Optimization and approximation Year 2015-2016

EndMidTerm January 8, 2016.

- Duration 2h. One Cheat Sheet allowed (A4,
manuscript, double sided). -

- Exercise 1 - Simplex. Solve the following linear program by the
two-phase simplex algorithm (and only by this method).

Maximize 3z1 2

Subject to T —xp < —1
—Xr1 —X2 § -3
2%1 +xo S 4
xy, wz 20

Write the dual of (P) and solve it using your previous simplex.

- Exercise 2 - Branch and bound. To compute an optimal integer
solution of some maximization (standard) linear program (P), one can apply
the following branching algorithm:

First of all, solve (P) fractionally, and get an optimal solution z = (x1,...,x,).
Then, unless x is already integer, consider a non-integer x;, chosen as non in-
teger as possible (i.e. minimize |1/2 — z; + |z;])|). Now create two new linear
programs: (P;) obtained from (P) by adding the constraint z; < |z;| and (Py)
by adding the constraint z; > [x;]...

a. Finish the description of the algorithm and show that it provides an optimal
integer solution. Provide a decent heuristic.

b. Apply your algorithm to the linear program (here using simplex is not manda-
tory):

Maximize 2z1 +3xzo

Subject to x7 42z <3
6x1 +8xy <15
1, g =0

- Exercise 3 - No comment. We assume that z* is an optimal solution
of some linear program mazimize {c’ z|Az < b,z > 0}. Suppose moreover that
A and b decompose as

_ (b
={ 4
where A1z = by and Asx < b (i.e. < on each row). Show that z* is also an

optimal solution to the linear program mazimize {c’x|A;x < by, 2 > 0}.

- Exercise 4 - TU matrices. Let A be a totally unimodular matrix.
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a. Show that the set of columns of A can be partitioned into blue columns and
red columns in such a way that on each row, the sum of blue values and the
sum of red values differ at most by one. Hint: propose a fractional relaxation
of the problem, and use TU property.

b. Tllustrate this property on some classical TU matrices (and their transpose!).
For each example provided, propose a direct ad-hoc proof.

- Exercise 5 - Multiflow. Let D = (V,A) be a directed graph and
¢: A — R be a capacity function on the arcs of D. We are given k requests
R; = (si,t;,d;) in which s;,t; are vertices of V' and d; is the demand of request
R;. Moreover, every arc a has a cost s(a). The multiflow problem asks for the
minimum cost satisfaction of all requests R; as disjoint (s;, t;)-flows. Fractional
solutions are allowed.

a. Express the multiflow problem as a linear program.

b. Assume that you are given an instance of multiflow together with a length
function on the arcs [ : A — R satisfying:

k
D dil(siti) > > cla)l(a)
i=1

a€A

where [(s;,t;) is the length of a shortest path (with respect to length [) from
s; to t;. Show then that a solution to multiflow does not exist.

c. Show that the integer multiflow problem is NP-hard using the fact that decid-
ing the existence of a circuit containing two prescribed vertices in a directed
graph G is NP-complete.

d. How to justify that a (fractional) multiflow instance has no solution?



