On Better-Quasi-Ordering
Countable Series-Parallel Orders

Stéphan Thomassé
Laboratoire LMD, UFR de Mathématiques,
Université Claude Bernard
43, Boulevard du 11 novembre 1918,
69622 Villeurbanne Cedex, France
email : thomasse@jonas.univ-lyonl.fr

Abstract

We prove that any infinite sequence of countable series-parallel orders contains an increasing (with
respect to embedding) infinite subsequence. This result generalizes Laver’s and Corominas’ theorems
concerning better-quasi-order of the classes of countable chains and trees.

Let C be a class of structures and < an order on C. This class is well-quasi-ordered with respect to <
if for any infinite sequence Cy,Cy,...,C;, ... in C, there exist ¢ < j such that C; < €. An equivalent
definition is: any subset of C has finitely many minimal elements with respect to <. We are mainly
concerned here with binary relations, the order < being the embedding order. Thus, R < R’ when the
relation R is embedded in the relation R’ (in other words, R is an induced relation of R’). One of the
very first results concerning well-quasi-order is Higman’s theorem ([5]): the class of finite linear orderings
(or chains) labeled by a finite set is well-quasi-ordered with respect to embedding. More precisely, the
objects of the class are finite chains whose elements are labeled by a finite set, and embedding means
order-preserving and label-preserving injection. For example aabcc embeds into abcabcabe but not into
cbacbachba. This result was extended by Kruskal to the class of finite trees [8]. Then Nash-Williams
introduced two fundamental tools of the theory: the ‘minimal bad sequence’ which shortened greatly
the proofs concerning well-quasi-order (wqo), and the ‘better-quasi-order’ (bqo), a strengthening of wqo,
which provides a tool to deal with countable structures [11]. Indeed, wqo is no longer an appropriate
tool in the infinite case, since one can construct, from Rado’s counterexample [13], an infinite set of
pairwise incomparable countable subsets of a wqo. Laver proved in [9] that the class of countable chains
is better-quasi-ordered (and thus well-quasi-ordered) with respect to embedding. Later, Corominas [1]
extended the result of Kruskal to countable trees: the class of countable trees labeled by a better-quasi-
order is better-quasi-ordered with respect to embedding. The proof is in two parts, one devoted to the
construction of countable trees, the other concerned with the preservation of better-quasi-order under
certain operations. This latter aspect can be found in Milner [10] and Pouzet [12]. In this paper, Pouzet
poses the problem of another class of orders, the N-free or series-parallel orders. This class contains the
class of trees, and Pouzet was able to prove the wqo character of the class of finite series-parallel orders.
He conjectured also that the class of countable series-parallel orders is better-quasi-ordered. We settle
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this question affirmatively in this paper. The proof is in two parts. First, we translate this problem into
a structured tree problem, by mean of a decomposition tree based on the notion of interval, a method
which can be found in Kelly’s survey [7]. Second, we extend Corominas’ theorem to the class of structured
trees. We conclude the paper with a discussion of the challenging compactness conjecture of Pouzet.

1 The class of series-parallel graphs.

Definition 1 - A binary relation is a pair R = (V, E) where V is a set and E a subset of V x V. The
elements of V' are the wvertices of R, those of E are the edges of R. A binary relation R = (V, F) is
embedded into another binary relation S = (W, F) (or S embeds R) if there is an injective mapping f
from V into W such that (z,y) € E if and only if (f(z), f(y)) € F. If f is a bijective mapping, then R is
isomorphic to S. For Y a subset of V, R(Y) = (Y, (Y x Y) N E) is the induced subrelation on Y. Hence,
the relation R is embedded into S if and only if R is isomorphic to an induced subrelation of S. If both
R embeds S and S embeds R, then R is equimorphic to S. A subset Y of V is a copy of R if R(Y) is
isomorphic to R.

- A graph G = (V, E) is an irreflexive and symmetric binary relation. If (z,y) € E, then x is adjacent
to y. If x is adjacent (resp. not adjacent) to y for any x # y then G is a complete graph (resp. an empty
graph). The complement of G = (V, E) is the graph G° = (V,(V x V) \ (EU{(z,z) : x € V})). Let
G = (V,E) and H = (W, F) be two graphs such that VN W = ). The graph GUH = (VUW,EUF)
is the union of G and H. We refer to the union between graphs as the parallel operation. The graph
G U H is a parallel graph provided that G and H both have at least one vertex. The graph G + H =
(VUW,EUFU((V x W)U (W x V)) is the sum of G and H. We refer to the sum between graphs as
the series operation. The graph G + H is a series graph provided that G and H both have at least one
vertex. The smallest class of graphs which contains the one-element graph and which is closed under
parallel and series operations is called the class of finite series-parallel graphs.

- A path of G = (V, E) is a sequence of distinct vertices vg, vy, ... v,, such that v; is adjacent to v;41
for all i € {0,...,n — 1}, this path connects vy and v,,. A graph is connected if any two of its vertices are
connected by a path. A maximal connected induced subgraph is a connected component. We denote by
N the graph with vertex set {1,2,3,4} and edge set {(1,2),(2,3),(3,4)}. A graph is N-free if it does not
embed N.

