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Abstract

Let T = (V, E) be a tournament. The C3-structure of T is the family
C3(T ) of the subsets {x, y, z} of V such that the subtournament T ({x, y, z})
is a cycle on 3 vertices. In another respect, a subset X of V is an interval
of T provided that for a, b ∈ X and x ∈ V − X, (a, x) ∈ E if and only if
(b, x) ∈ E. For example, ∅, {x}, where x ∈ V , and V are intervals of T ,
called trivial intervals. A tournament is indecomposable if all its intervals
are trivial. Lastly, with each tournament T = (V, E) is associated the
dual tournament T ? = (V, E?) defined as: for x, y ∈ V , (x, y) ∈ E?

if (y, x) ∈ E. The following theorem is proved. Given tournaments
T = (V, E) and T = (V, E′) such that C3(T ) = C3(T

′), if T is indecom-
posable, then T ′ = T or T ′ = T ?. In order to treat the nonindecompos-
able case, the interval inversion is introduced. The paper concludes with
an extension of this result to the digraphs which do not admit as subdi-
graphs ({0, 1, 2}, {(0, 1), (1, 0), (1, 2)}) and ({0, 1, 2}, {(0, 1), (1, 0), (2, 1)}),
and with a brief consideration of the infinite case.
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et Informatique, km. 8 route d’El Jadida, B.P. 5366, Maarif, Casablanca, Maroc;
boussairi@facsc-achok.ac.ma
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1 Introduction

A digraph D consists of a finite set V of vertices together with a prescribed
collection E of ordered pairs of distinct vertices called the set of edges of D.
Such a digraph is denoted by (V,E). For example, given a set V , (V, ∅) (resp.
(V, (V ×V )−{(x, x);x ∈ V }) is the empty (resp. complete) digraph on V . Given
a digraph D = (V,E), with each subset X of V is associated the subdigraph
D(X) = (X, (X × X) ∩ E) of D induced by X. The subdigraph D(V − X),
where X ⊆ V , (resp. D(V − {x}), where x ∈ V ,) is also denoted by D − X
(resp. D − x). A tournament is a digraph (V,E) provided that for x 6= y ∈ V ,
(x, y) ∈ E if and only if (y, x) /∈ E. For example, ({0, 1, 2}, {(0, 1), (1, 2), (2, 0)})
is a tournament called 3-cycle. Given a digraph D = (V,E), the C3-structure of
D is the family C3(D) of the subsets {x, y, z} of V such that D({x, y, z}) is a 3-
cycle. A poset is a digraph P = (V,E) such that for x, y ∈ V , if (x, y) ∈ E, then
(y, x) /∈ E and such that for x, y, z ∈ V , if (x, y), (y, z) ∈ E, then (x, z) ∈ E.
In the case of a poset P = (V,E), for x 6= y ∈ V , x < y means (x, y) ∈ E.
A total order is a tournament T such that C3(T ) = ∅. Given a poset P , the
comparability structure of P is the family C2(P ) of the pairs {x, y} such that
x < y or y < x. In another respect, with each digraph D = (V,E) is associated
the dual digraph D? = (V,E?) of D and the complement digraph D = (V,E)
of D defined in the following manner. For x 6= y ∈ V , (x, y) ∈ E? if (y, x) ∈ E
and (x, y) ∈ E if (x, y) /∈ E.

Given a digraph D = (V,E), a subset X of V is an interval [9, 10] (or an
autonomous subset [5, 11] or a clan [4] or an homogeneous subset [2, 7] or a
module [13]) of D provided that for any a, b ∈ X and x ∈ V − X, (a, x) ∈ E
(resp. (x, a) ∈ E) if and only if (b, x) ∈ E (resp. (x, b) ∈ E). For example, ∅,
{x}, where x ∈ V , and V are intervals of D, called trivial intervals. A digraph is
then said to be indecomposable (or prime [2] or primitive [4]) if all its intervals
are trivial. Otherwise, it is said to be decomposable. Given a digraph D =
(V,E), for each interval X of D is defined the digraph I(D,X) = (V, I(E,X))
obtained from D by the interval inversion as follows. For every x 6= y ∈ V ,
(x, y) ∈ I(E,X) if either {x, y} − X 6= ∅ and (x, y) ∈ E or {x, y} ⊆ X and
(y, x) ∈ E. The transitive closure of the interval inversion is denoted by I.
More precisely, given two digraphs D and D′ with the same set of vertices V ,
DID′ signifies that there are digraphs D0 = D, . . . , Dn = D′ such that for
0 ≤ i ≤ n− 1, Di+1 = I(Di, Xi), where Xi is an interval of Di.

The next theorem follows from Gallai’s decomposition theorem ([5], see also
Theorem 1.2 of [11]).

Theorem 1 ( Gallai [5]) Given posets P and Q with the same set of vertices,
C2(P ) = C2(Q) if and only if PIQ.

By considering the C3-structure instead of the comparability structure, we
establish the following.
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Theorem 2 Given tournaments T = (V,E) and T ′ = (V,E′), C3(T ) = C3(T ′)
if and only if TIT ′.

In order to generalize these theorems, we have to forbid as subdigraphs
the following two digraphs called flags : ({0, 1, 2}, {(0, 1), (1, 0), (1, 2)}) and
({0, 1, 2}, {(0, 1), (1, 0), (2, 1)}). In another vein, the digraphs D = (V,E) and
D′ = (V,E′) are said to be hemimorphic if for every X ⊆ V such that |X |= 2
or 3, D′(X) is isomorphic to D(X) or to D?(X).

