ij}|$) qui calcule une configuration stable.
 - 3. * Est-ce que votre algorithme est fortement polynomial?
- Exercice 7 Paradigme 5. Votre directeur de stage vient encore d'inventer un nouveau générateur de nombres entiers. Un entier n produit par cette machine est:
 - soit premier. Cas 1.
 - soit admet un entier a premier avec n tel que $a^{n-1} \neq 1 \mod n$. Cas 2.

Il vous charge de trouver un algorithme qui admet en entrée un nombre n issu de son générateur, et qui décide entre ces deux cas. Il exige de plus que le nombre total d'opérations effectuées (multiplications et modulo n) soit au plus c. log n pour une constante c de votre choix.

- 1. Montrer que dans le cas 2, alors pour tout entier b, au moins un élément x parmi $\{b, ab\}$ vérifie $x^{n-1} \neq 1 \mod n$.
- 2. On rappelle que si un entier a est premier avec n, alors la multiplication par a est une bijection dans les entiers modulo n. De plus, si n est premier et n ne divise pas a, alors $a^{n-1} = 1 \mod n$. Proposer un algorithme qui satisfait les exigences de votre directeur (et qu'il ne pourra très certainement jamais prendre en défaut).