Lemma 1 (Gallai [4]) The class of finite series-parallel graphs is the class of finite N-free graphs.

Proof. Since the graph NN is not series-parallel, every series-parallel graph is N-free. We prove the
converse by induction on n. Let G = (V, E) be a N-free graph. If G is either series or parallel, the
result holds by the induction hypothesis. Suppose, by way of contradiction, that both G and G°¢ are
connected. Let x be a vertex of G. By the induction hypothesis G — x is a series-parallel graph. Free to
consider G¢ instead of G (since N€ is isomorphic to N), we may suppose without loss of generality that
G — x = G U Ga. Denote by V; and V, the vertex sets of G; and Go. Let 41 ={y eV} : (y,z) € G},
Bi={yeWV : (yy2) ¢ G}, Ao ={ye Vo : (y,z) € G} and By = {y € Vo : (y,x) ¢ G}. Since
G is connected, A; and Ay are nonempty. Moreover x is not adjacent in G to all other vertices, so
By U By # (). Suppose without loss of generality that By # (. There exists an edge (u,v) € E such
that v € By and v € A; (otherwise G is not connected). Now consider a vertex w € As. The induced
subgraph G({u, v, z,w}) is isomorphic to N, a contradiction. O

The above lemma does not extend to the infinite case: there exist infinite N-free graphs G such that
both G and G° are connected, for instance, the graph on the natural numbers with 2n adjacent to k for
any n and k such that k < 2n. From now on, a series-parallel graph is an N-free graph.



2 Well-quasi-order of finite series-parallel graphs.

Definition 2 - An order P = (V, E) is a reflexive, antisymmetric and transitive binary relation. For an
order P, we write x <p y (or z < y when there is no ambiguity) instead of (z,y) € E. fz <gyory <=z
then = and y are comparable (otherwise they are incomparable). The graph G.(P) = (V, E’) such that
(z,y) € E'if  is comparable to y in P is the comparability graph of P. An order such that any two of its
vertices are comparable (resp. incomparable) is a chain (resp. an antichain). The connected components
of P are the connected components of G.(P). A subset S of V is a final section of P (resp. an initial
section of P) if for any x € S and y > = (resp. « € S and y < z), y also belongs to S. Let W be a subset
of V. The final (resp. initial) section generated by W is the smallest final (resp. initial) section which
contains W. For x € V, the final section generated by {x} is denoted by V*, the initial section by V.
We also write P* and P, instead of P(V®) and P(V,), respectively. Let P = (V, E) and Q = (V, F) be
two orders defined on the same vertex set, () is an extension of P if E C F.

- Let @ be an order and R a relation, a Q-label of R is a mapping [ from the set of vertices of R
into Q). We say that (R,[) is a Q-labeled relation, where @ is the range of I. Let (Ry,l1) and (Rg,l2) be
two @Q-labeled relations, f is a Q-embedding from (Rjy,l1) into (Re,l2) if f is an embedding from R; into
Ry and I;(x) < lo(f(x)) for any vertex  of Ry. In other words, (Rg,ls) l-embeds (Ry,l1). We permit
multiple labeling; that is precisely, we identify @Q;-labeled Qq-labeled relations and (Q1 x @Q2)-labeled
relations.

- A forest is an order F such that F'* is a chain for any vertex x of F. A treeis a forest T = (V, E) in
which V* NVY # () for all vertices x,y of T. Since we want to represent inclusion, our definition of trees
is the opposite of the usual one. Let x be a vertex of T, a branch of x is an induced, maximal (under
inclusion) subtree of T, —z. A tree is a binary tree if each of its vertices has at most two branches. When
it exists, the minimum vertex (with respect to T') of V,, NV, is the supremum of x and y; we denote it by
xVy. A tree is well-branched if any two of its vertices have a supremum. Let T and T” be well-branched
trees, f is a V —embedding from T into T” if f is an embedding from T into T” and f(zVy) = f(z)V f(y)
for any vertices z and y in T. If moreover T' and T’ are Q-labeled trees, a Q-V-embedding from T into
T’ is both a Q-embedding and a V-embedding.

- The order Aj is the antichain on the vertex set {0,1,2}, As the antichain on the vertex set {0,1}.
We will often need Ay and Aj in our labelings. We denote by 7 the class of Asz-labeled, binary trees such
that minimal elements, and only these ones, are labeled by 0. The subclass of finite trees of 7 is denoted
by 7p. To any labeled tree (T,1) of 7T, we associate a graph SP((T,1)) whose vertex set M is the set of
minimal elements of T and whose edge set is {(x,y) : I(zVy) =1}. Such a graph is series-parallel since
N cannot occur as an induced subgraph of SP((T,1)). Moreover, let (T,1) and (7”,1') be two elements
of T. If f is a Az-V-embedding from (T,1) into (7”,1’) then the restriction of f to the minimal elements
of (T,1) is an embedding from SP((T,1)) into SP((7”,1')). This construction may also be applied to a
labeled tree ((T,1),1") where (T,1) € T and I’ is an arbitrary label of T', in which case SP(((T,1),1')) is
the labeled graph (SP((T,1)),1") where I” is the restriction of I’ to the minimal elements of 7.