Theorem 3 Given digraphs D and D′ without flags, D and D′ are hemimor-
phic if and only if DID′.

Theorem 3 was announced in [1] without a proof.

2 Strongly connected components, difference re-
lation and equality relation

Some notations are needed. Given a digraph D = (V,E), for x 6= y ∈ V , x −→ y
means (x, y) ∈ E and (y, x) /∈ E, x ←→ y means (x, y), (y, x) ∈ E and x · · · y
means (x, y), (y, x) /∈ E. For x ∈ V and Y ⊆ V , x −→ Y signifies x −→ y for
every y ∈ Y and for X, Y ⊆ V , X −→ Y signifies x −→ Y for any x ∈ X. For
x ∈ V and for X, Y ⊆ V , Y −→ x, x ←→ Y , x · · ·Y , X ←→ Y and X · · ·Y
are defined in the same way. Using these notations, for a digraph D = (V,E),
a subset X of V is an interval of D if for any x ∈ V − X, either x −→ X or
X −→ x or x←→ X or x · · ·X. This generalizes the classic notion of an interval
of a total order. Moreover, it is clear in this form that D, D? and D have the
same intervals, for every digraph D. As shown by the following proposition, the
intervals of a digraph and the usual intervals of a total order share the same
properties.

Proposition 1 Let D = (V,E) be a digraph.

1. Given a subset W of V , if X is an interval of D, then X∩W is an interval
of D(W ).

2. If X and Y are intervals of D, then X ∩ Y is an interval of D.

3. If X and Y are intervals of D such that X ∩ Y 6= ∅, then X ∪ Y is an
interval of D.

4. If X and Y are intervals of D such that X − Y 6= ∅, then Y − X is an
interval of D.

5. If X and Y are intervals of D such that X ∩ Y = ∅, then either X −→ Y
or Y −→ X or X ←→ Y or X · · ·Y .
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The last assertion of the above proposition allows for the definition of the
quotient of a digraph. Given a digraph D = (V,E), a partition P of V is an
interval partition of D if for any X ∈ P , X is an interval of D. With each
interval partition P of D is associated the quotient D/P = (P,E/P ) of D by
P defined in the following manner. For every X 6= Y ∈ P , (X, Y ) ∈ E/P if for
x ∈ X and y ∈ Y , (x, y) ∈ E.

To continue, the strongly connected components of a tournament are in-
troduced. To each tournament T = (V,E) is associated the equivalence re-
lation S defined on V as follows. For any x 6= y ∈ V , xSy if there are
x0 = x, . . . , xm = y ∈ V and y0 = y, . . . , yn = x ∈ V fulfilling : for 0 ≤ i ≤ m−1,
xi −→ xi+1 and for 0 ≤ j ≤ n−1, yj −→ yj+1. The equivalence classes of S are
called the strongly connected components ot T . The tournament T is strongly
connected if it admits a single strongly connected component. The family of the
strongly connected components of T is denoted by S(T ). After examining the
properties of the strongly connected components, we will give a simple proof of
Gallai’s decomposition theorem for the tournaments.

Lemma 1 Given a tournament T = (V,E), S(T ) is an interval partition of
T . Moreover, T is not strongly connected if and only if T/S(T ) is a total order
with |S(T ) |≥ 2.

Proof . Let S be a strongly connected component of T . To show that S is an
interval of T , it suffices to verify that for x, y ∈ S and z ∈ V −S, if x −→ z −→ y,
then z ∈ S. Indeed, since there are y0 = y, . . . , yn = x ∈ V such that yj −→ yj+1

for 0 ≤ j ≤ n− 1, x, y and z are equivalent modulo S.
Let S, S′ and S′′ be distinct strongly connected components of T . Given

x ∈ S, x′ ∈ S′ and x′′ ∈ S′′, as x, x′ and x′′ are not equivalent modulo S,
T ({x, y, z}) is not a 3-cycle. It follows that [T/S(T )]({S, S′, S′′}) is not a 3-cycle
and, thus, C3[T/S(T )] = ∅. 2

Lemma 2 Given tournaments T and T ′ with the same set of vertices V , if
C3(T ) = C3(T ′), then S(T ) = S(T ′).

Proof . Given x 6= y ∈ V such that xSy in T . For example, if x −→ y in T ,
then consider the smallest integer n such that there are y0 = y, . . . , yn = x ∈ V
satisfying : for 0 ≤ i ≤ n − 1, yi −→ yi+1 in T . By the minimality of n, for
0 ≤ i ≤ n− 2 and for i + 2 ≤ j ≤ n, yj −→ yi in T . Consequently, for 0 ≤ i ≤
n−2, T ({yi, yi+1, yi+2}) is a 3-cycle. Since C3(T ) = C3(T ′), T ′({yi, yi+1, yi+2})
is a 3-cycle and, hence, yi, yi+1 and yi+2 are equivalent modulo S in T ′. By
transitivity, y0 = ySyn = x in T ′. 2

By Lemma 1, if a tournament T = (V,E) is not strongly connected, then
T/S(T ) is a total order. Clearly, if S is the minimum element of T/S(T ), then
V − S is an interval of T . Such a subset S of V is called a cut of T . More
generally, given a digraph D = (V,E), a subset X of V is a cut of D if X and
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V − X are intervals of D. For example, ∅ and V are cuts of D, called trivial
cuts.

