Category Theory 101
Graph Transformations
Discrete Structures Day

F. Prost

PLUME team, LIP - ENS-Lyon

17th of December 2015
Introduction

- High level approach to programming: graph rewriting based on category theory.

- Much more difficult than term rewriting (which are just trees).
Introduction

- High level approach to programming: graph rewriting based on category theory.

- Much more difficult than term rewriting (which are just trees).

- Simulation of biological phenomena.

- Simulation of chemical reactions.

- Study of cloning:
 - Typically to produce a web site one starts to copy an existing one, then one modifies it accordingly to its will.
 - Social Data Anonymization techniques rely on finely tuned cloning operations.
Plan

1. Category Theory 101
2. Graph transformation and Categories
3. AGREE and Graph Generation
 - AGREE and Data Anonymization
 - Self-similar Graphs
4. Conclusion
Plan

1. Category Theory 101

2. Graph transformation and Categories

3. AGREE and Graph Generation
 - AGREE and Data Anonymization
 - Self-similar Graphs

4. Conclusion
Category Theory

- Early 40’s by MacLane and Eilenberg with a unifying aim: topology and algebra.

What are the fundamental structures of those two fields?
Category Theory

- Early 40’s by MacLane and Eilenberg with a unifying aim: topology and algebra.

⇒ What are the fundamental structures of those two fields?

- Results much more general than thought at first.

- Set theory is just a special case of category (Lawvere).

- In computer science E. Moggi was able to capture ideas previously thought to be outside of reach with the monads.

- In logic J.-Y. Girard and the linear logic.

- etc.
Definition

A category \mathcal{C} is made of

- A collection of objects: $\text{Obj}(\mathcal{C})$
- $\forall x, y \in \text{Obj}(\mathcal{C})$ a set $\text{Hom}_{\mathcal{C}}(x, y)$
- $\forall x \in \text{Obj}(\mathcal{C})$ there is $\text{id}_x \in \text{Hom}_{\mathcal{C}}(x, x)$
- $\forall x, y, z \in \text{Obj}(\mathcal{C})$ a function
 $\circ : \text{Hom}_{\mathcal{C}}(x, y) \times \text{Hom}_{\mathcal{C}}(y, z) \to \text{Hom}_{\mathcal{C}}(y, z)$
Definition

A category \mathcal{C} is made of

- A collection of objects: $\text{Obj}(\mathcal{C})$
- $\forall x, y \in \text{Obj}(\mathcal{C})$ a set $\text{Hom}_\mathcal{C}(x, y)$
- $\forall x \in \text{Obj}(\mathcal{C})$ there is $\text{id}_x \in \text{Hom}_\mathcal{C}(x, x)$
- $\forall x, y, z \in \text{Obj}(\mathcal{C})$ a function $\circ: \text{Hom}_\mathcal{C}(x, y) \times \text{Hom}_\mathcal{C}(y, z) \to \text{Hom}_\mathcal{C}(y, z)$

such that

1. Identity: $f \circ \text{id} = \text{id} \circ f = f$
2. Associativity: $(h \circ g) \circ f = h \circ (g \circ f)$
Example: Category of graphs

- Objects: \(G = (V, E, s, t) \) with \(s, t : E \rightarrow V \)
- Morphisms: \(f : G \rightarrow H \) must respect source and target functions, ie:

\[
\forall e \in E. f(s(e)) = s(f(e)) \\
\forall e \in E. f(t(e)) = t(f(e))
\]
Example: Category of graphs

- **Objects:** $G = (V, E, s, t)$ with $s, t : E \rightarrow V$
- **Morphisms:** $f : G \rightarrow H$ must respect source and target functions, ie:
 \[
 \forall e \in E. f(s(e)) = s(f(e)) \\
 \forall e \in E. f(t(e)) = t(f(e))
 \]

- **Examples:**

![Graph Examples](image-url)
Pullback

- Let's have: \(f : X \to Z \) and \(g : Y \to Z \)

- Fiber product: \(X \times_Z Y \) := \(\{ (x, w, y) \mid f(x) = w = g(y) \} \)
Co-construction of the pullback.

Let's have: \(f : X \to Z \) and \(g : Y \to Z \)

disjoint sum with gluing: \(X +_Z Y := X + Y + Z / \sim \)

With \(\sim \) generated by \(f(z) \sim z \sim g(z) \)
Plan

1. Category Theory 101

2. Graph transformation and Categories

3. AGREE and Graph Generation
 - AGREE and Data Anonymization
 - Self-similar Graphs

4. Conclusion
Rule based transformations

- Rule-based term rewriting is easy: replace a tree by another one.
- Much more difficult with graphs (multiple incident edges).
- Categorical frameworks make it clean to express graph transformations systematically.

<table>
<thead>
<tr>
<th>PB</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>clone</td>
<td>merge</td>
</tr>
<tr>
<td>delete</td>
<td>add</td>
</tr>
<tr>
<td>comatch</td>
<td>match</td>
</tr>
<tr>
<td>global</td>
<td>local</td>
</tr>
</tbody>
</table>
AGREE extended rule

Extension of a framework proposed by A. Corradini, D. Duval, R. Echahed, F. Prost and L. Ribeiro [ICGT15].