- A quasi-order Q = (V, E) is a reflexive and transitive binary relation. A sequence {¢; };c., of elements
of P is good if there are i < j such that ¢; < g;, otherwise the sequence is bad. A quasi-order @ is a
well-quasi-order (wqo) if any infinite sequence of elements of @ is good. It follows from Ramsey’s theorem
that any infinite sequence of elements of a wqo contains an infinite increasing subsequence. An extension
of a well-quasi-order is a well-quasi-order.

- Let C be a class of relations and @ a quasi-order. We denote by Q€ the class of Q-labeled relations
of C. Note that C may already be a class of Q’-labeled relations, in which case QC is a class of Q-labeled
'-labeled relations. In order to choose an embedding order on C, we systematically endow C with the
strongest one; for instance if C is a class of Q)-labeled well-branched trees, we order it by @-V-embedding.
In this sense, the embedding order on the class C is canonical, and we denote it by <¢. Since isomorphism
is no longer equivalent to equimorphism when we deal with infinite structures, (C,<c¢) is a quasi-order.
The class C is well-quasi-ordered if (C,<c) is a wqo. The class C is infinitely well-quasi-ordered if for any



wao Q, (QF, <ge) is a wqo.

Theorem 1 (Kruskal [8]) The class of finite trees is infinitely well-quasi-ordered with respect to V-
embedding.

Corollary 1 The class Tr is infinitely well-quasi-ordered.

Lemma 2 Let G be a finite series-parallel graph labeled by a quasi-order Q. There is a tree T(G) of Tr
such that SP(T(Q)) is isomorphic to G.

Proof. We prove the result by induction on the number of vertices. To the one element series-parallel
graph, we associate the one element tree labeled by 0. Now consider a nontrivial decomposition H + I
(resp. HUI) of G. We choose T'(G) to be the tree whose maximum element m is labeled by 1 (resp. by
2) and has two branches, one isomorphic to T'(H) and the other isomorphic to T'(I). This tree T(G) is
not necessarily unique; for example the complete graph on four elements has two different decomposition
trees. U

Corollary 2 The class of finite series-parallel graphs is infinitely well-quasi-ordered.

Proof. The class of finite series-parallel graphs is wqo; this is a direct consequence of lemma 2 and
Kruskal’s theorem. Moreover one can associate to any ()-labeled finite series-parallel graph (G,1) a Q-
labeled tree (T,1") of T such that (G,1) = SP((T,1')). Since Kruskal’s theorem holds for trees labeled
by a wqo, the class of finite series-parallel graphs is infinitely wqo. O

3 The interval notion.

The decomposition of the finite N-free graphs is based on connectedness, but as we have seen, this
argument does not hold in the infinite case. We need to consider another tool: the notion of an interval
(Fraissé [3]).

Definition 3 - Let R = (V, E) be a binary relation. An interval of R is a subset I C V such that for
any x and y of I, any element z of V' \ I satisfies (z,2) € E < (y,2) € F and (z,2) € E < (z,y) € E.
The singletons, V' and the empty set are intervals called trivial intervals.

- It it easy to verify that the intersection and the union of two non-disjoint intervals are intervals. If
I is an interval of R and W is a subset of V then I N W is an interval of R(W). If I is an interval of R
and Y is an interval of R([) then Y is an interval of R.

- A relation R is indecomposable if the sole intervals of R are trivial.

- An interval partition of R is a partition of V' into non-empty intervals. Let P be an interval partition
of R. The quotient of R by P is the relation R/P = (P, E/P) in which (I,J) € E/P if there are i € I
and j € J such that (4,j) € E. We can also view R/P as the induced subrelation R(S) for any subset S
such that [SNY| =1 for any Y € P. It follows from this definition that if I is an interval of R/P, then
JI is an interval of R.

Any nontrivial finite series-parallel graph is the union or the sum of two graphs, thus it has an interval
partition into two nonempty intervals. Thus, no finite series-parallel graph of cardinal strictly greater
than two is indecomposable. In other words, when a finite indecomposable graph has more than two
elements, it embeds N. D. Kelly has generalized this result to infinite graphs. I learned the following
proof from P. Ille [6].

Lemma 3 (Kelly [7]) An indecomposable graph with at least three vertices embeds N.



Proof. Let a be a vertex of a graph G = (V, E) such that no induced N in G contains a. Let
At ={z e V\{a} : (z,a) € E} and A~ = {z € V\{a} : (z,a) ¢ E}. Let Y be a connected
component of G(A™). Suppose, by way of contradiction, that ¥ is not an interval of G. Let b and ¢ be
two elements of Y and d an element of V' \ Y such that (b,d) € E and (¢,d) ¢ E. Clearly, d is different
from a and since Y is a connected component of G(A~), d does not belong to A~. Consequently d
belongs to A*. Since Y is a component of G(A™), there is a path b = by, by, ba, . .., b, = ¢ which connects
bto cin G(A™). Since (b,d) € E and (c,d) ¢ E, there exists j such that (b;,d) € E and (bj11,d) € E.
This is a contradiction, because G({a,b;,b;11,d}) is isomorphic to N. The graph G is indecomposable,
so the interval Y is trivial, more precisely a singleton. Thus, the induced subgraph G(A™) is an empty
graph. By a similar argument, G(A™) is a complete graph. Suppose, by way of contradiction, that there
is another vertex b of G such that no induced N in G contains b. Without loss of generality, we suppose
that (a,b) € E (otherwise we consider G¢). Let z be a vertex of G distinct from a and b. If z is adjacent
to a, since z and b belong to the complete graph G(A™), b and z are adjacent. Similarly, if 2 is adjacent
to b, it is also adjacent to a. Thus, {a,b} is a nontrivial interval of G, a contradiction. O

A consequence of this lemma is that the indecomposable induced subgraphs of a series-parallel graph
have one or two elements.