¿From the last assertion of Proposition 1, it ensues that for every tournament
T = (V,E), if X is a cut of T , then X −→ (V − X) or (V − X) −→ X. The
next lemma follows immediately.

Lemma 3 Given a tournament T , T is strongly connected if and only if all its
cuts are trivial.

Consequently, if S is a strongly connected component of a tournament T =
(V,E), then all the cuts of T (S) are trivial. Let X be an interval of T such that
S ∩ X 6= ∅ and X − S 6= ∅. ¿From Proposition 1, since X − S 6= ∅, S − X is
an interval of T . Thus, S ∩X is a cut of T (S) and S ⊆ X. Such a subset S of
V is called a strong interval of T . More generally, given a digraph D = (V,E),
a subset X of V is a strong interval of D [5, 11] provided that X is an interval
of D and for every interval Y of D, if X ∩ Y 6= ∅, then X ⊆ Y or Y ⊆ X. It
is easily verified that all the strong intervals of a total order are trivial. The
following result characterizes such tournaments.

Proposition 2 Given a tournament T , all the strong intervals of T are trivial
if and only if T is a total order or T is indecomposable.

Proof . It suffices to show that if T is decomposable and if all its strong intervals
are trivial, then T is a total order. Among the nontrivial intervals of T , consider
a maximal one X with respect to the inclusion. As X is not a strong interval
of T , there is an interval Y of T such that X ∩ Y , X − Y and Y − X are
nonempty. By Proposition 1, since X ∩ Y 6= ∅, X ∪ Y is an interval of T . As
X ⊂ X ∩ Y , it follows from the maximality of X that X ∪ Y = V . Since
X −Y 6= ∅, V −X = Y −X is an interval of T . Consequently, X is a nontrivial
cut of T . By Lemmas 1 and 2, | S(T ) |≥ 2 and T/S(T ) is a total order. For
every S ∈ S(T ), since S 6= V and since S is a strong interval of T , | S |= 1.
Consequently, S(T ) = {{x};x ∈ V } and T is a total order. 2

The previous proposition leads us to attribute to any tournament a quotient,
all the strong intervals of which are trivial. Given a digraph D = (V,E), P (D)
denotes the family of maximal strong intervals of D under the inclusion which
are distinct from V . The following three lemmas review some properties of
P (D).

Lemma 4 For every digraph D = (V,E), P (D) is an interval partition.

Proof . Given any x ∈ V , since {x} is a strong interval of D, there is X ∈ P (D)
such that {x} ⊆ X. Let X and Y be elements of P (D) such that X ∩ Y 6= ∅.
As X and Y are strong intervals of D, X ⊆ Y or Y ⊆ X. It follows from the
maximality of the elements of P (D) that X = Y . 2
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Lemma 5 Given a tournament T = (V,E), if T is not strongly connected, then
P (T ) = S(T ).

Proof . By Lemma 1, the elements of S(T ) may be denoted by X0, . . . , Xn

in such a way that T/S(T ) is the total order X0 < · · · < Xn. It suffices
to prove that for any interval X 6= V of T , if there is i ∈ {0, . . . , n} such
that Xi ⊂ X, then X is not a strong interval. As X is an interval of T , the
family I = {j ∈ {0, . . . , n} : Xj ∩ X 6= ∅} is an interval of the usual total
order on {0, . . . , n}. Since Xi ⊂ X ⊂ V , there are k < l ∈ {0, . . . , n} such
that I = {k, . . . , l}. Since the strongly connected components of T are strong
intervals of T , X = Xk ∪ . . . ∪ Xl and, thus, (k, l) 6= (0, n). For example, if
k 6= 0, then X0 ∪ . . . ∪ Xk is an interval of T such that X ∩ (X0 ∪ . . . ∪ Xk),
X − (X0 ∪ . . . ∪Xk) and (X0 ∪ . . . ∪Xk)−X are nonempty. 2

Lemma 6 For any digraph D = (V,E), all the strong intervals of D/P (D) are
trivial.

Proof . It is sufficient to verify that any nontrivial interval Q of D/P (D) is
not a strong interval of D/P (D). The union

⋃
Q of the element of Q is an

interval of D such that for X ∈ Q, X ⊂
⋃

Q ⊂ V . By the maximality of the
elements of P (D),

⋃
Q is not a strong interval of D and, hence, there is an

interval Y of D such that Y ∩ (
⋃

Q), Y − (
⋃

Q) and (
⋃

Q)− Y are nonempty.
The family Y/P (D) = {Z ∈ P (D) : Y ∩ Z 6= ∅} is an interval of D/P (D).
Since Y ∩ (

⋃
Q) 6= ∅ and since Y − (

⋃
Q) 6= ∅, |Y/P (D) |≥ 2. As the elements

of P (D) are strong intervals of D, Y =
⋃

(Y/P (D)) and, thus, (Y/P (D)) ∩Q,
(Y/P (D))−Q and Q− (Y/P (D)) are nonempty. 2

Gallai’s decomposition theorem for tournaments is then stated as follows.

Theorem 4 Let T be a tournament.