Definition (AGREE rules and matches)

- A rule is

\[
L \xleftarrow{l} K \xrightarrow{r} R
\]

\[
T_L \xleftarrow{l'} T_K
\]

- A match of such a rule is composed of a mono \(L \xrightarrow{m} G \) and a typing morphism \(G \xrightarrow{\bar{m}} T_L \) and is such that \(l' \circ t = (\bar{m} \circ m) \circ l \).
Definition (AGREE rewriting)

Given \(\rho = (K \xrightarrow{l} L, K \xrightarrow{r} R, K \xrightarrow{t} T_K, T_K \xrightarrow{l'} T_L) \) and a match \(L \xrightarrow{m} G, G \xrightarrow{\overline{m}} T_L : G \Rightarrow_{\rho,m} H \) is computed as follows:

1. \(\text{Span } G \xleftarrow{g} D \xrightarrow{n'} T_K \) is the pullback of \(G \xrightarrow{\overline{m}} T(L) \xleftarrow{l'} T_K \). Since \(l' \circ t = \eta_L \circ l \) there is a unique \(K \xrightarrow{n} D \).

2. \(R \xrightarrow{p} H \xleftarrow{h} D \) is the pushout of \(D \xleftarrow{n} K \xrightarrow{r} R \).
AGREE rewrite step

Definition (AGREE rewriting)

Given \(\rho = (K \overset{l}{\to} L, \overset{r}{K} \to R, \overset{t}{K} \rightleftarrows T_K, T_K \overset{l'}{\to} T_L)\) and a match \(L \overset{m}{\Rightarrow} G, G \overset{m}{\Rightarrow} T_L : G \Rightarrow_{\rho,m} H\) is computed as follows:

1. \(\text{Span } G \overset{g}{\leftarrow} D \overset{n'}{\to} T_K\) is the pullback of \(G \overset{m}{\to} T(L) \overset{l'}{\leftarrow} T_K\). Since \(l' \circ t = \eta_L \circ l\) there is a unique \(K \overset{n}{\rightleftarrows} D\).

2. \(R \overset{p}{\to} H \overset{h}{\leftarrow} D\) is the pushout of \(D \overset{n}{\leftarrow} K \overset{r}{\to} R\).

\[\begin{array}{ccc}
L & \overset{l}{\leftarrow} & K \\
\downarrow m & & \downarrow n \\
G & \overset{g}{\leftarrow} & D \\
\downarrow m & & \downarrow h \\
T(L) & \overset{l'}{\leftarrow} & T_K \\
\end{array}\]
Example: copy of web pages

- The structure of a web site typically as two kind of links:
 - Internal links: file hierarchy (indirect link)
 - External links: references pointing outside of the site.
Example: copy of web pages

- The structure of a web site typically as two kinds of links:
 - Internal links: file hierarchy (indirect link)
 - External links: references pointing outside of the site.
- The cloning of a web site consists in duplicating all local files and keeping external links shared between the two copies.

\[\text{WWW} \]

should be cloned as follows
Web copy with AGREE rewriting
Graph transformation and Categories

Web copy with AGREE rewriting

(PB) → (PO)
Plan

1. Category Theory 101
2. Graph transformation and Categories
3. AGREE and Graph Generation
 - AGREE and Data Anonymization
 - Self-similar Graphs
4. Conclusion
Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.
Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.
- Raw problem: given a graph G we would like to produce G' such that
 - $\text{Stat}(G) \simeq \text{Stat}(G')$
 - It is not possible to reidentify nodes (or edges) of G from knowing G' (and some extra informations...).
Social Data Anonymization: concepts and challenges

- Big economical issue: more or less the backbone of the business models of internet giants (Google, Facebook, Yahoo etc.).
- Big political issue: Open Data Policy.
- Raw problem: given a graph G we would like to produce G' such that
 - $\text{Stat}(G) \simeq \text{Stat}(G')$
 - It is not possible to reidentify nodes (or edges) of G from knowing G' (and some extra informations...).
- Naïve approach doesn’t work: Netflix [NarayanShmatikov06].
- Anonymization is an active research field ... rather artistic at the time: approaches validated through experiments.
Social Data Anonymization: Dimensions and Principles

- Problem more down to the earth than non-interference:
 - Partial knowledge of the graph by the opponent.
 - Active attacker (embedding fake sub graphs to re-identify them).
 - Object of interests vary from one data set to another.
Problem more down to the earth than non-interference:
- Partial knowledge of the graph by the opponent.
- Active attacker (embedding fake sub graphs to re-identify them).
- Object of interests vary from one data set to another.

Hence three important points to consider:
1. Background Knowledge: What does the opponent know? Model of the opponent.
2. Privacy: what is attacked?
3. Usage: How the data is going to be analyzed?

⇒ Anonymizing techniques
Social Data Anonymization: Techniques

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.
Social Data Anonymization: Techniques

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.

- We focus on the k-anonymity approach: the problem amounts to create G' such that $G' = G_1 \oplus G_2 \oplus \ldots \oplus G_k$ such that G_is are isomorphic graphs.
Social Data Anonymization: Techniques

- Two families:
 - Clustering: group together edges and nodes.
 - k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.

