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Abstract

Let us consider a countable graph G with vertex set V(G). C.St.J.A. Nash-Williams introduced the
notion of an n-path: a 0-path is a finite path and for any n € IN, an (n+1)-path is a path P such that,
for every finite subset F' of V(G), P can be extended to an n-path containing F. This notion extends
in a natural way to the concept of an a-path, where « is an ordinal. N. Polat proved that a countable
graph which contains an wi-path has a hamiltonian path. The aim of this paper is to show that one
cannot improve this theorem to an ordinal strictly less than wi: for any countable ordinal a, we exhibit
a countable non-hamiltonian graph which contains an a-path. These graphs have maximal degree 4.

Can hamiltonicity of countable graphs be expressed in terms of some properties of finite paths? A
necessary condition for a countable graph G to be a one-way hamiltonian graph is clearly that any finite
subset of vertices of G can be covered by a finite path. Of course this condition is not sufficient: just
consider the union of two countably infinite complete graphs linked to each other by finitely many edges.
However, we can consider stronger conditions of this nature. Let us define a 0-path in G to be a finite
path in G and, inductively, define an (n-+1)-path to be a finite path P such that, for every finite subset
F of V(G), P can be extended to an n-path containing F. In [2], C.St.J.A. Nash-Williams asked whether
there exists a countable non-hamiltonian graph which contains an n-path for every positive integer n. He
later found such a graph with vertices of infinite degree [3], and raised the following two questions: is there
a locally finite countable graph with a 6-path but with no hamiltonian path? Is there a non-hamiltonian
countable graph with an 8-path which has finitely many vertices of infinite degree? C. Thomassen provided
an example with a 7-path for the second question. The purpose of this paper is to answer a more general
version of both questions. Specifically, we shall define the concept of an a-path, where « is an ordinal
number. We shall say that a graph G is a-extendable if the empty path is an a-path in G. We exhibit,
for any countable ordinal a, a non-hamiltonian countable a-extendable graph, all of whose vertices have
degree at most 4. Our construction needs some tools similar to those used in the proof of NP-completeness
of hamiltonicity [1]. The case of narrow graphs (graphs with thin ends) is treated by N. Polat in [4]. He
proved that there exists an integer function f such that whenever a narrow graph G has at most n disjoint
rays, then G is a hamiltonian graph if and only if G has an f(n)-path.



1 The Notion of a-Path.

Definition 1 In this paper, graphs are understood to be simple (i.e. without loops or multiple edges).
The sets of vertices and edges of a graph X will be denoted by V(X) and E(X) respectively. The symbol
G will always denote a graph and V(G) will be abbreviated to V', IN denotes the set of positive integers ,
w is the set of non-negative integers and w; is the smallest uncountable ordinal.

A path in a graph is a sequence of distinct vertices of the form (v;)o<i<n Or (v;)icw such that every two
successive vertices v;, viy1 in the sequence are joined by an edge. (Thus, for the purposes of this paper, an
infinite path is understood to be, in the language of some other authors, ” one-way infinite”. In particular,
by a ”hamiltonian path” of an infinite graph, we shall always mean a one-way infinite hamiltonian path,
and an infinite graph will only be considered to be "hamiltonian” if it has a one-way infinite hamiltonian
path.) An edge joining two successive vertices of a path P will be called an edge of P and E(P) will denote
the set of edges of P. The path (v;)o<i<p is an initial section of (v;)o<i<n if p < n and is an initial section
of (v;)iew if p € w. If a path P’ is an initial section of a path P, we say that P’ extends to P (or equivalently
that P extends P'). We shall regard the empty sequence of vertices as a path; it will be understood to be
an initial section of every path. A set S C V is covered by a path P in G if every element of S is a term
of P. If a finite graph G has one and only one hamiltonian path P with first term » and last term v, then
E(G;u,v) will denote the set E(P).