4 Tree decomposition of countable series-parallel graphs.

We denote by 7¢ the class of countable trees of 7. Our goal is to associate a tree of 7 to every series-
parallel graph. This technique is similar to Kelly’s notion of strong interval [7], but since we only need
binary trees, the tree decomposition is easier to obtain.

Definition 4 - Two sets X and Y improperly intersect each other if their intersection is (), X or Y.

- Let R = (V, E) be a binary relation. A set F of non-empty intervals of R is an interval family
if it is maximal under inclusion and any two of its elements improperly intersect each other. From the
definition, an interval family contains the set V' and the singletons. We order the set F by inclusion. It
is routine to verify that (F, C) is a tree.

Lemma 4 Interval families are closed under increasing unions and non-empty intersections.

Proof. Let o be an increasing (with respect to inclusion) sequence of elements of F and ¥ be the union
of 0. By the properties of intervals, ¥ is an interval of R. Moreover, ¥ intersects improperly any element
of F, thus it belongs to F. The same proof holds for the intersection. O

Corollary 3 If I is an element of (F,C) which has more than one branch, then each branch of I has a
mazimum element.

Proof. Let B be a branch of I and C' a maximal subchain of B. From the lemma, W = (JC is an
element of F which contains every element of B. Furthermore I has more than one branch, so W is
distinct from I and consequently belongs to B. O

Corollary 4 The tree (F,C) is well-branched.

Proof. Let A and B be two elements of F, and C:={X € F : AC X,B C X}. The set (| C which is
the supremum of A and B belongs to F. O

Theorem 2 Let S = (V, E) be a countable series-parallel graph. For any interval family F of S, there
is a canonical tree Tr of Tc such that SP(Tr) = S.



Proof. We prove first that the tree (F,C) is a binary tree. Let I be an element of F such that I has at
least two branches in (F, C). By corollary 3, each branch of I has a maximum element. We denote by P
the set of maximum elements of the branches of I, in particular P is a partition of I. Furthermore, any
element of P is an interval of S (and thus an interval of S(I)), so P is an interval partition of S(I). Since
G is N-free, G(I) and the quotient graph S(I)/P are also N-free. Suppose, by way of contradiction, that
S(I)/P has more than two vertices. By lemma 3, S(I)/P has a nontrivial interval I’. Thus |JI’ is an
interval of S which improperly intersects any interval of F, a contradiction, since | J I’ does not belong
to F. Now, we label the elements of (F,C) by the 3-element antichain A3. The minimal elements of
(F, Q) are labeled by 0. Let I be an element of F which has two branches. If S(I)/P is the empty graph
with two elements, we label it by 2; if it is the complete graph with two elements, we label it by 1. Now
we remove all the elements of (F, C) with exactly one branch. Call this new tree Tx. We claim that T
satisfies the hypothesis of the lemma. The minimal elements of T+ are the singletons of V. Furthermore
any nonminimal element of Tz is the supremum of two minimal elements, thus T# is countable since
there are countably many elements in V. Finally, G = SP(Tx) follows from the construction. O

5 Better-quasi-order of countable series-parallel graphs.

To deal with countable structures, well-quasi-order is no longer an appropriate notion. Indeed, there
exists a well-quasi-order @ (for example Rado’s counterexample [13]) such that the class of Q-labeled
countable empty graphs is not a wqo class. Here, a stronger notion is necessary : the better-quasi-order
of Nash-Williams. The following definition of better-quasi-order is included here to fix the ideas. It is of
no use in the proofs. For a survey about this notion, see Milner [10].

Definition 5 - A quasi-order @) is a better-quasi-order (or bqo), if the class of countable ordinals labeled
by @ is a well-quasi-order. A class of relations C is infinitely better-quasi-ordered if for any better-quasi-
order Q, (Q°, <gc) is a better-quasi-order.

We shall need the following properties of better-quasi-orders. Any finite order is a better-quasi-order.
Any better-quasi-order is a well-quasi-order. Any extension of a better-quasi-order is a better-quasi-order.
The set of initial sections of a better-quasi-order is better-quasi-ordered with respect to inclusion.

Theorem 3 (Laver [9]) The class of countable chains is infinitely better-quasi-ordered.

Theorem 4 (Corominas [1]) The class of countable trees is infinitely better-quasi-ordered with respect to
V-embedding.

As in the finite case, if the series-parallel graph is labeled, the label is transferred to the minimal
elements of its decomposition tree. By Corominas’ theorem and the existence of a decomposition tree,
the next theorem holds.

