Optimization Year 2012-2013

Exam 4/29/2013

- Duration 3h. No notes and electronic devices allowed.
Exercises are in somewhat increasing difficulty order. -

- Exercise 1 - Let (P) be the following linear program :

Maximize 3x1 —2x2 +2x3 —4x4
Subject to 2z H+xo +2z3 —x14 < =2
—x2 —x3 S —2
L1,T2,T3,T4 Z 0

a. Solve (P) with the two phase simplex algorithm.
b. Write the dual (D) of (P).

c. Solve (D) geometrically. Is the solution compatible with the one given by the
last dictionary of (P)?

d. Certify the optimality of your solution of (P) via a linear sum of constraints.

- Exercise 2 - The goal is to modify the entries of some array 7" in order that
the new array T” is sorted in increasing order. For instance, if T = [3, 1, 2, 5], one
can increase the second entry by 2 and the third by 1 to obtain T} = [3, 3, 3, 5].
We can also decrease by 3/2 the first one and increase by 1/2 the second to obtain
T; = [1.5,1.5,2,5]. The goal is minimize the total cost added or substracted to
T. For instance T7 costs 3 whereas T4 costs 2.

a. Compute an optimal solution 77 when T' = [2,1, 4, 3], and when T = [4, 3, 2, 1].

b. Model this problem by a linear program (P). We assume here that 7" has 5
entries [a1, a2, as, ay, as).

c. Can the simplex algorithm applied to the program (P) corresponding to the
array [3,1,2,5, 6] return the optimal solution [1.5,1.5,2,5,6] ?

- Exercise 3 - We consider two power plants, each of them producing 800
megawatt. These plants are connected to three cities which respective power
demands are 700, 400 and 500 megawatt. Each plant can freely split its supply
to any of the cities.

The respective transportation costs (per megawatt) in the network are :

Plant 1 | Plant 2
City 1 20 25
City 2 15 10
City 3 10 15

The problem is to minimize the total cost while providing power supply to
the cities.

a. Model by a linear program.
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b. Propose a (handmade) optimal solution of this problem.

c. Show the optimality of your solution via a dual certificate.

- Exercise 4 - In the MAX-2-SAT problem we are given clauses C1,...,C,
of size 1 or 2 with respective positive weights wy, ..., w,,. The goal is to set the
boolean variables x1,...,x, in order to satisfy a subset of these clauses with
maximum total weight.

a. Propose a fractional relaxation of this problem.

b. Show that randomized rounding applied to this relaxation gives a 3/4-approximation
of MAX-2-SAT.

- Exercise 5 - Let M be some real n x m matrix. We denote the column
vectors of M by {Vi,...,V,,}. We assume here that every vector V; is non null.
A subset I of {1,...,m} is independent if the set St of vectors {V; : i € I'} forms
an independent set of vectors, i.e. the rank of St is |I|. To every independent
set I, we associate a point x; of R™ by letting 1 := (2;)1<i<m Where z; =1 if
i € I, and x; = 0 otherwise. The independence polytope IS of M is the convex
hull of the zy, for all independent sets I (including the empty set). Our goal is
to describe IS by a set of constraints. A linear inequality which is satisfied by all
points (x1, ..., xy,) of IS is called a valid inequality. Each inequality corresponds
to a halfspace. We want to find a defining set of valid inequalities, i.e. such that
the intersection of their corresponding halfspaces is exactly IS.

1 0 -1
a. Find a defining set of valid inequalities of IS for the matrix | —1 1 0
0o -1 1
b. The rank of a nonempty subset A of {1,...,m} is the rank of {V; : i € A}.
We denote it by rk(A). The inequality associated to A is ), 4 x; < rk(A).
Show that this inequality is valid for IS.

c. Let us call IS’ the intersection of all inequalities associated to non empty
subsets A and the nonnegativity constraints. Show that the integer points of
IS’ are precisely the points z; for independent sets I.

d. We now consider a vertex x = (21, ...,2m,) of IS. Our goal is to show that it
is integer. A set A is tight if ), , v; = rk(A). Show that if z; is non integer,
then ¢ belongs to a tight set.

e. Show that, if non empty, the intersection of two tight sets is also tight. Hint :
Use submodularity of the rank function, i.e. rk(A) + rk(B) > rk(AU B) +
rk(AN B).

f. Conclude by considering a tight set of minimum size containing a (suppo-
sedly) non integer coordinate of x.

- Exercise 6 - In this exercise, we assume that our graphs always have
at least one edge. Let G be a graph on vertex set V = {1,...,n} and edge set
E. A clique in G is a subset K C V such that ij € E for all distinct ¢,j in K.
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The maximum size of a clique in G is denoted by w(G). A stable set in G is a
subset S C V such that ij ¢ E for all distinct ¢, j in S. The maximum size of a
stable set in G is denoted by «(G). Finally, the chromatic number of G is the
minimum number of stable sets in which the vertices of G can be partitioned.
We denote it by x(G). The goal of this exercise is to give some relaxations of
the chromatic number.

a.

o

The fractional relaxation of y is called the fractional chromatic number and
is denoted by xy. This is the minimum weight one can distribute on some
stable sets of G in such a way that for every vertex v, the sum of the weights
of the stable sets containing v is at least 1. Show that for every graph G, we
have w(G) < x¢(G) < x(G).

. Describe the dual notion of the fractional chromatic number.

Compute the fractional chromatic number of C5, the cycle of length 5.

The second notion is the vector chromatic number, denoted by x,. For this,
we associate to every vertex ¢ of G a unit vector V;, trying to minimize the
maximum for every edge ij of V;.V}. In other words we consider the minimum
¢ such that V;.V; < ¢ for all edge ij of G. The value x,(G) is then equal to
1 —1/c. Show that for every graph G, we have w(G) < x,(G) < x(G).

. Show that the vector chromatic number of C5 is at most V5. Hint : the value

cos(4n/5) = —(1+/5)/4 is generously provided.

The third notion is Lovasz’ theta function, denoted by x;. For this, we maxi-
mize ¢ for which there exists a way to associate to every vertex i of G a unit
vector V;, and some other unit vector V; such that V;.V; > ¢ for all vertices 7,
and V;.V; = 0 for every edge ij of G. The value x;(G) is then equal to 1/c?.
Show that for every graph G, we have w(G) < x;(G) < x(G).

Show that x;(Cs) is at most /5.
What are the relationships between x, x, and x; 7