1. T is not strongly connected if and only if T/P (T ) is a total order.

2. T is strongly connected if and only if |P (T ) |≥ 3 and T/P (T ) is indecom-
posable.

Proof . By Proposition 2 and Lemma 6, it suffices to establish the first equiva-
lence. If T is not connected, then, by Lemma 1, T/S(T ) is a total order and, by
Lemma 5, P (T ) = S(T ). Conversely, if T/P (T ) is a total order, then its mini-
mum element is a nontrivial cut of T and Lemma 3 allows for the conclusion.

2

To establish Theorem 2, the difference relation and the equality relation
are introduced. Let D = (V,E) and D′ = (V,E′) be hemimorphic digraphs.
A pair {x, y} of elements of V is a difference pair (resp. an equality pair) if
D({x, y}) is a tournament such that D({x, y}) 6= D′({x, y}) (resp. D({x, y}) =
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D′({x, y})). The difference relation [12] (resp. the equality relation) is the
equivalence relation D (resp. E) defined on V by : for x 6= y ∈ V , xDy (resp.
xEy) if there are x0 = x, . . . , xn = y ∈ V such that for 0 ≤ i ≤ n− 1, {xi, xi+1}
is a difference pair (resp. an equality pair). The family of the equivalence classes
of D (resp. E) is denoted by D(D,D′) (resp. E(D,D′)).

Lemma 7 ( Hagendorf and Lopez [8]) Given hemimorphic digraphs D and D′,
if D is without flags, then D(D,D′) and E(D,D′) are interval partitions of D
and of D′.

In order to demonstrate the next proposition, the following well known result
is recalled.

Lemma 8 Given a tournament T = (V,E) with | V |≥ 4, T is strongly con-
nected if and only if there are x 6= y ∈ V such that T −x and T − y are strongly
connected.

Proposition 3 Given tournaments T = (V,E) and T ′ = (V,E′) such that
C3(T ) = C3(T ′), if T is strongly connected, then V /∈ D(T, T ′) ∩ E(T, T ′).

Proof . Proceed by induction on |V |. Firstly, if |V |= 3, then, as T is strongly
connected, T is a 3-cycle. Since C3(T ) = C3(T ′), T ′ is a 3-cycle and either
T ′ = T or T ′ = T ?. In the first case, V /∈ D(T, T ′) and, in the second one,
V /∈ E(T, T ′). Secondly, if |V |> 3, then, by the previous lemma, there is x ∈ V
such that T − x is strongly connected. By the induction hypothesis, it may
be assumed by considering T ? in place of T that V − {x} /∈ D(T − x, T ′ − x).
It is then sufficient to show that if V ∈ E(T, T ′), then V /∈ D(T, T ′). Indeed,
if V ∈ E(T, T ′), then there is y ∈ V − {x} such that {x, y} is an equality
pair. For example, suppose that x −→ y. The element of D(T − x, T ′ − x)
which contains y is denoted by Y . As T − x is strongly connected, there is
Z ∈ D(T − x, T ′ − x)− {Y } such that Y −→ Z. Since x −→ y −→ Z and since
C3(T ) = C3(T ′), for every z ∈ Z, {x, z} is an equality pair. Furthermore, as Z
is an equivalence class of the difference relation D(T − x, T ′− x), for any z ∈ Z
and for any z′ ∈ (V − {x})− Z, {z, z′} is an equality pair. It ensues that there
do not exist x0, . . . , xn ∈ V such that x0 = x, xn ∈ Z and for 0 ≤ i ≤ n − 1,
{xi, xi+1} is a difference pair. 2

Theorem 2 for the indecomposable tournaments follows easily.

Corollary 1 Given tournaments T = (V,E) and T ′ = (V,E′) such that C3(T ) =
C3(T ′), if T is indecomposable, then T ′ = T or T ′ = T ?.

Proof . By the former proposition, it may be supposed by interchanging T and
T ? that V /∈ D(T, T ′). By Lemma 7, D(T, T ′) is an interval partition of T .
Since T is indecomposable, D(T, T ′) = {{x};x ∈ V } or, in other words, T = T ′.

2

The proof of the second corollary needs the following result.
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Lemma 9 Given a tournament T = (V,E), if P is an interval partition of T
such that | P |≥ 3 and T/P is indecomposable, then P = P (T ). As a conse-
quence, T is strongly connected if and only if there is an interval partition P of
T such that |P |≥ 3 and T/P is indecomposable.

Proof . As stated, the second assertion follows from the first one by applying
Theorem 4.2 . Consequently, it suffices to prove that for any interval partition
R of T such that |R |≥ 3 and T/R is indecomposable, if X is an interval of T
with X 6= V , then there is an element of R which contains X. Indeed, for every
interval Y of T , Y/R = {Z ∈ R : Y ∩ Z 6= ∅} is an interval of T/R. Since T/R
is indecomposable, either |Y/R |≤ 1 or Y/R = R. In the last instance, it must
be shown that Y = V . Otherwise, there is Z ∈ R such that Z − Y 6= ∅. By
Proposition 1, Y − Z is an interval of T and (Y − Z)/R would be a nontrivial
interval of T/R. 2

Corollary 2 Given tournaments T = (V,E) and T ′ = (V,E′), if C3(T ) =
C3(T ′), then P (T ) = P ′(T ).

Proof . By Lemma 2, S(T ) = S(T ′), which means, T and T ′ are both strongly
connected or not. If T and T ′ are not strongly connected, then, by Lemma 5,
P (T ) = S(T ) and P (T ′) = S(T ′). If T and T ′ are strongly connected, then the
following notion is utilized.

