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Journées Structures Discrètes 2015

1 / 18



Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).
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Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

Interacting Hopf Algebras provide a (graphical) syntax and a sound
and complete axiomatization for subspaces.

For instance, we can express both systems of equations and bases as
term of our syntax; we can check that they denote the same subspace

via the axiomatization.
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Interacting Hopf Algebras

We show

• an algebraic theory of matrices over a PID k (Hopf Algebras);

• an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

In this talk, we fix the PID to be the ring of polynomials k[x].

The terms of the corresponding syntax are well-known structures
called signal flow graphs.
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Interacting Hopf Algebras

If you are interested in, you can

• have a look to the Ph.D thesis of Fabio Zanasi (ENS-Lyon),

• follow Pawel’s blog http://graphicallinearalgebra.net,

• knock to my door.

In this talk, we fix the PID to be the ring of polynomials k[x].

The terms of the corresponding syntax are well-known structures
called signal flow graphs.
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Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate

k
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amplifier
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copier

x
k ∈ k
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Signal Flow Graphs

• Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

• Constructed combining four kinds of gate
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Signal Flow Graphs
Two examples:

xx

x
2

x -1

Both circuits implement the generating function
1

(1− x)2 = 1x+2x2 +3x3 + . . .

Can we check this statically?
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Signal Flow Graphs

◦ In traditional approaches, SFGs are not treated as interesting
mathematical structures per se.
⇒ formal analysis typically mean translation into systems of

linear equations.

◦ We study SFGs directly as graphical structures.

In this work
A graphical theory of Signal Flow Graphs

• String diagrammatic syntax for circuits.

• Compositional semantics.

• Sound and complete axiomatisation for semantic equivalence.
⇒ Two circuits implement the same specification if they can be

transformed one into the other using the equational theory.
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Outline
• Functional circuits
⇒ the signal flows from left to right

x

2

3

• Reverse functional circuits
⇒ the signal flows from right to left

x

3

2

• Generalised circuits
⇒ the signal can flow in both directions
⇒ environment for modeling signal flow graphs

x

x
x

9 / 18



The theory HA of functional circuits
Functional circuits are the string diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to the following equations:

=

= =
=

= =
p1 p2 p1p2
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where, for a polynomial p=k0+k1x+···+knxn, p is . . . . . .
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Semantics of functional circuits
• Functional circuits modulo the equations are in 1-1

correspondence with matrices over the polynomial ring k[x].

• Example: check the semantics of
x

2

3
using the

equational theory HA.
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x 3

Its semantics is the matrix
(

3x 6
x 2

)
.
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Reverse functional circuits

Reverse functional circuits are functional circuits “reflected about the
y-axis”. They are the diagrams generated by the grammar

c,d ::= | | k | x | | | | | c d | c
d

subject to equations dual to those of HA:
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The theory IH of generalised circuits

Generalised circuits are string diagrams generated by the grammar

c,d ::= | | k | x | | |

| | k | x | | | | | c d | c
d

subject to the equations of the theories of functional and reverse
functional circuits, plus the following:

= = =

W Separable Frobenius Algebra

= = =

B Separable Frobenius Algebra

p pp p pp p= =

=

= = == p

=
-1

-1
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Semantics of Generalised Circuits

Circuits do not generally have a univocal flow direction — a
relational model is required.

For instance, �
�; expresses the diagonal relation.
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Semantics of Generalised Circuits
The semantics [[·]] maps a circuit into a linear relation (subspace):

�
⌧k ·� x·� �+⌧ 0� �

�
�

� �x

k

xk k ·� x·�� � �
�

� �
�
⌧

�+⌧ 0

�
�⌧
⌧� �

c d�!� �!�1
�!�2

�!⌧1 �!⌧2�!⇢ �!⇢ �!⌧

�!� �!⌧

c d
�!�1

�!⌧1�!⌧2�!�2

c d c
d

The axiomatisation of IH is sound and complete

[[c]] = [[d]] ⇔ c IH
= d

The key technical step in the proof consists in reducing a circuit in its
Hermite Normal Form
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Graphical reasoning in IH
Check: xx and x

2

x -1 implement 1
(1−x)2 .

Proof strategy:

• Represent the two SFGs as generalised circuits

x
2

x
x

2

x -1

xx x x 

 -1

• Represent the specification as a generalised circuit:

(1�x)2� � · 1

(1 � x)2

• Prove the three of them equal using the axioms of IH:

x
2

x
x x

-1
(1�x)2= =
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Conclusions
We proposed an algebraic environment for signal flow graphs
• compositional semantics in terms of linear relations
• sound and complete axiomatisation
◦ graphical proof system

implementation

specification

implementation

implementation

=

◦ rich mathematical playground

Hopf Algebra of 
functional circuit

Hopf Algebra of 
reverse functional 

circuits

Interaction yields two 
Frobenius Algebras
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Future Work

What are the fundamental structures of concurrency?
We still don’t know! - Samson Abramsky 2014

• functional computations have a paradigmatic model: λ-calculus;

• concurrent computations do not: there are many different models
like Petri nets, Process Calculi, Event Structures ...

A path toward an answer...

Systems of linear difference equations IH
Diophantine Systems of linear difference equations ?
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