Exam

7 January 2025

- Exercise 1 - Two phase simplex. We want to solve the following linear program (P) by the two-phase simplex (and only by this method).

- 1. Why two phases are needed here?
- 2. Perform the first phase of simplex. On which vertex of the domain does it terminates?
- 3. Perform the second phase of simplex. What can you tell about (P)?
- 4. Write the dual (D) of (P). What can be said about (D)?
- Exercise 2 Interval cover (again). We are given a collection of m intervals $I_1 = [a_1, b_1], \ldots, I_m = [a_m, b_m]$ where $a_i \leq b_i$ are integers chosen in $[n] := \{1, \ldots, n\}$. Each $j \in [n]$ comes with an integer demand $d_j \geq 1$. Our problem is to find a subfamily of intervals $\mathcal{F} = \{I_i : i \in S \subseteq [m]\}$ such that every $j \in [n]$ is contained in at least d_j intervals of \mathcal{F} . We moreover want the size of \mathcal{F} (that is |S|) to be as small as possible.
 - 1. Write the LP-relaxation (P) of this problem and its dual (D).
 - 2. Since the matrix of (P) is TU, both (P) and (D) have integer solutions. Deduce from (D) a certificate of optimality accessible to a non-optimizer person.
- Exercise 3 In the MAX-2-SAT problem we are given clauses C_1, \ldots, C_m of size 1 or 2 with respective positive weights w_1, \ldots, w_m . The goal is to set the boolean variables x_1, \ldots, x_n in order to satisfy a subset of these clauses with maximum total weight.
- a. Propose a fractional relaxation of this problem.
- b. Show that randomized rounding applied to this relaxation gives a 3/4-approximation of MAX-2-SAT.
- Exercise 4 We consider the following linear program P:

- a. Show that $x_1 = 0$, $x_2 = \frac{52}{5}$, $x_3 = 0$, $x_4 = \frac{2}{5}$ is an optimal solution of P.
- b. Assume now that the first constraint of P is replaced by $3x_1+x_2+x_3+4x_4 \le 13$. Find an optimal solution of P. Certify the optimality of your solution.