- We focus on the k-anonymity approach: the problem amounts to create G' such that $G' = G_1 \oplus G_2 \oplus ... \oplus G_k$ such that G_is are isomorphic graphs.

- It is NP-hard to find graph transformations minimizing the editing distance between a graph and a k-isomorphic graph.
Two families:
- Clustering: group together edges and nodes.
- k-anonymity (and l-diversity): there should be at least k-1 other candidates with similar features.

We focus on the k-anonymity approach: the problem amounts to create G' such that $G' = G_1 \oplus G_2 \oplus \ldots \oplus G_k$ such that G_is are isomorphic graphs.

It is NP-hard to find graph transformations minimizing the editing distance between a graph and a k-isomorphic graph.

One solution: select $1/k$ nodes randomly, create k clones, link the clones together easy to program with AGREE approach.
Using \textit{AGREE} for k-anonymity

- Progaming with types!
- L is just a cloud of nodes, and K is made of k clones of L.
- Standard T_L is:

\begin{center}
\begin{tikzpicture}
 \node (L) at (0,0) {\circ};
 \node (R) at (1,0) {\star};
 \node (M) at (1,1) {\circ};
 \node (ML) at (1,2) {\circ};
 \draw (L) edge [loop left] (L);
 \draw (L) edge [loop right] (L);
 \draw (L) edge (M);
 \draw (M) edge (R);
 \draw (R) edge (M);
 \draw (M) edge (L);
\end{tikzpicture}
\end{center}

- Simplest T_K is:

\begin{center}
\begin{tikzpicture}
 \node (L) at (0,0) {\circ^1};
 \node (R) at (1,0) {\star};
 \node (M) at (1,1) {\circ};
 \node (ML) at (1,2) {\circ};
 \node (ML1) at (1,3) {\circ};
 \node (ML2) at (1,4) {\circ};
 \draw (L) edge [loop left] (L);
 \draw (L) edge [loop right] (L);
 \draw (L) edge (M);
 \draw (M) edge (R);
 \draw (R) edge (M);
 \draw (M) edge (L);
 \draw (M) edge (ML);
 \draw (ML) edge (ML1);
 \draw (ML1) edge (ML2);
\end{tikzpicture}
\end{center}
Types and structural graph properties

- The simplest k-clones are not connected to each others.
Types and structural graph properties

- The simplest k-clones are not connected to each other.
- AGREE allows the use of the graph structure to reconnect them:
Types and structural graph properties

- The simplest k-clones are not connected to each others.
- AGREE allows the use of the graph structure to reconnect them:

```
1

2 --> 3
```

- Degree problems (nodes of degree 1).
Types and structural graph properties

- The simplest k-clones are not connected to each others.
- AGREE allows the use of the graph structure to reconnect them:

\[\begin{array}{c}
\circlearrowleft \\
\circlearrowright \\
\end{array} \quad \quad \begin{array}{c}
\circlearrowright \\
\circlearrowleft \\
\end{array} \quad \quad \begin{array}{c}
\circlearrowleft \\
\circlearrowright \\
\end{array} \]

- Degree problems (nodes of degree 1). One possibility is to type differently the edges, eg:

\[\begin{array}{c}
\circlearrowleft \\
\circlearrowright \\
\end{array} \quad \quad \begin{array}{c}
\circlearrowright \\
\circlearrowleft \\
\end{array} \quad \quad \begin{array}{c}
\circlearrowleft \\
\circlearrowright \\
\end{array} \]
Self-similar graphs

- Every vertex is replaced by a copy of the graph.
- Interconnections between copies of the original “mimic” the ones in the target graph.
Implementation in the AGREE Framework

\[L \leftarrow K \]

\[\text{clique}(\star \oplus K) \]

\[t_{kl1} \]

\[l_K \]
Implementation in the AGREE Framework

\[G \xrightarrow{m} L \leftarrow K \]

\[G \xrightarrow{\bar{m}} \text{clique}(\star \oplus K) \]

\[t_{k/1} \]

\[l_K \]
Implementation in the AGREE Framework
Implementation in the AGREE Framework

\[
\begin{align*}
L & \xleftarrow{m} G & K & \xrightarrow{t_k} TL_1 & \text{clique}(\star \oplus K) \\
G & \xleftarrow{\overline{m}} & & & \\
G & \xleftarrow{l_1} & TL_1 & \xrightarrow{k_{l_1}} & \\
G & \xleftarrow{l_K} & & & \\
\end{align*}
\]
Implementation in the AGREE Framework
Plan

1. Category Theory 101
2. Graph transformation and Categories
3. AGREE and Graph Generation
 - AGREE and Data Anonymization
 - Self-similar Graphs
4. Conclusion
Categorical frameworks allow simple and mathematically workable definition of complex transformations.

Only basic constructs are needed: pushouts, pullbacks.

An very generic implementation is scheduled.

Open questions:
 - matching ? (random match does not lead to scale-free networks)
 - What statistics can be interesting (Ramsey-like theory) ?
 - What kind of certificate can be produced ?