For any ordinal a, we define by induction the notion of a-path of G : i) Any finite path is a 0-path.
ii) Let P be a finite path of G. If, for every finite subset ' C V, P extends to an a-path which covers
F, then P is an («a + 1)-path. iii) If « is a limit ordinal and P is a B-path for every 8 < « then P is an
a-path. We say that G is a-extendable if the empty path is an a-path of G. Note that a hamiltonian graph
is a-extendable for every a.

Example 1 The graph in Fig. 1 is 3-extendable but has no hamiltonian path (Polat [4]) :

Fig. 1

The diagram in Fig. 2 shows how to cover three successive finite sets of vertices of this graph. The path
Py extends to P which in turn extends to P;, and each of these paths can be arbitrarily long.
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Fig. 2

Remark 1 If P is an a-path in a graph G then
i) P is a [3-path for every B < a.
it) Every initial section of P is an a-path.

Theorem 1 (Polat [4]) If G is a countable w;-extendable graph, G is a hamiltonian graph.

Proof. Our definitions imply trivially that a finite graph is hamiltonian if it is w-extendable (or even
l-extendable), and so we may assume that G is countably infinite. Let (v;);c, be an enumeration of
the vertices of G. Suppose that P is an wi-path in G and k € w. Then, for each a < w;, P is an
(o + 1)-path and so extends to an a-path P, of G which covers {v}. There must be a path which is
equal to P, for uncountably many ordinals a < wy, and this path is an w;-path which covers {vy}. This
shows that for every wi-path P in G and every vertex vy of G, P extends to an wi-path 7 (P) which



covers {vr}. Now letting @ be the empty path, which is an w;-path, we can obtain a sequence of paths
m0(Q), m1 (m0(Q)), m2(m1 (m0(Q))), - . . whose union is a hamiltonian path of G. O
2 Construction of n-Extendable Graphs.

In this section, we construct for any integer n > 2, a hamiltonian graph G,,. We then modify G,, so as to
make it non-hamiltonian but still n-extendable.

Example 2 The graph (3 is depicted in Fig. 3.
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Fig. 3

Any initial part of G3 is coverable by three successive paths, as shown in Fig. 4. Note that each path,
from s to t, from ¢ to u and from u can cover an arbitrarily long initial part of G3. The vertices s, ¢t and u
have decreasing levels in G3 and from u, the path cannot extend more than once.

TMMW\ | \Z

| {uuu | 74
| [ J ] /

Fig. 4

The problem is that the graph G3 has a hamiltonian path, as we can check in Fig. 5.

Fig. 5

We define now the graphs G,, for any integer n > 2.

Definition 2 A block is the finite graph depicted in Fig. 6. A row is the countable graph R depicted in
Fig. 7. This graph is constructed on the set of blocks {B;}; N-

The graph G,, (n > 2) is constructed starting with the disjoint union of n rows, Ry, Rs, ..., R,, where
the subscripts 1,2,...,n belong to the set Z,, of residues modulo n. For each ¢ € Z,, j € IN, the block B; ;
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has vertices a; j, bi,j, bj ;, ¢ij, ¢ j, dij, ©i,; and is the %" block of the i*" row (the bottom row is R;). The
jt* column of G, is the graph C; =U{Bi,; :i € Z,}. The edge a; jc; ; of G, is denoted by f; ;. The edge
bz-,jb;-’j of G, is denoted by g; ;. The graph G, is obtained as follows (the picture of G'3 in Fig. 3 is helpful
in understanding the construction of G,,):

i) We add a single vertex s which is linked only to the vertex a, 1. This vertex is now the origin of any
possible hamiltonian path of G,,.

ii) We add the edges e;; = d; jxi—1,; (i € Zp, j € IN).

iii) We delete all the edges by jdi,; (j € N); because of this, when the bottom level is reached, a path
constructed on the lines of Fig. 4 can only be extended once.

