Final Exam May 5, 2014.

- Duration 2h. No notes and electronic devices allowed. Exercises are ordered in somewhat increasing difficulty order. -
- Exercise 1 We are given the following linear program P:

- a. Solve the dual of P graphically.
- b. Use complementary slackness to find an optimal solution of P.
- Exercise 2 Use LP-duality to prove Farkas Lemma, i.e. if A is a real $m \times n$ matrix and c be a (column) vector of \mathbb{R}^n , then exactly one of the following is true:
- a. There exists x such that $Ax \geq 0$ and $c^Tx < 0$.
- b. There exists $y \ge 0$ such that $A^T y = c$.
- **Exercise 3 -** We are given a family of n axis-parallel rectangles R_i in the plane, where $i=1,\ldots,n$. Each rectangle R_i is characterized by a 4-uple of reals (a_i,b_i,c_i,d_i) , where $a_i \leq b_i$ and $c_i \leq d_i$, such that the four corners of R_i are respectively the points (a_i,c_i) ; (a_i,d_i) ; (b_i,c_i) ; (b_i,d_i) .

A rectangle stabbing is a set of vertical and horizontal lines such that each rectangle is traversed by at least one line. The goal is to find a rectangle stabbing with a minimum number of lines. Formally we want to minimize j+k such that there exists real coordinates x_1, \ldots, x_j and y_1, \ldots, y_k for which:

For every rectangle R_i , there exists some x_ℓ such that $a_i \leq x_\ell \leq b_i$ or there exists some y_ℓ such that $c_i \leq y_\ell \leq d_i$.

- a. Show that we can restrict to a finite set of possible choices for the coordinates of the lines in the rectangle stabbing problem.
- b. Propose an LP-relaxation of the problem.
- c. We denote by OPT the optimal value of the rectangle stabbing problem, and by OPT^* the optimal value of your relaxation. Show an example where OPT^* is strictly less than OPT. Try to make OPT/OPT^* as large as possible.
- d. ** (if you have finished and get bored) What about the computational complexity of the rectangle stabbing problem?
- **Exercise 4 -** We are given a directed graph D = (V, A) with one source s and one sink t.

Optimization Year 2013-2014

a. Propose a linear program P which corresponds to the fractional relaxation of the shortest directed path problem from s to t.

- b. Write the dual D of P.
- c. Propose a sensible interpretation of the integer solutions of D (hence providing lower bounds for the shortest path problem).
- Exercise 5 Alice and Bob are playing a generalization of the Paper/Scissor/Stone game with n objects instead of three. Each game issue is either a 1 point victory for Alice or for Bob, or in the case in which they have chosen the same object, the result is a draw, valued 0.

Formally, they play on a $n \times n$ skew-symmetric matrix A (i.e. $a_{ij} = -a_{ji}$, or $A^T = -A$) which entries are 0 on the diagonal and +1 or -1 otherwise. Alice chooses a column j, Bob chooses a row i, and the payoff for Alice is a_{ij} .

In the case of the usual Paper/Scissor/Stone game, the optimal mixed strategy is (1/3, 1/3, 1/3). This optimal strategy is unique, and the goal of this exercice is to show that every generalized Paper/Scissor/Stone game has a unique strategy.

In the context of symmetric games, we recall that x is an optimal mixed strategy if $A.x \ge 0$, where x is a probability distribution, i.e. $x \ge 0$ and $\mathbf{1}^T.x = 1$.

The questions in this exercise are not in increasing order of difficulty, feel free to admit the result of a question and go to the next one.

- a. Show that if the i^{th} coordinate of an optimal mixed strategy x is non zero, then the i^{th} coordinate of A.x is equal to 0.
- b. Show that if n is odd, the determinant of A is 0. Hint: compute the determinant of A^T in two ways.
- c. Show that if n is even, the determinant of A is odd. Hint: Show that changing the sign of the entries of A does not change the parity of the determinant. Then change all the -1 of A into +1 to conclude.
- d. Show that the set of solutions of A.x = 0 is at most 1-dimensional.
- e. Assume now that x and y are optimal strategies for Alice. For every α with $0 < \alpha < 1$, we let $z_{\alpha} = \alpha x + (1 \alpha)y$. Show that z_{α} is an optimal strategy.
- f. Let S be the set of coordinates in which z_{α} is non zero. Let A' be the submatrix of A restricted to the entries a_{ij} with $i, j \in S$. Similarly, let z'_{α} be the vector z_{α} restricted to its non zero coordinates. Show that $A'.z'_{\alpha} = 0$.
- g. Conclude that Alice has a unique optimal strategy x, which moreover has an odd number of non zero coordinates.