ALGO1 2021-2022

Partiel du 12 novembre 2021

Pas de documents. Justifier vos réponses.

- Exercice 1 - Découpage électoral. Le parti des programmeurs dynamiques (PPD) se présente aux élections sur deux circonscriptions qui regroupent à elles deux un total de n zones (avec n pair). Chaque zone a m électeurs. Le nombre de voix du PPD dans une zone $i \in [n]$ (on note $[n] := \{1, \ldots, n\}$) est estimé à v_i , avec $0 \le v_i \le m$. Le PPD peut choisir à sa guise le regroupement des zones en deux circonscriptions de tailles égales. Un découpage gagnant est une partition de [n] en deux parties sur lesquelles le PPD à la majorité absolue.

Précisément, c'est une partie $I \subseteq [n]$ de taille n/2 telle que $\sum_{i \in I} v_i > m.n/4$ et $\sum_{i \in [n] \setminus I} v_i > m.n/4$.

Par exemple pour n=4 et m=100, si les estimations de vote sont 46,60,55,44, un découpage gagnant est 46+55 et 60+44 (regroupant donc les zones 1 et 3 et les zones 2 et 4).

- 1. Proposer une instance ayant 6 zones telle qu'il existe un unique découpage gagnant (on choisira ici m = 100).
- 2. Proposer un algorithme en $O(n^3m)$ qui calcule tous les nombres possibles de voix des sous-ensembles de n/2 zones.
- 3. Comment décider s'il existe un découpage gagnant en temps polynomial?
- Exercice 2 Tas. Un tableau d'entiers $T[1 \dots n]$ vérifie la propriété de tas en $i \in [n]$ si $T[i] \geq T[2i]$ (lorsque $2i \leq n$) et $T[i] \geq T[2i+1]$ (lorsque $2i+1 \leq n$). On dit que $T[1 \dots n]$ est un tas s'il vérifie la propriété de tas pour tout $i \in [n]$.
 - 1. Montrer que si T est un tas, on peut calculer la quatrième plus grande valeur de T en un nombre constant de lectures d'entrées de T (à préciser).
 - 2. Ecrire ou décrire un algorithme de complexité $O(\log n)$ qui a pour entrée un tableau T vérifiant la propriété de tas pour $i=2,\ldots,n$ et permute ses valeurs pour transformer T en tas. Indication: l'opération élémentaire est l'échange de T[i] avec l'une des valeurs T[2i], T[2i+1].
 - 3. Ecrire ou décrire un algorithme qui permute les valeurs d'un tableau T[1...n] quelconque pour en faire un tas. On étendra itérativement la propriété de tas de l'ensemble $\{k+1,...,n\}$ à l'ensemble $\{k,...,n\}$.
 - 4. * Montrer que la complexité de l'algorithme précédent est linéaire.
- Exercice 3 Indépendant. On se donne un graphe G=(V,E) ainsi qu'une fonction de poids ω positive définie sur les arêtes. Un sous-ensemble d'arêtes F est indépendant si chaque composante connexe de F possède au plus un cycle (i.e. est un arbre ou un arbre plus une arête).
 - 1. Montrer que si G a n sommets, alors un indépendant a au plus n arêtes.

ALGO1 2021-2022

2. Soit F un indépendant. On dit qu'un sommet $v \in V$ est saturé dans F s'il appartient à une composante de F qui possède un cycle. Montrer que si e est une arête de $E \setminus F$ qui ne relie pas deux sommets saturés, alors $F \cup \{e\}$ est indépendant.

- 3. Montrer que l'ensemble des indépendants forme un matroide.
- 4. Proposer un algorithme qui calcule un indépendant de poids maximum (on indiquera surtout comment les composantes connexes sont mises à jour).
- Exercice 4 Polynômes. L'objet de cet exercice est la multiplication rapide de deux polynômes. On appele n-poly un polynôme de degré n-1, donc avec n coefficients. Soient $P = \sum_{i=0}^{n-1} a_i X^i$ et $Q = \sum_{i=0}^{n-1} b_i X^i$ deux n-polys. Leur produit $R = P \times Q$ est un (2n-1)-poly. On note M(n) (resp. A(n)) le nombre de multiplications (resp. d'additions) entre coefficients pour multiplier deux n-polys.
 - 1. Montrer que $M(n) = n^2$ et $A(n) = (n-1)^2$ pour l'algorithme usuel
 - 2. On suppose n pair, $n=2\times m$. On écrit $P=P_1+X^m\times P_2$ et $Q=Q_1+X^m\times Q_2$, où P_1,P_2,Q_1 , et Q_2 sont des m-polys. On définit $R_1=P_1\times Q_1$, $R_2=P_2\times Q_2$, et $R_3=(P_1+P_2)\times (Q_1+Q_2)$ (donc R_1,R_2 , et R_3 sont des (n-1)-polys). Exprimer $R=P\times Q$ en fonction de R_1,R_2 , et R_3
 - 3. Calculer M(n) et A(n), en supposant utiliser l'algorithme usuel pour calculer R_1 , R_2 , et R_3 .
 - 4. On suppose maintenant que $n=2^s$ et on utilise récursivement l'approche précédente. Proposer une formule de récurrence pour M(n) et A(n) avec cet algorithme.
 - 5. Calculer l'ordre de grandeur du M(n) précédent.
- Exercice 5 Arbre binaire. On se donne un arbre binaire A de racine r ayant n noeuds tel que chaque noeud i (interne ou feuille) possède une valeur $v_i > 0$. On note p la hauteur de A, c'est à dire la distance maximale de la racine à une feuille. Pour les problèmes suivants, décrire un algorithme de résolution aussi performant que possible, montrer sa validité, et calculer sa complexité.
 - 1. Calculer un sous-ensemble X de noeuds de valeur totale maximale sans relation de parenté directe (i.e. pour toute paire de noeuds x, y de X le parent de y n'est pas x).
 - 2. Calculer un sous-ensemble X de noeuds de valeur totale maximale sans relation de descendance directe (i.e. tout chemin de la racine à une feuille contient au plus un élément de X).
 - 3. Calculer un minimum local de A (dont la valeur est inférieure ou égale à celles de son enfant gauche, son enfant droit, et de son parent, si applicable).
 - 4. *** Calculer un minimum local dans la grille $n \times n$ en temps O(n).