Remark 2 Suppose that m, n are integers such that 0 < m < n, and J is the subgraph of R (the “row”
described above) induced by V(B,;,) UV (Bpt1)U...UV(B,). Then it is easily seen that there is a unique
hamiltonian path of J from a,, to z,, and from d,, to z,: they must be of one of the kinds indicated by Fig.
8 (drawn for the illustrative case n —m = 4). In particular, this implies that the notations E(J; an,,Zy)
and E(J;d,,z,) make sense.
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Definition 3 An edge forcing condition of G is a formula e; = e2 where e; and ey are edges of G. A path
P of G satisfies this condition if either both e; and ez belong to E(P) or else e; ¢ E(P). Let F be a set
of edge forcing conditions of G. We say that (G, F) is hamiltonian if there exists a hamiltonian path of G
which satisfies all the edge forcing conditions of F. In the graph G,, we let F;; denote the edge forcing
condition e; ; = fiy1,j+1 for every i € Z,, j € N (see Fig. 9). The set {F;; : i € Z, , j € N} is denoted
by Fn. A path P in G, is r-proper if, for some m € IN,

i) P starts at s and ends at a, m;

ii) V(P) = (U{V(C)) : 1 <j<m})U{s,arm};

iii) P satisfies F; ; for alli € Zyand all 1 < j <m —1.
An r-proper section of a path P of (G, is an initial section of P which is an r-proper path of G,,.

Theorem 2 (G, F,) is not hamiltonian.
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Proof. We suppose, by way of contradiction, that G, has a hamiltonian path P which satisfies the set of
edge forcing conditions F,. Then the path s,a, ;1 is an n-proper section of P. Moreover, if P had a 1-proper
section, say ending at ai,y,, then P could not cover both by ,,, and c¢i,,, and so could not be hamiltonian.
Therefore there exists [ € Z,, \ {1} such that P has an [-proper section P’ and has no (I — 1)-proper section.
We suppose that P’ ends at a;,,,. Since the e; ; are the only edges that go between rows, infinitely many
of them must be in E(P). We can therefore choose p € Z,, and an integer ¢ > m such that e, , € E(P)
and, subject to these requirements, ¢ is as small as possible. Then, by Remark 2, P contains the edges of
U{Ck : m < k < ¢} indicated in Fig. 10. Consequently, b; ,d; , ¢ E(P) when i € Z,,\ {l}. Note also that
p # I since d;, cannot be incident with three edges of P. We now make the following observations:

i)If i € Zp\ {I} and f; g41 € E(P) then e;, € E(P) (since b; 4d; q ¢ E(P) and P must cover both d; 4
and ¢} .1 1)

ii) If ¢ € Z,, and €; 4 € E(P) then f;_1 441 € E(P) (since P must cover both a;_1 441 and b;_; ).

iii) If i € Z, \ {{ + 1} and e; 4 € E(P) then f; 1 441 € E(P) by ii) and thus e; 1 4 € E(P) by i).

iv) If i € Z,\ {{ — 1} and e;4 € E(P) then fiy1,4+1 € E(P) by the edge forcing conditions and
consequently e;11,4 € E(P) by 1).
Since e, 4, € E(P), it follows from iii) and iv) that e; , € E(P) for every ¢ € Z,, \ {l}. Thus P contains the
edges of [J{Ck : m < k < ¢} indicated in Fig. 11 and so P has an (I — 1)-proper section, a contradiction. (I
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3 Realization of Edge Forcing.

In this section, we construct, for any n > 2, an n-extendable graph which has no hamiltonian path. The
construction is essentially based on the structure (G, F,) defined in the previous section.