Theorem 5 The class of countable series-parallel graphs is infinitely better-quasi-ordered.

This bqo result does not hold any more for higher cardinalities. To show this, we use the chain C of
Dushnik and Miller [2]. This chain is a dense subchain of the real chain, which has 2%° elements and does
not contain any strict copy of itself. It is then routine to prove that the class of chains on 2%° elements is
not wqo : consider a sequence xg <¢ x1 <¢ T2 <¢ ... <c z; <c ... of elements of C. From the definition
of C, the sequence C*0,C*1 C*2 ...C%,...is a bad sequence. The same kind of argument is used to prove
that the class of series-parallel graphs on 280 vertices is not bqo. For this purpose, we construct the
series-parallel graph S.



Definition 6 - As before, we denote by C = (V, E) the chain of Dushnik and Miller. Since it is dense,
we consider [, a labeling from V into {0, 1} such that [=1(0) and [7!(1) are dense in C. Now S = (V, E’)
where (z,y) € F' if x <¢ y and l(y) = 1 or y <¢ x and I(z) = 1. One can easily check that this graph
does not embed N.

Lemma 5 The nontrivial intervals of S are exactly the initial sections of C.

Proof. Clearly, the initial sections of C are intervals of S. Let I be a non-trivial interval of S and x and
y two elements of I such that z <¢ y. We prove that the initial section of C generated by y is included
in I. Let z be an element of S such that z <¢ y. 1) If 2 <¢ x, then z is linked to exactly one vertex in
{z,y}, thus z belongs to I. ii) If I(x) = l(y), I(z) # I(y) and = <¢ z <¢ y, then z belongs to I by the
same argument. iii) More generally, if I(z) = I(y), it follows from density and ii) that there exists a vertex
u € I such that I(u) # I(y) and z <¢ u <¢ y. Thus, we apply i) with u in place of x. Thus z belongs to
1. iv) Finally, if I[(x) # l(y), by density and i), we choose u € I such that u <¢ x and I(u) = I(y). Thus
we conclude using iii) with u instead of z. O

Corollary 5 The sequence of series-parallel graphs {S'};c., where St = S(V N Ji,— |[) is strictly de-
creasing with respect to embedding.

Proof. Observe that if f is an embedding and I is an interval, then f~(I) is an interval. Thus S does
not contain any strict copy of itself, for this would imply that S had such a copy. Thus the sequence
{8 }iew s strictly decreasing. O

6 The series-parallel orders.

The lemmas on series-parallel orders are similar to those concerning graphs, we simply state them without
proof. We show a way to find a decomposition tree of a series-parallel order. We have to code here more
information than for graphs, leading us to introduce the notion of structured tree.

Definition 7 - The N order is the order on vertex set {0,1,2,3} and such that 0 < 1,2 < 1,2 < 3. It
is the only transitive orientation, up to isomorphism, of the N graph. A series-parallel order is an order
which does not embed N, for example, any tree is a series-parallel order.

-Let P = (V,E) and P’ = (W, F) be two orders. The order PU P’ = (VUW, EUF) is the union of
P and P’. We define also P+ P = (VUW,EU F U (V x W)), the sum of P and P’.

- A structured tree (T, S) is a pair where T' = (V, E) is a well branched tree and S = {<, },ev is a set
of orders such that for any vertex v € V', <, is a linear ordering on the set of branches of v. We denote
by Sr. the class of well branched, structured, binary trees labeled by As such that the minimal elements,
and only these, are labeled 0.

- A structured tree (T,5) is s-embedded into a structured tree (7”,5’) if there is a V-embedding f
from T into T’ which preserves structure. That is, for any vertex v of T such that B <, B’ where B and
B’ are branches under v, we have f(B) <,y f(B’), where f(B) (resp. f(B’)) is the branch under f(v)
which contains f(B) (resp. f(B')).

- Let (T,1,S) be an element of Sy, (for short we denote it by T'). The series-parallel order SP(T') is
the partial order on the vertex set M, the set of minimal elements of T', such that x <gp(r) ¥ if and only
if i(x Vy) =1 and B(z) <zvy B(y) where B(z) (resp. B(y)) is the branch of z V y which contains z

(resp. y).
Theorem 6 (Kelly [7]) Any indecomposable order with at least three vertices embeds N.

Proof. Similar to lemma 3. O



Corollary 6 For any countable N-free order P there is a countable tree T of Sy such that SP(T) is
isomorphic to P.

Proof. Analogous to the proof of theorem 2. The only difference occurs in the discussion on S(I)/P.
Here, S(I)/P is either the two-element antichain, in which case we label by 2 the node I, or the two-
element chain, in which case we label by 1 the node I and we structure the branches of I according to
the order of S(I)/P. O

As for graphs, we translate the problem of bqo of countable series-parallel orders into a problem of
bqo of a class of trees. Indeed, we just have to prove now that the class S of countable trees of Sy, is
a bgo. The main problem underlying the proof of bqo of S is to find a construction of this class using
operations which ‘behave well’ with respect to bqo, so that the class S is an algebra containing a bqo
basis and is closed under these operations. For the precise definitions, see Pouzet [12].