Given a partition P of a set S, a subset C of S is a cross set of P if for each
X ∈ P , |X ∩ C |= 1. The family of the cross sets of P is denoted by C(P ).
Clearly, for every partitions P and Q of the same set S, P = Q if and only if
C(P ) = C(Q).

Since T is strongly connected, T/P (T ) is indecomposable and, hence, for
every A ∈ C[P (T )], T (A) is indecomposable. By Corollary 1, T ′(A) is in-
decomposable and, thus, either there is X ∈ P (T ′) such that A ⊆ X or for
every X ∈ P (T ′), | X ∩ A |≤ 1. In the first case, for any x ∈ V , there
is a ∈ A such that x and a belong to the same element of P (T ). Conse-
quently, (A − {a}) ∪ {x} ∈ C[P (T )] and since | [(A − {a}) ∪ {x}] ∩ X |≥ 2,
(A − {a}) ∪ {x} ⊆ X. It ensues that for each A ∈ C[P (T )] and for each
X ∈ P (T ′), |X ∩ A |≤ 1. In particular, | P (T ) |≤| P (T ′) |. By interchanging
T and T ′ in what preceeds, it is obtained that | P (T ) |=| P (T ′) | and, hence,
C[P (T )] = C[P (T ′)]. 2

Corollaries 1 and 2 allow for the following demonstration of Theorem 2.

Proof of Theorem 2 . Let X be an interval of T . For any C ⊆ V such that
T (C) is a 3-cycle, as T (C) is indecomposable, |C∩X |= 0, 1 or 3. It ensues that
I(T,X)(C) is a 3-cycle as well and, thus, C3(T ) ⊆ C3[I(T,X)]. In the same way,
since X is an interval of I(T,X) and since I[I(T,X), X] = T , C3[I(T,X)] ⊆
C3(T ). As a consequence, TIT ′ implies C3(T ) = C3(T ′).
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Conversely, it is proved by induction on | V | that if C3(T ) = C3(T ′), then
TIT ′. This assertion is easily verified if |V |≤ 3. Consequently, it is supposed
that |V |> 3. Before continuing, a remark is brought into play.

Assume that T and T ′ admit a common nontrivial interval X. Given x ∈ X,
(V − X) ∪ {x} is denoted by U . By supposing the induction hypothesis, as
T (U)IT ′(U), there are digraphs S0 = T (U), . . . , Sm = T ′(U) such that for
0 ≤ i ≤ m − 1, Si+1 = I(Si, Yi), where Yi is an interval of Si. For each
i ∈ {0, . . . ,m − 1}, the subset Ỹi of V is defined from Yi as : Ỹi = Yi if x /∈ Yi

and Ỹi = Yi ∪ X if x ∈ Yi. Now, the sequence (S̃i)0≤i≤m is defined by :
S̃0 = T and for i ∈ {0, . . . ,m − 1}, S̃i+1 = I(S̃i, Ỹi). Clearly, S̃m(U) = T ′(U),
S̃m(X) = T (X) or T ?(X) and since C3[T (X)] = C3[T ′(X)], C3[S̃m(X)] =
C3[T ′(X)]. By supposing again the induction hypothesis, there are digraphs
R0 = S̃m(X), . . . , Rn = T ′(X) such that for 0 ≤ i ≤ n − 1, Ri+1 = I(Ri, Zi),
where Zi is an interval of Ri. By considering R̃0 = T ′′ and for 0 ≤ i ≤ n − 1,
R̃i+1 = I(R̃i, Zi), it is obtained that R̃n = T ′. It ensues that the induction
hypothesis allows for the conclusion provided that T and T ′ share a common
nontrivial interval.

By Corollary 2, P (T ) = P (T ′) and, hence, it may be assumed that P (T ) =
{{x};x ∈ V }. By Lemmas 2 and 5, and by Theorem 4, T and T ′ are total
orders or T and T ′ are indecomposable. In the second instance, by Corollary 1,
either T ′ = T and T ′ = I(T, ∅) or T ′ = T ? and T ′ = I(T, V ). In the first one, if
X denotes the smallest interval of T which contains the minimum element of T
and the minimum element of T ′, then I(T,X) and T ′ have the same minimum
element m. Since V −{m} is a non trivial interval of T and of T ′, it is sufficient
to apply the previous remark. 2

By Theorems 1 and 2, the comparability structure of the posets and the
C3-structure of the tournaments appear to play a similar role. The characteri-
zation of the comparability structure attributed to Ghouila-Hari [6] leads us to
state the following problem.

Problem 1 Given a set V , find a necessary and sufficient condition for a family
of subsets of cardinality 3 of V to be the C3-structure of a tournament defined
on V .

3 The digraphs without flags

The purpose of the first part of the section is to extend Theorem 4 to any
digraphs. We begin with the definition of diconnected digraphs, of connected
digraphs and of coconnected digraphs. Since the notions of strong connectivity
and of diconnectivity coincide in the case of the tournaments, the equivalence
relation induced by the diconnectivity is still denoted by S. Given a digraph
D = (V,E), the equivalence relations S, C and C are defined on V as below.
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• For x 6= y ∈ V , xSy if there are x0 = x, . . . , xm = y ∈ V and y0 =
y, . . . , yn = x ∈ V satisfying : for 0 ≤ i ≤ m − 1, either xi −→ xi+1 or
xi ←→ xi+1 or xi · · ·xi+1, and for 0 ≤ j ≤ n − 1, either yj −→ yj+1 or
yj ←→ yj+1 or yj · · · yj+1.