Definition 4 A bound edge of a graph G is an edge zy of E(G) such that the degree of x or the degree
of y is less than or equal to 2. Note that if G is an infinite hamiltonian graph with a degree one vertex,
then every bound edge of G belongs to every hamiltonian path of G. An (ay, a9, B1, B2, 71,72)-bridge is
a graph isomorphic to the one depicted in Fig. 12. This kind of graph is widely used in the proofs of
NP-completeness of hamiltonicity; see for example [1].
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Let G be an infinite graph. A triple (e, f,g) of pairwise nonadjacent edges of G such that g is a
bound edge is a forcing triple of G. Let (z1%2,y1y2,u1u2) be a forcing triple of G, and denote by
D an (z1,%2,y1,Y2, u1,us)-bridge such that V(G) N V(D) = {z1,22,Y1,Y2,u1,u2}. The graph, with
vertex set V(G) U V(D) and edge set (E(G) \ {z122,y1y2,u1us2}) U E(D), is called the realization of
(G, (x122,Y1Y2,u1u2)); we denote it by R(G, (x1x2,y1y2,u1u2)). The graph D is the bridge associated with
the forcing triple (z1%2,y1y2, uiu2).

Let (e, f,g) be a forcing triple of a graph G. A path P of G is compatible with (e, f,g) if g € E(P)
or E(P)N{e, f,g} = 0. Let P be a path of G compatible with (e, f,g) and D the bridge associated with
(e, f,9). Set A = E(P)n{e,f,g}. We denote by U(P,(e, f,g)) the path of R(G, (e, f,g)) with edge set
(E(P)\{e, f,9}) U E4 where E4 is a subset of edges of D defined as follows: the set Ey is empty, and the
other sets of edges E4 are depicted by bold edges in Fig. 13.

Let G be an infinite graph and T = {(e;, fi,9;) : ¢ € N} be a set of forcing triples of G such that every
edge of G appears in at most one triple of T. Let G! = G, and inductively G**' = R(G*, (ex, fx, gx)) for
every integer k > 1. We obtain a sequence of graphs G, G2, G3, ... whose limit is the realization of (G, T).
We denote this graph by R(G,T). A compatible path of (G, T) is a path of G compatible with every forcing
triple of T. Let P be a compatible path of (G,T), let Py be the path P in G°, and inductively, P, be
the path U(Py, (ex, fr,gr)) of R(G*, (ex, fr,gx)) for any k € IN. The limit of the sequence P,, P, ... is a
path of the graph R(G,T); we denote it by ¥(P,T).

Lemma 1 Let G be an infinite graph with a degree one vertex. Let T = {(e;, fi,9:) : © € IN} be a set of
forcing triples of G such that every edge of G appears in at most one triple of T. The graph R(G,T) has
a hamiltonian path if and only if (G,{(e; = f;) : i € IN}) is hamiltonian.

Proof. Let P be a hamiltonian path of G which satisfies e; = f; for every ¢ € IN. Since P is a hamiltonian
path and G has a degree one vertex, every bound edge of G is an edge of P. Thus, P is a compatible path of
(G,T) and by construction ¥(P,T) is a hamiltonian path of R(G,T). Conversely, from every hamiltonian
path @ of R(G,T), it is routine to construct a hamiltonian path P of G which satisfies {(e; = f;) : i € N}
and such that U(P,T) = Q. Indeed, for every bridge D associated with a forcing triple of T, the set of
edges E(Q) N E(D) is the set of bold edges in one of the figures Eyy, Eg ry or Eqg . ry depicted in Fig.
13. 0
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Consider the graph G,, together with the set of forcing triples T,, = {(€;;, fi+1,j41,9i-1,5) : ¢ € Zn, j €
IN}. Let H,, = R(Gy,T,) and let D; ; denote the bridge associated with (e; j, fit1,j+1,9i—1,;) for all i € Z,,
jeNN.

Lemma 2 The graph H, is n-extendable.