In the case of chains, the simpler operation is the sum, as defined previously. But, obviously, this
operation is not enough to construct the class of countable chains. For example, there are some chains
C such that for any partition C' = C; 4+ C5, the chain C' is embedded into C; or Cs. The idea is to use
these particular chains to construct the whole class. In Corominas’ proof, a special class of trees plays
the same role.

The following proof is an extension of Corominas’ one to structured trees. Since our trees are binary,
we prove that the class S can be constructed using two operations, instead of four in the original proof.

7 'Tree partitions and trilabeling.

In what follows, @ is a quasi-order.

Definition 8 Let T' = (V, E) be a tree of S and C a class of )-labeled trees of S. Note that the canonical
embedding between elements of S is the A3 — V — s-embedding By embedding between trees of S, we
always mean this canonical embedding.

- A trilabeling of T is a triple of mappings (I1,l2,l3) such that:

i) The domain of I; is a subset of vertices of T' which have exactly one branch. The range of [ is
C x {0,1}.

ii) The domain of I3 is a subset of minimal vertices of 7. The range of Iy is C x C.

iii) The domain of I3 is a finite or countable subset of maximal chains of 7' without minimal elements.
The range of I3 is C.

- The tree T together with (I1,12,13) is a trilabeled tree, C is the range of the trilabel. Let (77, (I},15,15))
be a trilabeled tree. A t-embedding f from (T, (I1,l2,13)) into (17, (1},15,15)) is an embedding f from T'
into 7" such that for any vertex x € T, I3 (z) < I1(f(z)) and lz(z) < I5(f(z)) and for any maximal chain
C which belongs to the domain of /3 there is a maximal chain C’ of T which contains f(C') and is such
that I3(C) < I5(C").

- For any vertex x of T, the trilabeled tree (T, ({1,12,13)) is the tree T, together with the restrictions
of [; and l5 to the elements less than z and the restriction of I3 to the maximal chains which contain x.

- The realization of (T, (I1,l2,13)), denoted by [T, (l1,12,13)], is the Q-labeled tree of S constructed
from T in the following way:

i) Whenever x is a vertex of T such that l;(x) = (T7”,0) (resp. l1(z) = (T7,1)), add the branch T’
under = with the structure 7" <, B (resp. B <, T") where B is the unique branch of z in T

ii) If  is a minimal vertex of T such that l(x) = (T',T"), add the branches T" and T"” under z with
the structure 77 <, T".

iii) If I3(C') = T”, add the tree 77 under the chain C.

- It is easy to verify that if (7, (I1,l2,l3)) is t-embedded into (77, (1},1,1%)), then [T, (I1,l2,13)] is
embedded into [T7, (14,15,1%)].



Lemma 6 Let T = (V, E) be a Q-labeled tree of S and {I,F} a partition of V' such that I is an initial
section of T and F a final one. We denote by C the set of components of the forest T(I). Then there
exists a trilabeling (I1,12,13) of T(F') whose range is C such that T is isomorphic to [T(F), (I1,12,13)].

Proof. Let B be a nonempty component of T'(I). The final section generated by B in T intersects F'
following a chain C. If C' has a minimum =z, we add B under = using I or I, depending on the number
of branches of x included in I. If C has no minimum, in order to add B under C' using l3, we have
to check that C is maximal under inclusion in T'(F'). Suppose, by way of contradiction, that there is
a vertex x € F such that z <p C. Pick a vertex z of B. The supremum of z and y does not exist, a
contradiction. O

We refer to the trilabeling of this lemma as the trilabeling associated to the partition {I, F}.

8 Strongly indecomposable trees.

Definition 9 Let T'= (V| E) be a tree of S labeled by Q.

- The tree T is strongly indecomposable if for any vertex = of T, the subtree T, embeds T. The empty
tree and the singleton tree are the sole strongly indecomposable finite trees.

- Let Y be a subset of V such that T(Y) is a chain and let Iy be a mapping from Y into Az x As.
We call (T'(Y),ly) a structured chain of T if ly is defined in the following way : if y is not the minimum
of T(Y), then Iy (y) = (4,7) where 4 is the number of branches of y in 7" and j is equal to 1 if and only
if y has two branches By and By in T, By <, By and Y N By # § (and thus Y N By = 0). If y is the
minimum of T(Y'), then Iy (y) = (0,0).

- We denote by B(T') the initial section in the class of {0,1,2} x {0,1}-labeled countable chains,
generated by the set of structured chains of T'. Hence (C,1) € B(T) if and only if there exists a structured
chain (T'(Y),ly) of T which embeds (C,1).

- The tree T is stable if B(T) = B(T}) for any vertex x of T

- Let (T, (I1,12,13)) be a trilabeled tree of S whose range is in C, a subclass of S. The tree is strongly
indecomposable if for any vertex x of T, (T, (I1,12,13)) is t-embedded into (T, (I1,12,13)).

The typical example of a strongly indecomposable tree is the binary tree of height w (7 is finite for
any x and any vertex has two branches). One can easily check that any strongly indecomposable tree
which is not a chain embeds this binary tree.

