Examen 3h

15 Janvier 2025

- Exercice 1 Questions de cours.
 - 1. Expliquer pourquoi on peut construire un tas en temps linéaire.
 - 2. Proposer un algorithme de résolution de 3-SAT en temps $O^*(c^n)$ avec c < 2 et n est le nombre de variables.
- Exercice 2 Question Bonus. Dans cet examen, vous trouverez quatre questions (Paradigme i) pour i=1,2,3,4. Dans cet exercice réalisez la bijection entre les Paradigmes i et les quatre items "NP-difficile", "Polynomial avec un algorithme diviser pour régner", "Polynomial avec un algorithme glouton", "Polynomial avec de la programmation dynamique". Aucune justification n'est demandée ici. Cet exercice est noté ainsi : 2 points si la permutation est exacte, 1 point si l'un des paradigmes est bien associé, 0 sinon. L'espérance est de 2/3 de points si vous répondez au hasard.
- Exercice 3 Chemin Hamiltonien. Un tournoi T = (V, E) est un graphe orienté tel que pour toute paire de sommets distincts $x, y \in V$, l'une des deux arêtes xy ou yx est dans T. Un chemin hamiltonien est une énumération v_1, \ldots, v_n telle que $v_i v_{i+1}$ est une arête pour tout $i = 1, \ldots, n-1$.
 - 1. (Paradigme 1) Quelle est la complexité de calculer un chemin hamiltonien dans un tournoi T sur n sommets, ou de renvoyer FAUX si aucun n'existe?
 - 2. On se donne à présent une fonction de poids ω sur les arêtes de T. Le poids d'un chemin hamiltonien est la somme des $\omega(v_iv_{i+1})$, pour $i=1,\ldots,n-1$. Montrer que calculer un chemin hamiltonien de poids minimal dans un tournoi T est NP-difficile.

- Exercice 4 - Permutation.

- 1. Proposer un algorithme qui tire une permutation aléatoire uniforme de $\{1,\ldots,n\}$.
- 2. Proposer un algorithme qui associe à toute permutation σ de $\{1,\ldots,n\}$ un entier p_{σ} entre 0 et n!-1 (codage), ainsi que l'algorithme de décodage prenant en entrée un tel entier p_{σ} et retournant la permutation σ .
- Exercice 5 Sous-tableau. On se donne en entrée un tableau $T[1, \ldots, n]$ ainsi qu'un entier k.
 - 1. Un sous tableau T' de T réduit aux indices $i_1 < i_2, \dots < i_t$ est k-propre si $i_{j+1} i_j >= k$ pour tout $j = 1, \dots, t-1$. Proposer un algorithme de la meilleure complexité possible pour calculer un sous tableau k-propre dont la somme des entrées $T[i_j]$ est maximale.
 - 2. (Paradigme 2) On se donne à présent une matrice $n \times n$ de pénalités p(i,j) et l'on cherche à calculer un sous tableau dont les entrées sont $i_1 < i_2, \dots < i_t$ qui maximise la somme de ses entrées moins la somme des pénalités $p(i_j, i_{j+1})$ pour $j = 1, \dots, t-1$. Quelle est la complexité de ce problème?

- 3. (Paradigme 3) Sous les mêmes hypothèses, on cherche à calculer un sous tableau dont les entrées sont $i_1 < i_2, \dots < i_t$ qui maximise la somme de ses entrées moins la somme des pénalités $p(i_j, i_\ell)$ pour tous les $1 \le j < \ell \le t$. Quelle est la complexité de ce problème?
- Exercice 6 Ordonnancement. On se donne en entrée un ensemble de n tâches de temps de complétion respectifs $T = [t_1, \ldots, t_n]$. On dispose de plus de m machines et le but est de répartir ces tâches sur ces machines afin de minimiser le temps total d'exécution. En d'autres termes, on veut partitionner les entrées de T en m sous-ensembles T_1, \ldots, T_m de sommes respectives S_1, \ldots, S_m en cherchant à minimiser le maximum des S_i . On note ce problème ORDO(T, m).
 - 1. Montrer que ORDO(T, m) est NP-difficile pour m = 2. On pourra réduire depuis SOMME.
 - 2. (Paradigme 4) Quelle est la complexité d'approximer ORDO(T, m) à un facteur constant 2?
- Exercice 7 Isolation. On se donne un ensemble non vide S de parties de [n]. On considère un tableau $T = [p_1, \ldots, p_n]$ de valeurs entières entre 1 et 2n tirées aléatoirement uniformément et indépendamment. Chaque $X \in S$ a donc un poids p_X correspondant à la somme des p_i , pour $i \in X$. On note min la valeur minimum de p_X , pour $X \in S$. Le lemme d'isolation affirme qu'avec probabilité au moins 1/2, il existe un unique élément $X \in S$ de poids min.

Dans ce problème, nous montrerons d'abord ce lemme, puis nous verrons une application.

- a. Décomposons le tirage de T en tirant les n-1 premières valeurs et en retardant le tirage de p_n . Notons m_1 le poids minimal d'une partie $X \in S$ qui ne contient pas n. Notons aussi m_2 le poids minimal d'une partie $X \in S$ qui contient n (en considérant que $p_n = 0$ car la valeur de p_n n'a pas encore été tirée). Montrer que la probabilité que $p_n = m_1 m_2$ est au plus 1/2n.
- b. Conclure la preuve du lemme d'isolation.
- c. On se donne $M=(m_{i,j})$ une matrice carrée $n\times n$ de 0 et 1 qui possède m entrées 1. On suppose qu'il existe une permutation σ telle que $m_{i,\sigma(i)}=1$ pour tout $i=1,\ldots,n$. Montrer que si on remplace chaque entrée $m_{i,j}=1$ de M par une valeur $2^{p_{i,j}}$ avec $p_{i,j}$ entier tiré uniformément et indépendamment entre 1 et 2m, alors le déterminant de la matrice M' obtenue est non zéro avec probabilité au moins 1/2.
- d. En déduire un algorithme randomisé qui décide si un graphe biparti possède un couplage parfait.
- e. On veut maintenant construire un tel couplage et non plus seulement décider son existence. On suppose que l'on a m machines parallèles (autant que les arêtes du graphe biparti). Proposer un algorithme randomisé parallèle de construction de couplage parfait tel que chaque machine calcule un seul déterminant.