• For x 6= y ∈ V , xCy if there are x0 = x, . . . , xm = y ∈ V such that for
0 ≤ i ≤ m− 1, either xi −→ xi+1 or xi+1 −→ xi or xi ←→ xi+1.

• For x 6= y ∈ V , xCy if there are x0 = x, . . . , xm = y ∈ V such that for
0 ≤ i ≤ m− 1, either xi −→ xi+1 or xi+1 −→ xi or xi · · ·xi+1.

The equivalence classes of S, of C and of C are respectively denoted by S(D),
by C(D) and by C(D). The digraph D is diconnected if |S(D) |= 1, it is connected
if |C(D) |= 1 and it is coconnected if |C(D) |= 1.

Lemmas 1, 2, 3 and 5, Proposition 2 and Theorem 4 are extended to any
digraphs in the following manner.

Lemma 10 Let D be a digraph.

1. S(D), C(D) and C(D) are interval partitions of D.

2. D is not diconnected if and only if D/S(D) is a total order with |S(D) |≥
2.

3. D is not connected if and only if D/C(D) is empty with |C(D) |≥ 2.

4. D is not coconnected if and only if D/C(D) is complete with |C(D) |≥ 2.

Lemma 11 Given digraphs D and D′ defined on the same set of vertices V , if
D and D′ are hemimorphic, then S(D) = S(D′), C(D) = C(D′) and C(D) =
C(D′).

Proof . Since D and D′ are hemimorphic, for each X ⊆ V with |X |= 2, D′(X)
is isomorphic to D(X) or to D?(X). It follows from the definition of C and of
C that C(D) = C(D′) and C(D) = C(D′). Now, given distinct elements x and
y of V which belong to the same element of S(D). If x · · · y or x ←→ y, then
xSy in D′. Otherwise, it is supposed that x −→ y in D. Consequently, it may
be considered the smallest integer n such that there are y0 = y, . . . , yn = x ∈ V
satisfying : for 0 ≤ i ≤ n − 1, in D, either yi −→ yi+1 or yi ←→ yi+1 or
yi · · · yi+1. As in the proof of Lemma 2, it is verified that for i ∈ {0, . . . , n− 2},
yi, yi+1 and yi+2 are equivalent modulo S in D′. 2

Lemma 12 Given a digraph D = (V,E), D is diconnected, connected and co-
connected if and only if all its cuts are trivial. More specifically :

1. D is not diconnected if and only if there is a nontrivial cut X of D such
that X −→ (V −X).
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2. D is not connected if and only if there is a nontrivial cut X of D such
that X · · · (V −X).

3. D is not coconnected if and only if there is a nontrivial cut X of D such
that X ←→ (V −X).

The next result is useful to extend Proposition 2 and Lemma 5 to any di-
graphs.

Corollary 3 Given a digraph D, every element of S(D) ∪ C(D) ∪ C(D) is a
strong interval of D.

Proof . By contradiction, suppose that there are an element S of S(D) and an
interval X of D such that S ∩ X, S − X and X − S are nonempty. It ensues
that S ∩X is a non trivial cut of D(S). Since D(S) is diconnected, by Lemma
12, either (S ∩ X) · · · (S − X) or (S ∩ X) ←→ (S − X). By considering D in
place of D, it may be supposed that (S ∩X) · · · (S −X). As X is an interval
of D, (S −X) · · · (X − S) and, hence, D(S ∪X) would be diconnected. Now,
suppose, on the contrary, that there are an element C of C(D) and an interval
X of D such that C ∩ X, C − X and X − C are nonempty. It follows that
C ∩ X is a nontrivial cut of D(C). Since D(C) is connected, by Lemma 12,
either (C ∩X) −→ (C −X) or (C −X) −→ (C ∩X) or (C ∩X)←→ (C −X).
As X is an interval of D, either (X −C) −→ (C −X) or (C −X) −→ (X −C)
or (C − X) ←→ (X − C). Consequently, D(C ∪ X) would be connected. To
complete the proof, it suffices to note that C(D) = C(D). 2

Proposition 4 Given a digraph D = (V,E), all the strong intervals of D are
trivial if and only if D is complete or D is empty or D is a total order or D is
indecomposable.

Proof . As in the proof of Proposition 2, if D is decomposable and if all its
strong intervals are trivial, then D admits a nontrivial cut X. By Lemma 12,
D is not diconnected or D is not connected or D is not coconnected. The above
three assertions, which follow from Lemma 10 and Corollary 3, allow for the
conclusion.

• If D is not diconnected, then S(D) = {{x};x ∈ V } and, thus, D is a total
order.

• If D is not connected, then C(D) = {{x};x ∈ V } and, thus, D is empty.

• If D is not coconnected, then C(D) = {{x};x ∈ V } and, thus, D is
complete.

2
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Lemma 13 let D = (V,E) be a digraph.