Lemma 7 Let T = (V,E) and T' = (V' E’) be two trees of S. If B(T) C B(T") and T" is stable, then
T embeds T

Proof. The set of vertices of a countable tree can be covered by a countable set of chains. Let V =
U{Vi}icw where T(V;) is a maximal chain of T" with respect to inclusion. We construct by induction
the embedding of T into T”. Since B(T') C B(T"), there exists an embedding fo from (7'(V),ly,) into a
structured chain of 7", thus (7'(Vj), ly,) is isomorphic to (T7(fo(Vo)), Ls, (ve))-

Now, we assume that we have already defined the embedding f,, from T,, = T(|J{V;}i<xn) into T" in
such a way that the structured chain (T'(V;),lv;) is isomorphic to (T"(f(V3)), 1y, (v;)) for any 0 < i < n.
We want to extend this embedding to V;,. There is j < n such that V,,N(U{Vi}i<n) = V;NV,. V; =V,
there is nothing to prove. If V; # V,,, since T' is well-branched and these chains are maximal, there is one
vertex x of Vj such that (V; NV,,) = T*. Now two cases may occur : ly,(x) = (2,0) or ly,(z) = (2,1).

Since the proofs are similar, we only treat the first case. From the induction hypothesis, it follows
that Iy, (v,)(fn(z)) = ly;(z) = (2,0), thus f,(z) has two branches B] <y, () Bj and f,(V;) N By # 0.
Since z is the meeting vertex of V; and Vj,, then Iy, () = (2,1). Now, we just have to embed V,, \ T*
into Bj. Let 2’ be an element of Bj, by the hypothesis B(T) C B(T") = B(T%,), thus we can extend f,
toV,. O



Corollary 7 Let T be a stable tree of S. Then T is strongly indecomposable.
Corollary 8 Let T be a tree of S. There is a verter x of T such that T, is stable.

Proof. We consider {B(T}), z is a vertex of T'}. This is a set of initial sections of the class of Az x Aa-
labeled chains, which is bqo by virtue of Laver’s theorem. Thus, the set {B(T,), = is a vertex of T} is
bgo with respect to inclusion and consequently has minimal elements. Let « be a vertex such that B(T,)
is minimal. Clearly T is stable. O

Corollary 9 The class of strongly indecomposable trees of S is better-quasi-ordered with respect to em-
bedding.

Proof. Given a strongly indecomposable tree T' of S, there exists, by corollary 8, a stable subtree T,
of T'. Since T is strongly indecomposable, T}, is equimorphic to 7. Now, we just have to prove that the
class of stable trees of S is bqo. This is a consequence of lemma 7 and Laver’s result. O

Lemma 8 Let (T, (l1,12,13)) be a trilabeled tree of S such that the range of the trilabeling is a bqo. Then
there exists a vertex x of T such that (Ty, (I1,l2,13)) is strongly indecomposable.

Proof. Analogous to the proof of corollary 8. O

9 Canonical trees and the reduction process.

We present in this section a construction of a subclass of S, the canonical trees. This construction is
based on the notion of indecomposable trees.

Definition 10 - Let B be a subclass of S. We define two operations on B :

i) The tree operation associate the tree [T, (I1,l2,l3)] to any strongly indecomposable trilabeled tree
(T, (I1,12,13)) which range is contained in 5.

ii) The chain operation associate the tree [C, (I1,l2,13)] to any trilabeled chain (C, (I1,12,13)) which
range is contained in B.

- The minimum subclass of S which contains the empty tree and is closed with respect to the two
previous operations is called the class of canonical trees.

Theorem 7 (Corominas [1]) The class of canonical trees is infinitely bqo.

The proof of this theorem uses ordinal algebras (Pouzet [12]). The structure of the trees only adds
another labeling to Corominas’ original proof. Now we will prove that this class is indeed equal to S.
The key idea is to reduce the trees of S by iterations of lemma 8. This gives a process of reduction of
the trees which terminates after countably many steps.

Definition 11 Let T = (V, E) be a tree of S.

- We define by induction the «-partition of V' into two subsets {I%, F*} such that I is an initial
section and F'* is a final section.

i) The O-partition of V is {#, V'}, denoted by {I°, FY}.

ii) If @ is a limit ordinal, the a-partition of V is {I% F®} in which F® = ({F?}s<, and thus
o=V \ Fe.

iii) If = B + 1, following lemma 6 we can associate a tree (T(F?),(l1,l2,13)) to the partition
{I?,FP} such that (T(F?),(l1,12,13)) = T. Now, a vertex  of F¥” still belongs to F® if and only if
(T(F®),,(I1,12,13)) is not strongly indecomposable. Note that if (T'(F?),, (I1,ls,13)) is strongly inde-
composable then (T(F?),, (I1,ls,13)) is also strongly indecomposable for any vertex y of F” such that
y < x. Thus, F'® is a final section.

- We call the degree of T, denoted by d(T'), the least ordinal «, when it exists, such that the final
section F'“ is empty.

10



10 Bqo of countable series-parallel orders.

We now have all the definitions required to prove the bqo property of the class S. On the one hand, we
know that the class of canonical trees is bqo and on the other hand we have a reduction process for the
elements of S in order to prove that all of them are canonical.