Proof. If an r-proper path R of G, ends at a, , (m > 2) then E(R) must contain the bound edge g, m—1
and so the last four terms of R must be bT,m,l,b’rim_l,xnm,l,ar,m: we let R* denote the initial section
of R which ends at b,,, 1. Let I € Z, \ {1}, p € IN and P, be an [-proper path of G,, which ends at
aip+1. Since P covers the set {z;, : @ € Zp} and apr1 ¢ V(P) when ¢ € Z, \ {l}, all the edges
e;p belong to E(F;) when ¢ € Z, \ {l + 1}. Moreover, E(P,) contains the bound edge g; , for all i € Zj,
and so E(FP) contains g;_1p for all i € Z, \ {{ + 1}. Now let R be any path which extends P, such
that V(Cpy1) \ {b]_1 py1>Ti-1p+1} C V(R). (For example, this condition will be satisfied if F;_1 is any
(I —1)-proper path which extends P, and R = P ,.) Our goal is to show that ¥(R,T),) extends ¥ (P}, T,).
Indeed, we just have to check that E(¥(F,T,)) C E(R,T,)). The critical point is to check this inclusion
for all D;p, i € Zyp\ {l +1}. Note that R contains all the edges f; 41 for all i € Z,. Thus ¥(R,T,,) covers
the vertices of Dy, for all i € Z,, \ {I + 1}, as indicated over Eys , .} in Fig. 13. Since the edges of Ejs .}
contain the edges of Ey, .y, we conclude that ¥(R,T),) extends ¥(P*,T,).

Now we are ready to prove that H, is n-extendable. We define an integer valued function rk on V (H,,)
by letting rk(v) = j if v € V(C;) or v € V(D; ;) for some i € Z,, and rk(s) = 0. Furthermore, we define
rk(F) = maz({rk(v) : v € F})if F is a nonempty finite subset of V/(H,,) and rk(p) = 0. We prove now by
induction that any path U(P*,T,,) of H,, where P is an [-proper path of G, is an [-path of H,. To verify
this for I = 1, observe that if P; is a 1-proper path of G, ending at a; , and F is a finite subset of V(Hp,)
then, as illustrated in Fig. 4, there exists a finite path R of G, which extends P; and covers V (C};) for all
Jj < mazx(rk(F),p) + 1. Then, by the argument in the preceding paragraph, ¥(R,T,) extends ¥ (P, Ty).
Moreover U(R,T,) covers F. Since F' was arbitrary , this proves that P, is a 1-path. Now let P be an
(I+1)-proper path of G, which ends at a;41,4 and F be a finite subset of V(H,,). Let r = maz(rk(F), q) +2
and @ be an [-proper path of G, which extends P and ends at a;,. Then, by the induction hypothesis,
¥(Q*,T,) is an [-path of H,. Moreover ¥(Q*,T,) extends ¥(P*,T,) by the argument in the preceding
paragraph, and clearly ¥(P*,T,) covers F. Since F is arbitrary, the path ¥(P*,T;,) is an (I + 1)-path of
H,,. Consequently, the path s,ay,; is an n-path of Hy; in particular H, is n-extendable. O



We claim that H,, is the graph we are looking for: by Theorem 2 and Lemma 1, it has no hamiltonian
path; and by Lemma 2, it is n-extendable.

4 The case of a-extendable graphs.

We generalize the construction of our graphs to G, where a is a countable ordinal. We need first a mapping
® from {1,...,a} into IN such that ®(1) = #(a) = 1 and ®~1(n) is finite for every n € N. For j € N let
T'; denote the finite set ®~1({1,...,5}). IfT; = {v1,%2,...,} where l = 91 < o <13 < ... < 1 = @,
we shall say that ;41 is the I';-successor of v; for i =1,...,t — 1 and that 1 (=) is the I';-successor of
a (= ). For v € T';, we denote the I'j-successor of v by (). We shall say that g is the I';-predecessor
of v if v = 0;(8), we denote the T';-predecessor of v by m;(y). The graph G, is constructed on the set of
blocks {Bg,; : 1< f<a, j> ®(B)} where 3 is an ordinal and j € IN. The set of vertices of the block
Bg,; is {ap,;,bp,5,b5 ;:¢6,j:C3,5,dp.j: Tp,5 }; We denote also by fg,; the edge ag,jcg,; and by gg,; the edge
bg.jbj ;- Each row Rg of G, is constructed as in section 2 on the set of blocks {Bg,; : j > ®(8)}. We
connect distinct rows by adding an edge e, ; = x3,;d,,; for each triple j,7, 3 such that j € N, v € I'; and
B is the I'j-predecessor of v. We add a vertex s joined just to aq,1. Finally, we delete the edges by ;d ; for
every j € IN. This is our graph G,.