1. If D is not diconnected, then P (D) = S(D).

2. If D is not connected, then P (D) = C(D).

3. If D is not coconnected, then P (D) = C(D).

Proof . For the first assertion, the proof of Lemma 5 applies. In another respect,
the third assertion follows from the second one by interchanging D and D. Now,
for the second implication, it is sufficient to prove that if X is an interval of
D distinct from V such that there is C ∈ C(D) with C ⊂ X, then X is not a
strong interval of D. Indeed, by Corollary 3, all the elements of C(D) are strong
intervals of D and, hence, there is Q ⊂ C(D) such that X =

⋃
Q and |Q |> 1.

Given Y ∈ Q and Z ∈ C(D)−Q, Y ∪Z is an interval of D such that X∩(Y ∪Z),
X − (Y ∪ Z) and (Y ∪ Z)−X are nonempty. 2

Gallai’s decomposition theorem follows immediately.

Theorem 5 Let D be a digraph.

1. D is not diconnected if and only if D/P (D) is a total order.

2. D is not connected if and only if D/P (D) is empty.

3. D is not coconnected if and only if D/P (D) is complete.

4. D is strongly connected, connected and coconnected if and only if D/P (D)
is indecomposable with |P (D) |≥ 3.

In [7], Habib adopts a different approach to establish this theorem. Given
a digraph D = (V,E), P(D) denotes the family of the interval partitions of D.
The following poset is defined on P(D). Given P 6= Q ∈ P(D), P ≺ Q if for
every X ∈ P , there is Y ∈ Q such that X ⊆ Y . Clearly, {{x};x ∈ V } is the
minimum element of (P(D),≺) and {V } is the maximum element of (P(D),≺).
Furthermore, given P,Q ∈ P(D), the meet of P and Q, denoted by P ∨Q, and
the join of P and Q, denoted by P ∧Q, are defined as follows.

• Given x 6= y ∈ V , x and y belong to the same set of P ∨ Q if there are
X0, . . . , Xn ∈ P ∪ Q satisfying : x ∈ X0, y ∈ Xn and for 0 ≤ i ≤ n − 1,
Xi ∩Xi+1 6= ∅.

• Given x 6= y ∈ V , x and y belong to the same set of P ∧ Q if there are
X ∈ P and Y ∈ Q such that x, y ∈ X ∩ Y .

Consequently, (P(D),≺) is a lattice. The maximal elements of (P(D) −
{V },≺) are called the coatoms of (P(D),≺). It is then verified that P (D) is
the join of all the coatoms of (P(D),≺).

To extend Lemma 8 to any digraphs, the below three lemmas are required.
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Lemma 14 ( Ehrenfeucht - Rozenberg [4]) Given an indecomposable digraph
D = (V,E), if X is a subset of V such that 2 <|X |<|V | and D(X) is indecom-
posable, then there are u, v ∈ V −X such that D − {u, v} is indecomposable.

Lemma 15 ( Cournier - Ille [3]) Let D = (V,E) be an indecomposable digraph
with |V |≥ 3.

1. There exists a subset X of V such that |X |= 3 or 4 and D(X) is inde-
composable.

2. For each x ∈ V , there exists a subset X of V such that x ∈ X, 3 ≤|X |≤ 5
and D(X) is indecomposable.

The proof of the next lemma is the same as that of Lemma 9.

Lemma 16 Given a digraph D, if P is an interval partition of D such that
|P |≥ 3 and P/D is indecomposable, then P = P (D). Consequently, D is di-
connected, connected and coconnected if and only if there is an interval partition
P of D such that |P |≥ 3 and P/D is indecomposable.

The extension of Lemma 9 to the digraphs is then stated as below.

Lemma 17 Let D = (V,E) be a digraph.

1. If |V |≥ 5 and if D is diconnected, connected and coconnected, then there
is x ∈ V such that D − x is diconnected, connected and coconnected.

2. Assume that |V |≥ 6. The digraph D is diconnected, connected and cocon-
nected if and only if there exist distinct elements x and y of V such that
D − x and D − y are diconnected, connected and coconnected.

Proof . Suppose that D is diconnected, connected and coconnected. Firstly, if
there is X ∈ P (D) such that |X |≥ 2, then, by Lemma 16, for every x ∈ X,
D − x is diconnected, connected and coconnected. Secondly, assume that D is
indecomposable with |V |≥ 3. The following remark is useful.

If D−{u, v} is indecomposable, where u, v ∈ V , then there is x ∈ {u, v} such
that D − x is diconnected, connected and coconnected. The remark is obvious
if there is x ∈ {u, v} such that D − x is indecomposable. Otherwise, for w = u
or v, D−w admits a nontrivial interval X. By Proposition 1, X ∩ (V −{u, v})
is an interval of D−{u, v} and, hence, |X ∩ (V −{u, v}) |= 1 or X = V −{u, v}.
However, if V − {u, v} is an interval of D − u and of D − v, then V − {u, v}
is an interval of D as well. It ensues that, for example, V − {u, v} is not an
interval of D − u. By what preceeds, there is v′ ∈ V − {u, v} such that {v, v′}
is an interval of D − u. As {{v, v′}} ∪ {{a}; a ∈ V − {u, v, v′}} is an interval
partition of D − u such that (D − u)/({{v, v′}} ∪ {{a}; a ∈ V − {u, v, v′}}) is
indecomposable, it suffices to apply Lemma 15.
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It results directly from Lemmas 14 and 15.1, and from the remark that
there is x ∈ V such that D − x is diconnected, connected and coconnected.
Furthermore, by Lemma 15.2, there is X ⊆ V such that x ∈ X, 3 ≤|X |≤ 5 and
D(X) is indecomposable. Consequently, if |V |≥ 6, then, by Lemma 14 and by
the previous remark, there exists y ∈ V − X such that D − y is diconnected,
connected and coconnected. 2

As Lemma 8 is important to prove Proposition 3, the preceeding Lemma
allows for the demonstration of the following result.

