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Interacting Hopf Algebras

We show
e an algebraic theory of matrices over a PID k (Hopf Algebras);

e an algebraic theory of subspaces over the field of fractions of k
(Interacting Hopf Algebras).

Interacting Hopf Algebras provide a (graphical) syntax and a sound
and complete axiomatization for subspaces.

For instance, we can express both systems of equations and bases as
term of our syntax; we can check that they denote the same subspace
via the axiomatization.
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We show
e an algebraic theory of matrices over a PID k (Hopf Algebras);
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Interacting Hopf Algebras

If you are interested in, you can
e have a look to the Ph.D thesis of Fabio Zanasi (ENS-Lyon),
e follow Pawel’s blog http://graphicallinearalgebra.net,

e knock to my door.

In this talk, we fix the PID to be the ring of polynomials k[x].

The terms of the corresponding syntax are well-known structures
called signal flow graphs.



Signal Flow Graphs

e Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.

e Constructed combining four kinds of gate
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Signal Flow Graphs

e Signal Flow Graphs (SFGs) are stream processing circuits
widely adopted in Control Theory since at least the 1950s.
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Two examples:
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Two examples:
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Can we check this statically?
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Signal Flow Graphs

o In traditional approaches, SFGs are not treated as interesting
mathematical structures per se.

= formal analysis typically mean translation into systems of
linear equations.

o We study SFGs directly as graphical structures.

In this work
A graphical theory of Signal Flow Graphs
e String diagrammatic syntax for circuits.
o Compositional semantics.
e Sound and complete axiomatisation for semantic equivalence.

= Two circuits implement the same specification if they can be
transformed one into the other using the equational theory.



Outline

e Functional circuits
= the signal flows from left to right
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e Reverse functional circuits
= the signal flows from right to left
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e Generalised circuits

= the signal can flow in both directions
= environment for modeling signal flow graphs
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The theory HA of functional circuits

Functional circuits are the string diagrams generated by the grammar
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The theory HA of functional circuits

Functional circuits are the string diagrams generated by the grammar
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Semantics of functional circuits

e Functional circuits modulo the equations are in 1-1
correspondence with matrices over the polynomial ring K[x].

e Example: check the semantics of A D P usmg the
equational theory HA.
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Semantics of functional circuits

e Functional circuits modulo the equations are in 1-1
correspondence with matrices over the polynomial ring k|x].

e Example: check the semantics of %é « using the
equational theory HA.

NE ! 3x 6
Its semantics is the matrix M ;



Reverse functional circuits

Reverse functional circuits are functional circuits “reflected about the
y-axis”. They are the diagrams generated by the grammar
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subject to equations dual to those of HA:
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The theory IH of generalised circuits

Generalised circuits are string diagrams generated by the grammar
¢,d = o] | (DA A | o3 [oF |
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subject to the equations of the theories of functional and reverse
functional circuits, plus the following:
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Semantics of Generalised Circuits

Circuits do not generally have a univocal flow direction — a
relational model is required.
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Semantics of Generalised Circuits

The semantics [[-]] maps a circuit into a linear relation (subspace):
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The key technical step in the proof consists in reducing a circuit in its
Hermite Normal Form



Graphical reasoning in [H
Check: and @ implement .
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Proof strategy:

e Represent the two SFGs as generalised circuits




Conclusions

We proposed an algebraic environment for signal flow graphs
e compositional semantics in terms of linear relations
e sound and complete axiomatisation
o graphical proof system

implementation =i implementation
:> implementation

o rich mathematical playground
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Interaction yields two
Frobenius Algebras




Future Work

What are the fundamental structures of concurrency?
We still don’t know! - Samson Abramsky 2014

e functional computations have a paradigmatic model: A-calculus;

e concurrent computations do not: there are many different models
like Petri nets, Process Calculi, Event Structures ...

A path toward an answer...

Systems of linear difference equations [IH
Diophantine Systems of linear difference equations ~ ?




