Midterm Exam 4/5/2013.

- Duration 2h. No notes and electronic devices allowed. Exercises are ordered in somewhat increasing difficulty order. -
- Exercise 1 Solve the following linear program with the two phase simplex algorithm. Certify the optimality of your solution.

- Exercise 2 - Show that $x_1 = \frac{1}{5}$, $x_2 = 0$, $x_3 = 0$, $x_4 = \frac{7}{5}$ is an optimal solution of the following linear program.

- Exercise 3 We are given a family of closed intervals I_1, \ldots, I_n covering the [0,1] segment with respective weights w_1, \ldots, w_n . The goal is to find a subfamily with minimum weight covering [0,1].
- a. Show that a 0/1 matrix $A = (a_{i,j})$ where the 1's of each line are consecutive (i.e. such that j < k and $a_{i,j} = a_{i,k} = 1$ implies $a_{i,j+1} = 1$) is totally unimodular. Do not use the Network Matrix argument for this proof.
- b. Show that a minimum weight cover can be obtained via the LP relaxation of the problem.
- c. Can the same approach be used for a collection of weighted rectangles covering the unit square? Show a proof or provide a counterexample.
- Exercise 4 The goal is to prove that for every oriented graph G = (V, E), there exists a weight function w from V into the non-negative reals such that $w(v^-) \geq w(v^+)$ for every $v \in V$, where v^- is the set of vertices u such that $uv \in E$ and v^+ is the set of vertices u such that $vu \in E$. Here w(X) is the sum of the w(x) where $x \in X$. We also want the extra condition that w(V) = 1. For convenience, we will assume that $v^+ \cap v^-$ is empty (which corresponds to forbidding cycles of length 2).

Optimization Year 2012-2013

a. Express this problem as a linear program (P). Since this is an existence problem only, one can simply consider the constant objective function equal to 0, and discuss whether (P) is empty or not.

- b. Write the dual of (P).
- c. Deduce that such a function w always exists.
- Exercise 5 Let $E = \{e_1, \ldots, e_n\}$ be a finite set and \leq be a partial order on E. An antichain A of (E, \leq) is a subset of pairwise incomparable elements of E, i.e. we do not have $a \leq a'$ when a, a' are distinct elements of A. To any antichain A, we associate a 0/1 vector $v_A = (a_1, \ldots, a_n)$ such that $a_i = 1$ if $e_i \in A$ and $a_i = 0$ otherwise. The antichain polytope of E, \leq is the convex hull of all v_A 's when A ranges over all antichains of E, \leq .
- a. Give a set of linear inequalities that defines the facets of the antichain polytope of E, \leq .