When j € N, v € ['; and 6 = 0;(v), we let F, ; denote the edge forcing condition e, ; = f5+1- We
let F, denote the set of edge forcing conditions {F, ; : j € N,y € I';} and T, denote the set of forcing
triples {(ey,;, fs.j+1,958,5) : J € N,B € I'j,v = 0;(8),0 = gj(v)}. We define H, to be R(G4,Ts), and
D, ; will denote the bridge associated with the triple (e, f5,j+1,98,5) € Ta.

We illustrate our construction by an example. In Fig. 14 are drawn the seven first columns of the
graph G2, the construction is based on the mapping ® from {1,...,w2} into IN such that ®(¢) = i for
every i € w\ {0}, ®(w+1i) =i+ 1 for every i € w, and ®(w2) = 1. The bold path is, for instance, an
(w + 2)-proper path of G,2. The graph H, is the realization of (Gy2,T,2)-
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If n,m € N and m < n and v € T, then J(y,m,n) will denote the induced subgraph of G, whose set
of vertices is |J(V(By,;) : max(m, ®(vy)) < i < n). We see from Remark 2 that E(J(y,m,n),dy n,Zyn) is
well defined in these circumstances and that E(J(y,m,n), @y, m,L~,n) is well defined when m,n € IN and



m < n and v € T';,. Let us extend now our definition of r-proper section to the transfinite case. Let a and
p be countable ordinals such that 1 < p < a. A path P in G, is p-proper if, for some m > ®(p),

i) P starts at s and ends at a, m;

il) V(P) = (U{V(By, : ®(7) <j <m, 1<7<a})U{s,apm};

iii) P satisfies F, ; for all pairs 7, j such that 1 <j <m —1and v €T;.

A p-proper section of a path P of G, is an initial section of P which is a p-proper path of G,. If
1< X < aand P is a A-proper path of G, ending at ay ,+1 (where n > 1) then P covers b} ,, and so its
last three terms must be b>\ nt Ty @xnt1- We let P* denote the initial section of P obtalned by omitting
these three terms, i.e. the initial section of P ending at by ,. We again define an integer valued function rk
on V(H,) by letting rk(v) = j if v € V(B,,;) or v € V(D, ;) for some v € I'; and rk(s) = 0. Furthermore,
we define rk(F) = maz({rk(v) : v € F})if F is a nonempty finite subset of V(H,), and rk(0) =

Lemma 3 Let a, A, p be countable ordinals such that 1 < X\ < p < a and P be a p-proper path of G, and
F be a finite subset of V(H,). Then, for some 7 such that X\ < w < p, there erists a w-proper extension Q
of P in G such that ©(Q*,T,) covers F in H,.

Proof. The path P ends at a vertex a,,m, where m > ®(p). Choosen € N such that n > max(®(X), m,rk(F))+
2. Since n > ®(\) and n > m > ®(p), it follows that X\,p € T, and so A < 7 < p, where 7 is the T'p,-
predecessor of p. The set

E(P)UE(J(p,m,n),ap,m,Tpn) U U(E(J(’y, m,n),dy 0, Tyn) U{eyn} 1 v € Cn \ {p}) U{Zrnarnt1}

is the set of edges of a m-proper extension @) of P. (In the example of Fig. 15, the edges in E(Q) \ E(P)
form the bold path.) Moreover ¥(Q*,T,) covers F since n > rk(F) + 2.0
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Theorem 3 (G, Fy) is not hamiltonian.