Proposition 5 Given hemimorphic digraphs D = (V,E) and D′ = (V,E′), if
D is diconnected, connected and coconnected, then V /∈ D(D,D′) ∩ E(D,D′).

Proof . We proceed by induction on | V |≥ 3. It follows from the definition of
D and of E that if V ∈ D(D,D′) (resp. V ∈ E(D,D′)), then the number of
difference (resp. equality) pairs is at least | V | −1. Consequently, if | V |= 3,
then V /∈ D(D,D′) ∩ E(D,D′). In the same manner, if | V |= 4 and if there
are x 6= y ∈ V such that x ←→ y or x · · · y, then V /∈ D(D,D′) ∩ E(D,D′).
Furthermore, if | V |= 4 and if D is a tournament, then it is sufficient to
apply Proposition 3. Now, assume that | V |> 4. By Lemma 17.1, there is
x ∈ V such that D − x is diconnected, connected and coconnected. By the
induction hypothesis, it may be supposed by considering D? in place of D that
V − {x} /∈ D(D − x,D′ − x). As in the proof of Proposition 3, we suppose
that V ∈ E(D,D′) and we consider Y ∈ D(D − x, D′ − x) which contains an
element y such that x −→ y in D and in D′. The conclusion is then the same
by considering Z ∈ D(D − x,D′ − x)− {Y } such that Y −→ Z or Y ←→ Z or
Y · · ·Z. Such an element Z exists since D − x is diconnected. 2

As for the tournaments, the next two results follow easily.

Corollary 4 Given hemimorphic digraphs D and D′, if D is indecomposable
and without flags, then D′ = D or D′ = D?.

This corollary does not hold if D contains some flags. Indeed, it suffices to
consider the digraphs (see Figure 1) ({0, . . . , n}, {(i, i + 1), (i + 1, i)}1≤i≤n−2 ∪
{(1, 0), (n− 1, n)}) and ({0, . . . , n}, {(i, i+1), (i+1, i)}1≤i≤n−2 ∪{(1, 0), (n, n−
1)}), where n ≥ 3. In fact, Lemma 7 does not hold for these digraphs.

Corollary 5 Given hemimorphic digraphs D and D′, if D is without flags, then
P (D) = P (D′).

Proof . If D is not diconnected or if D is not connected or if D is not coconnected,
then it suffices to apply Lemmas 11 and 13. If D is diconnected, connected and
coconnected, then we conclude as in the proof of Corollary 2 by utilizing the
cross sets of P (D) and of P (D′). 2

Corollaries 4 and 5 allow for the following demonstration of Theorem 3.
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1 2 n− 2 n− 1- - -� � �� -. . .

6 6

0 n

1 2 n− 2 n− 1- - -� � �� -. . .

6

?

0 n

Figure 1:

Proof of Theorem 3 . Let X be an interval of D. For any A ⊆ V such that
|A |= 2 or 3, if |X ∩ A |= 0 or 1 or if A ⊆ X or if |X ∩ A |= 2 with a ←→ b
or a · · · b, where X ∩ A = {a, b}, then I(D,X)(A) = D(A) or D?(A). Thus, it
is supposed that |A |= 3 and X ∩ A = {a, b}, where A = {a, b, c} and a −→ b
or b −→ a. Since X is an interval of D, either c −→ X or X −→ c or c←→ X
or c · · ·X. If c ←→ X or if c · · ·X, then I(D,X)(A) = D?(A). If c −→ X
or X −→ c, then I(D,X)(A) and D(A) are total orders and, hence, they are
isomorphic. It ensues that D and I(D,X) are hemimorphic. Consequently, if
DID′, then D and D′ are hemimorphic. The converse is proved by induction on
|V |. Since the cases |V |= 2 or 3 are obvious, it is supposed that |V |≥ 4. As in
the proof of Theorem 2, the induction hypothesis allows for the conclusion if D
and D′ share a nontrivial interval. By Corollary 5, P (D) = P (D′) and, hence,
it may be assumed that P (D) = {{x};x ∈ V }. It then results from Lemmas 10
and 11, and from Theorem 5 that D and D′ are indecomposable or D and D′

are total orders or D and D′ are empty or D and D′ are complete. If D and
D′ are indecomposable, then it suffices to apply Corollary 4. If D and D′ are
total orders, then it is concluded as in the proof of Theorem 2. If D and D′ are
empty or if D and D′ are complete, then for any X ⊆ V such that 1 <|X |<|V |,
X is a nontrivial interval of D and of D′. 2

Finally, it is mentionned that Corollary 4 may be extented to infinite di-
graphs by utilizing the following characterization of infinite indecomposable di-
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graphs.

Theorem 6 ( Ille [9]) Given an infinite digraph D = (V,E), D is indecompos-
able if and only if for every finite subset F of V , there is a finite subset G of V
such that F ⊆ G and D(G) is indecomposable.
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de cardinal > 12, C. R. Acad. Sci. Paris Série I 317 (1993) 7-12.
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