Fundamentals in Computer Science M2SC 2022-2023

Exam

3h. Two A4 sheets (manuscript). We denote [n] := {1,...,n}.

- Exercice 1 - NP-completeness. We recall that 3-SAT is NP-complete.
In this exercise, we assume that the input is an undirected graph G and an
integer k.

1. Show that deciding if a graph G has a clique (a set of vertices which are
pairwise joined by an edge) of size at least k is NP-complete.

2. Show that deciding if a graph G has a stable set (a set of vertices which
are pairwise not joined by an edge) of size at least k is NP-complete.

3. A wvertex-cover in a graph G = (V, E) is a subset X of V such that every
edge ab € F satisfies that a € X or b € X. Show that deciding if a graph
G has a vertex cover of size at most k is NP-complete.

4. A feedback vertex set in a graph G = (V, E) is a subset X of V such that
every cycle of G intersects X. Show that deciding if a graph G has a
feedback vertex set of size at most k is NP-complete.

- Exercice 2 - Bonus points. The four following exercises correspond
to four algorithmic paradigmes : greedy, divide and conquer, randomized al-
gorithm, dynamic programming (not in this order). Find which paradigme is
suited for each of them.

- Exercice 3 - Paradigme 1. An array C[1,...,m] is a sub-array of
A[l,...,n] if there is a strictly increasing function f from [m] to [n] such that
Cli] = A[f(i)] for all i = 1,...,m. If moreover f(i) =i+ k for some constant

k, we say that C is a factor of A.

1. Propose an algorithm running in O(n?) time which admits as input two
arrays A and B with size n and returns the length of a longest common
factor.

2. Same question for sub-array.

3. Deduce an algorithm which computes a longest increasing subarray in an
integer array.

- Exercice 4 - Paradigme 2. An inversion in an integer array A[l,..., n]
(with pairwise distinct entries) is a couple ¢ < j such that A[i] > A[j].

1. Propose an algorithm in O(n.logn) time which computes the number of
inversions of an input A.

- Exercice 5 - Paradigme 3. In this problem, the input is a connected graph
G = (V, E). Moreover, there is an edge-label tagging some edges of F as fragile,
while the other are reliable.

Fundamentals in Computer Science M2SC 2022-2023

1. Propose a polynomial algorithm which returns as output a spanning tree
of G with as many reliable edges as possible.

2. * We assume now that G has at least as many edges as vertices. Discuss
if your algorithm can be adapted to compute a spanning cycle-tree (i.e. a
connected graph with a unique cycle) with a maximum number of reliable
edges.

- Exercice 6 - Paradigme 4. Your intership advisor has just invented
(again...) a new number generator. An integer n produced by this machine is :

1. either prime. Case 1.

2. or admits an integer a which is coprime with n such that a”~! # 1 mod n.
Case 2.

Your task is to write an algorithm which admits as input a number n obtained
from his generator and output in which case (1 or 2) n falls. While your advisor
is not really interested in your code, he needs it to be efficient (your algorithm
should be polynomial in logn).

1. Show that in Case 2, for every integer b, at least one element x among
{b, ab} satisfies z"~! # 1 mod n.

2. Recall that if a is coprime with n, then the multiplication by a is a bijection
among integers modulo n. Moreover, if n is prime and n does not divide a,
then a® ! =1 mod n. Propose an algorithm which satisfies your advisor
(and such that he will very likely never prove it wrong before the end of
your intership).

- Exercice 7 - Search trees. We have seen two kinds of search trees in a
connected graph: breadth first search tree (BFS), and depth first search tree
(DFS). Their computations involve respectively a queue (FIFO) and a stack
(LIFO).

1. Show that if T is a BFS of a connected graph G rooted at r, then every
edge xy of G satisfies that the height of x and y (distance to the root)
differ by at most 1;

2. Show that if T is a DFS of a connected graph G rooted at r, then every
edge xy of G satisfies that x is a descendent of y, or y is a descendent of
zin T.

3. Use one of the two notions to test efficiently if a graph is bipartite.

4. Use one of the two notions to orient the edges of a 2-edge connected graph
(removing any edge of G leaves G connected) in such a way that there is
always a directed path from every vertex x to every vertex y.