Lemma 9 If T is a tree of S such that T, is canonical for any vertex x, then T is canonical.

Proof. For any vertex z of a canonical tree, the branches of x are canonical trees. Let C' be a maximal
chain of T. We can write T' = [C, (I1, 2, 13)], where the domain of I3 is empty and the ranges of I; and Iy
are sets of canonical trees. Consequently, T is canonical. O

Lemma 10 Any tree of S which has a countable degree is canonical.

Proof. By induction on the degree. Let T be a tree such that d(T") = a.

i) If d(T') = 1, then T is strongly indecomposable. Thus T' = [T, (9, (), ?)] is canonical.

ii) If o is a limit ordinal, for any vertex x there is an ordinal 3 < a such that z € F® and x ¢ FF/*+L.
By the induction hypothesis, T, is canonical for any z. It follows from lemma 9 that the tree T is also
canonical.

iii) If & = 3+1, the partition {I?, F?} is such that (T(F?),, (I1,12,13)) is strongly indecomposable for
any vertex x in F/%. By the induction hypothesis the labels are canonical trees, hence [T'(F?),, (I1,12,13)] =
T, is canonical for any x of FA. Now, if x belongs to I” then d(7}) < 3 and consequently T}, is canonical.
We again apply lemma 9 to prove that 7" is canonical. O

Lemma 11 Any tree of S has a countable degree.

Proof. Let a be a countable ordinal such that F'* is not empty. In (T'(F'%), (l1,l2,l3)), the labels are
canonical, hence they are bqo. By lemma 8, there is a vertex x of F'® such that (T'(F%)y, (I1,l2,13)))
is strongly indecomposable. Thus z is not an element of F®¥! so the sequence {F®},<., is strictly
decreasing. Since the trees of S are countable, they have countable degree. O

We have proved that S is exactly the class of canonical trees. So we have shown that :
Theorem 8 The class S is infinitely better-quasi-ordered.
Corollary 10 The class of countable trees of Sy, is infinitely better-quasi-ordered.

And finally :

Theorem 9 The class of countable series-parallel orders is infinitely better-quasi-ordered.

11 Compactness of wqo and related questions.

If a class of infinite relations is infinitely bqo, the property holds in particular for any relation R of this
class. That is, for any bqo @, the class of Q-labelings of R is bqo. This remark suggests that R embeds
many distinct copies of itself. This is indeed the case, as we can see in the following result, expressed in
terms of series-parallel orders:

Lemma 12 Let S = (V, E) be a countable series-parallel order. Then S embeds at least one strict copy.

11



Proof. We label S by A2 = {0, 1}, the two element antichain. We consider a sequence (S, lp), (S,11), ...,
(S,1;), ... where l; is a labeling of S such that exactly 7 elements of V' are labeled by 0. Since one can
find i < j such that (S,[;) is embedded into (S,1;), this embedding avoids at least j — ¢ vertices labeled
by 0. In fact, using As-labelings, we can prove with the aid of Bernstein’s lemma that there exists more
than a countable set of copies of S. O

Theorem 10 (Thomassé [14]) Let S be a countable series-parallel order. Then S contains 2 copies of
itself intersecting one another in finite sets.

Proof. We just give a sketch of the proof: the set of copies of S is a Borel subset of the power set of .S
endowed with the Tychonoff product topology. Indeed this is true for any relation and can be proved using
the Scott rank of S. Moreover, if the class of As-labelings of a countable relation is a well-quasi-order,
its set of copies is a comeager set. This property implies the theorem. O

Let us introduce now two challenging conjectures concerning wqo and bqo of classes of structures.
First note that all the results in the finite case extend to the countable case: Higman’s wqo theorem for
finite chains extends to Laver’s theorem; Kruskal’s theorem extends to that of Corominas, and finally
the class of countable series-parallel orders is bqo. There is no example of an infinitely wqo class of finite
structures which is not known to be infinitely bqo in the countable case. The question of labeling is also
interesting. Do we really need these infinitely wqo or bqo properties?

Definition 12 - A class of finite relations A is an age if any two relations R and R’ of A are embedded
in some R” € A (the joint embedding property) and for any R € A, any relation embedded in R belongs
to A. Clearly, the class of finite relations embedded in a given relation is an age. The class of countable
relations which have a given age A is denoted by C'(A). We recall that A, denotes the 2-element antichain.

Conjecture 1 (Fraissé, unpublished) If the class of As-labelings of A is wqo, then A is infinitely wqo.
Conjecture 2 (Pouzet [12]) If A is infinitely wqo, then C(.A) is infinitely bqo.

The first natural question on compactness of wqo does not hold. It can be the case that A is wqo and
C(A) is not. Such an example was found by Pouzet using pseudo-periodic sequences. For example, the
Thue-Morse sequence 0110100110010110... seen as an infinite path P labeled by A5 has the following
properties : it does not embed strictly in itself (otherwise the sequence would be periodic), hence the set
of its final sections is a strictly decreasing sequence with respect to embedding. Moreover, for any integer
n there is an m such that any finite subpath of length n is embedded into any finite subpath of length
m. This last property implies that the age of this labelled path is wqo.
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