Optimization and approximation Final exam 03/01/2023

Exercise 1 [4pt] We consider the following linear program (P).

- 1. Write (P) in standard form.
- 2. Solve (P) by the two-phase simplex algorithm (no other method admitted). Carefully choose pivots to avoid long computations.
- 3. Write the dual (D) of (P).
- 4. Certify the optimality of your solution using (D).

Exercise 2 [3pt] We are given a family of closed intervals I_1, \ldots, I_n of [0, 1] which union is equal to [0, 1]. These intervals have respective (non negative) weights w_1, \ldots, w_n . The goal is to find a subfamily of intervals with minimum total weight which union covers [0, 1].

- 1. Model the fractional relaxation of this problem as a linear program (P).
- 2. How the optimal solution OPT^* of (P) compares with the optimal solution OPT of the original problem?

Exercise 3 [3pt] We are given a directed graph D = (V, A) with one source s and one sink t. Each arc $a \in A$ has a length $\ell_a \geq 0$. The goal is to find a shortest directed path from s to t.

- 1. Model the fractional relaxation of this problem as a linear program (P).
- 2. How the optimal solution OPT^* of (P) compares with the optimal solution OPT of the original problem?

Exercise 4 [1pt] Consider the method $x_{k+1} = x_k + \alpha_k d_k$ for the unconstrained minimization of a continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$. State which of the following statements are true and which are false. Justify your answers.

1. If $d_k = -\nabla f(x_k)$ and α_k is such that $f(x_{k+1}) < f(x_k)$ for all k, every limit point of the generated sequence $\{x_k\}$ is stationary.

2. If $d_k = -\nabla f(x_k)$, α_k is chosen satisfying the Armijo and Wolfe rules, and the function f has the form $f(x_1, x_2) = x_1^2 + x_2^2 + x_1$, the generated sequence $\{x_k\}$ converges to a global minimum of f.

Exercise 5 [2.5pt] Consider the 2-dimensional function $f(x,y) = (y-x^2)^2 - x^2$.

- ullet Show that f has only one stationary point, which is neither a local maximum nor a local minimum.
- Consider the minimization of f subject to no constraint on x and the constraint $-1 \le y \le 1$ on y. Find all global minima.

Exercise 6 [6.5pt] Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. Suppose that x^* is a local minimum such that, for m > 0:

$$m||d||^2 \le d^T H(x)d, \ \forall d \in \mathbb{R}^n,$$

for all x in an open ball $B_r(x^*)$ (H(x)) is the hessian matrix of f in x). Show that for every $x \in B_r(x^*)$ we have:

- 1. $||x x^*|| \le \frac{||\nabla f(x)||}{m}$
- 2. $F(t) := f(x^* + t(x x^*))$ for any scalar t is such that F' is an increasing function.
- 3. $f(x) f(x^*) \le \frac{\|\nabla f(x)\|^2}{m}$

Hint: use the following relation to prove 1.:

$$\nabla f(y) = \nabla f(x) + \int_0^1 H(x + t(y - x))(y - x) dt.$$

Use 1. and 2. to prove 3.