Proof. We suppose, by way of contradiction, that G, has a hamiltonian path P which satisfies the set of
edge forcing conditions J,. Then the path s,a,: is an a-proper section of P. Therefore we can define p



to be the least ordinal such that P has a p-proper section P'. Suppose that P’ ends at a, . If p =1 then
P could not cover both b; ., and ¢;,,, and so could not be hamiltonian. Therefore 1 < p < a. Since the
e.,; are the only edges that connect the rows, infinitely many of them must be in E(P). We can therefore
choose an ordinal # and an integer ¢ > m such that eg, € E(P) and, subject to these requirements, ¢ is
as small as possible. Then, by Remark 2, P contains the set of edges

E(J(p,m,q), ap,m; Tp,q) U U(E(J(% m,q),dy,q,Zv,q) v €T\ {p})

and the edge eg 4. Consequently, b, qd, , ¢ E(P) when v € T'y\ {p}. Note also that p # 3 since d, ; cannot
be incident with three edges of P. We now make the following observations:

i) If vy € Ty \ {p} and fy,441 € E(P) then e, , € E(P) (since by,q4d,,q ¢ E(P) and P must cover both
dy,qand ¢ 1)

ii) If y € 'y and e,,, € E(P) then f; (,),q+1 € E(P) (since P must cover both ar (4,441 and b;q(,y),q).

iii) If v € T'y \ {o4(p)} and e, 4 € E(P) then f; (4),q4+1 € E(P) by ii) and thus e, (), € E(P) by i).

iv) If v € Ty \ {my(p)} and e, , € E(P) then f; (y),q+1 € E(P) by the edge forcing conditions and
consequently e, (), € E(P) by i).

Since eg,q € E(P), it follows from iii) and iv) that e, 4 € E(P) for every v € 'y \ {p}. Thus P contains
the set of edges

E(J(p,m,q),ap,m;Tp,q) U U(E(J(% M, q);dy,q; Tryg) U{erg}t = v €T\ {p}) U {an(p),qawq(p),q—i-l}
and so P has a mq(p)-proper section, a contradiction. [J
Lemma 4 The graph H, is a-extendable.

Proof. We prove by induction that ¥(P* ,T,) is a p-path of H, if P is a p-proper path of G,. Let us
prove it for p = 1. Let P be a 1-proper path of G, (ending at a1, say). If F is any finite subset of V(H,),
we choose n such that n > m+2 and n > rk(F) 42 and then F will be covered by the extension ¥(Q*,T,)
of ¥(P* T,) where () is the path of G, whose set of edges is

(BE(P)UJEWI(y,m,n),dyn, 2y,n) Udern} : 7 € Tu)) \ {f1,m}-

The set of edges E(Q) \ E(P) is illustrated in the example of Fig. 16. When p=7+1 (7 > 1) and F is a
finite subset of V(H,), there exists, by Lemma 3, a m-proper extension @ of P such that ¥(Q*,T,) covers
F. Then ¥(Q*,T,) is, by induction, a m-path of H,. Moreover ¥(Q*,T,) extends ¥(P*,T,), as may be
seen by adapting the proof of the corresponding statement in the proof of Lemma 2. Therefore ¥(P*,T,)
is a p-path of Hy,. When p is a limit ordinal, let us prove that if 1 < A < p then ¥(P*,T,) is a A-path
of H,. By Lemma 3, there exist an ordinal 7 and a path @ such that A < 7 < p and @ is a m-proper
extension of P, and therefore, from the inductive hypothesis, ¥(Q*,T,) is a w-path of H,. Thus ¥(P* T,)
is a A-path of H, since A < 7 and ¥(Q*,T,) extends ¥(P*,T,). O

Consequently, by Lemma 1 and Theorem 3, the graph H, is a non-hamiltonian graph and contains an
a-path. Moreover, every vertex of H, has degree at most four.

Problem 1 Is it possible to find planar 3-regular examples of such graphs?
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