Exam

- 3h. Two A4 sheets (manuscript). We denote $[n] := \{1, \ldots, n\}$.
- Exercise 1 NP-completeness. We recall that 3-SAT is NP-complete. In this exercise, we assume that the input is an undirected graph G and an integer k.
 - 1. Show that deciding if a graph G has a clique (a set of vertices which are pairwise joined by an edge) of size at least k is NP-complete.
 - 2. Show that deciding if a graph G has a stable set (a set of vertices which are pairwise not joined by an edge) of size at least k is NP-complete.
 - 3. A vertex-cover in a graph G = (V, E) is a subset X of V such that every edge $ab \in E$ satisfies that $a \in X$ or $b \in X$. Show that deciding if a graph G has a vertex cover of size at most k is NP-complete.
 - 4. A feedback vertex set in a graph G = (V, E) is a subset X of V such that every cycle of G intersects X. Show that deciding if a graph G has a feedback vertex set of size at most k is NP-complete.
- Exercice 2 Bonus points. The four following exercises correspond to four algorithmic paradigmes: greedy, divide and conquer, randomized algorithm, dynamic programming (not in this order). Find which paradigme is suited for each of them.
- Exercice 3 Paradigme 1. An array C[1, ..., m] is a *sub-array* of A[1, ..., n] if there is a strictly increasing function f from [m] to [n] such that C[i] = A[f(i)] for all i = 1, ..., m. If moreover f(i) = i + k for some constant k, we say that C is a *factor* of A.
 - 1. Propose an algorithm running in $O(n^2)$ time which admits as input two arrays A and B with size n and returns the length of a longest common factor.
 - 2. Same question for sub-array.
 - 3. Deduce an algorithm which computes a longest increasing subarray in an integer array.
- Exercice 4 Paradigme 2. An inversion in an integer array A[1, ..., n] (with pairwise distinct entries) is a couple i < j such that A[i] > A[j].
 - 1. Propose an algorithm in $O(n, \log n)$ time which computes the number of inversions of an input A.
- Exercice 5 Paradigme 3. In this problem, the input is a connected graph G = (V, E). Moreover, there is an edge-label tagging some edges of E as fragile, while the other are reliable.

- 1. Propose a polynomial algorithm which returns as output a spanning tree of G with as many reliable edges as possible.
- 2. * We assume now that G has at least as many edges as vertices. Discuss if your algorithm can be adapted to compute a spanning cycle-tree (i.e. a connected graph with a unique cycle) with a maximum number of reliable edges.
- Exercice 6 Paradigme 4. Your intership advisor has just invented (again...) a new number generator. An integer n produced by this machine is:
 - 1. either prime. Case 1.
 - 2. or admits an integer a which is coprime with n such that $a^{n-1} \neq 1 \mod n$. Case 2.

Your task is to write an algorithm which admits as input a number n obtained from his generator and output in which case (1 or 2) n falls. While your advisor is not really interested in your code, he needs it to be efficient (your algorithm should be polynomial in $\log n$).

- 1. Show that in Case 2, for every integer b, at least one element x among $\{b,ab\}$ satisfies $x^{n-1} \neq 1 \mod n$.
- 2. Recall that if a is coprime with n, then the multiplication by a is a bijection among integers modulo n. Moreover, if n is prime and n does not divide a, then $a^{n-1} = 1 \mod n$. Propose an algorithm which satisfies your advisor (and such that he will very likely never prove it wrong before the end of your intership).
- Exercice 7 Search trees. We have seen two kinds of search trees in a connected graph: breadth first search tree (BFS), and depth first search tree (DFS). Their computations involve respectively a queue (FIFO) and a stack (LIFO).
 - 1. Show that if T is a BFS of a connected graph G rooted at r, then every edge xy of G satisfies that the height of x and y (distance to the root) differ by at most 1;
 - 2. Show that if T is a DFS of a connected graph G rooted at r, then every edge xy of G satisfies that x is a descendent of y, or y is a descendent of x in T.
 - 3. Use one of the two notions to test efficiently if a graph is bipartite.
 - 4. Use one of the two notions to orient the edges of a 2-edge connected graph (removing any edge of G leaves G connected) in such a way that there is always a directed path from every vertex x to every vertex y.