
Optimization and approximation Year 2015-2016

EndMidTerm January 8, 2016.

- Duration 2h. One Cheat Sheet allowed (A4,
manuscript, double sided). -

- Exercise 1 - Simplex. Solve the following linear program by the
two-phase simplex algorithm (and only by this method).

Maximize 3x1 +x2

Subject to x1 −x2 ≤ −1
−x1 −x2 ≤ −3
2x1 +x2 ≤ 4
x1, x2 ≥ 0

Write the dual of (P) and solve it using your previous simplex.

- Exercise 2 - Branch and bound. To compute an optimal integer
solution of some maximization (standard) linear program (P ), one can apply
the following branching algorithm:

First of all, solve (P ) fractionally, and get an optimal solution x = (x1, . . . , xn).
Then, unless x is already integer, consider a non-integer xi, chosen as non in-
teger as possible (i.e. minimize |1/2 − xi + ⌊xi⌋)|). Now create two new linear
programs: (P1) obtained from (P ) by adding the constraint xi ≤ ⌊xi⌋ and (P2)
by adding the constraint xi ≥ ⌈xi⌉...

a. Finish the description of the algorithm and show that it provides an optimal
integer solution. Provide a decent heuristic.

b. Apply your algorithm to the linear program (here using simplex is not manda-
tory):

Maximize 2x1 +3x2

Subject to x1 +2x2 ≤ 3
6x1 +8x2 ≤ 15
x1, x2 ≥ 0

- Exercise 3 - No comment. We assume that x∗ is an optimal solution
of some linear program maximize {cTx|Ax ≤ b, x ≥ 0}. Suppose moreover that
A and b decompose as

A =

(
A1

A2

)
b =

(
b1
b2

)
where A1x = b1 and A2x < b2 (i.e. < on each row). Show that x∗ is also an

optimal solution to the linear program maximize {cTx|A1x ≤ b1, x ≥ 0}.

- Exercise 4 - TU matrices. Let A be a totally unimodular matrix.

1



Optimization and approximation Year 2015-2016

a. Show that the set of columns of A can be partitioned into blue columns and
red columns in such a way that on each row, the sum of blue values and the
sum of red values differ at most by one. Hint: propose a fractional relaxation
of the problem, and use TU property.

b. Illustrate this property on some classical TU matrices (and their transpose!).
For each example provided, propose a direct ad-hoc proof.

- Exercise 5 - Multiflow. Let D = (V,A) be a directed graph and
c : A → IR+ be a capacity function on the arcs of D. We are given k requests
Ri = (si, ti, di) in which si, ti are vertices of V and di is the demand of request
Ri. Moreover, every arc a has a cost s(a). The multiflow problem asks for the
minimum cost satisfaction of all requests Ri as disjoint (si, ti)-flows. Fractional
solutions are allowed.

a. Express the multiflow problem as a linear program.

b. Assume that you are given an instance of multiflow together with a length
function on the arcs l : A → IR+ satisfying:

k∑
i=1

dil(si, ti) >
∑
a∈A

c(a)l(a)

where l(si, ti) is the length of a shortest path (with respect to length l) from
si to ti. Show then that a solution to multiflow does not exist.

c. Show that the integer multiflow problem is NP-hard using the fact that decid-
ing the existence of a circuit containing two prescribed vertices in a directed
graph G is NP-complete.

d. How to justify that a (fractional) multiflow instance has no solution?
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