Exam January 28, 2016.

- Duration 3h. One Cheat Sheet allowed (A4, manuscript, double sided). -
- Exercise 1 Let (P) be the following linear program:

Maximize
$$3x_1 -2x_2 +2x_3 -4x_4$$

Subject to $2x_1 +x_2 +2x_3 -x_4 \le -2$
 $-x_2 -x_3 \le -2$
 $x_1, x_2, x_3, x_4 \ge 0$

- a. Solve (P) with the two phase simplex algorithm.
- b. Write the dual (D) of (P).
- c. Solve (D) geometrically. Is the solution compatible with the one given by the last dictionary of (P)?
- d. Certify the optimality of your solution of (P) via a linear sum of constraints.
- Exercise 2 Is $x_1 = 2/13$, $x_2 = 0$, $x_3 = 8/13$, $x_4 = 0$ an optimal solution of the following linear program? Justify.

Maximize
$$x_1 + x_2 + x_3 + x_4$$

Subject to $5x_1 + 6x_2 + 2x_3 + 3x_4 \le 2$
 $x_1 + 3x_2 + 3x_3 + 5x_4 \le 2$
 $2x_1 + 6x_2 + 4x_3 + 2x_4 \le 3$
 $6x_1 + 5x_2 + 4x_3 + x_4 \le 6$
 $x_1, x_2, x_3, x_4 \ge 0$

- Exercise 3 Let S be a set of size n and T_1, \ldots, T_m be some subsets of S. We want to distribute some non negative weights on the elements of S (all weights summing to some positive value W) in such a way that all T_i 's receive the same total weight. We allow fractional values.
- a. Propose an instance where such a distribution does not exist.
- b. When the distribution does not exist, use duality to provide a non existence certificate.
- Exercise 4 Let G = (V, E) be a graph. We assume that $V = \{1, \ldots, n\}$. A vertex cover is a subset C of V such that every edge xy of E satisfies $x \in C$ or $y \in C$. When the size of C is minimum, we speak of minimum vertex cover. The usual relaxation of vertex cover consists of the polyhedron P which points (x_1, \ldots, x_n) satisfy $x_i \geq 0$ for all $i = 1, \ldots, n$, and $x_i + x_j \geq 1$ for every edge $ij \in E$.
- a. Recall the definition of a vertex of a polyhedron, and provide an easy certificate of the fact that a given point in a polyhedron is not a vertex.
- b. Let $x = (x_1, ..., x_n)$ be a vertex of P. Let $I^- = \{i \mid 0 < x_i < 1/2\}$ and $I^+ = \{i \mid 1/2 < x_i < 1\}$. Let $y = (y_1, ..., y_n)$ such that $y_i = -1$ when $i \in I^-$, $y_i = 1$ when $i \in I^+$, and $y_i = 0$ otherwise. Show that there is some $\varepsilon > 0$ such that $x + \varepsilon y$ is a point of P.
- c. Show that if x is a vertex of P, then both I^- and I^+ are empty. Conclude that the coordinates of x are either 0.1/2 or 1.

- d. Based on the previous result, propose a polytime 2-approximation algorithm of minimum cost vertex cover, when the input consists of a graph G = (V, E) and a non negative cost function c on V. (we only consider the cost function c in this question)
- e. Assume now that $x = (x_1, ..., x_n)$ is a vertex of the polyhedron P which minimizes the sum $x_1 + x_2 + \cdots + x_n$. We partition V into three sets $V_0 = \{i \mid x_i = 0\}$, $V_1 = \{i \mid x_i = 1\}$ and $V_{1/2} = \{i \mid x_i = 1/2\}$. Let $OPT_{1/2}$ be the minimum size of a vertex cover in the graph induced by G on $V_{1/2}$. Let OPT be the minimum size of a vertex cover in G. Show that $OPT \leq OPT_{1/2} + |V_1|$.
- f. Let V_{OPT} be a vertex cover of G of size OPT. Show that $|V_{\text{OPT}} \cap V_0| \geq |V_1 \setminus V_{\text{OPT}}|$.
- g. Show that $OPT = OPT_{1/2} + |V_1|$.
- h. Show that the problem having as input a graph G and an integer k and output True if G has a vertex-cover of size at most k can be reduced in polynomial time to the particular case of this problem where the input G has at most 2k vertices.
- Exercise 5 In the MAX-2-SAT problem we are given clauses C_1, \ldots, C_m of size 1 or 2 with respective positive weights w_1, \ldots, w_m . The goal is to set the boolean variables x_1, \ldots, x_n in order to satisfy a subset of these clauses with maximum total weight.
- a. Propose a fractional relaxation of this problem.
- b. Show that randomized rounding applied to this relaxation gives a 3/4-approximation of MAX-2-SAT.

- Exercise 6 - The goal of this exercise is to illustrate the Gomory cut technique, used to find optimal integer solutions to linear programs. Let (P) be the following integer program:

Maximize
$$4x_1 + 3x_2$$

Subject to $2x_1 + x_2 \le 11$
 $-x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$ and integer valued

When applying simplex to the linear relaxation of (P), we obtain the following last dictionary:

$$x_{1} = \frac{16}{5} - \frac{2}{5}x_{3} + \frac{1}{5}x_{4}$$

$$x_{2} = \frac{23}{5} - \frac{1}{5}x_{3} - \frac{2}{5}x_{4}$$

$$z = \frac{133}{5} - \frac{11}{5}x_{3} - \frac{2}{5}x_{4}$$

- a. Show that the constraint $\frac{2}{5}x_3 + \frac{4}{5}x_4 \ge \frac{1}{5}$ is a valid inequality for (P), i.e. integer solutions of (P) satisfy it. (Hint: derive it from the first equation of the dictionary using the fact that we focus on integer solutions)
- b. Derive a valid inequality from the second equation of the dictionary.
- c. Propose a general method based on this example.